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hFacultad de Qúımica, Universidad Nac

Universitaria, 04510 Ciudad de México, Me
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st self-driving laboratories in
chemistry and materials science: the “frugal twin”
concept
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This review proposes the concept of a “frugal twin,” similar to a digital twin, but for physical experiments.

Frugal twins range from simple toy examples to low-cost surrogates of high-cost research systems. For

example, a color-mixing self-driving laboratory (SDL) can serve as a low-cost version of a costly multi-

step chemical discovery SDL. Frugal twins already provide hands-on experience for SDLs with low costs

and low risks. They can also offer as test beds for software prototyping (e.g., optimization, data

infrastructure), and a low barrier to entry for democratizing SDLs. However, there is room for

improvement. The true value of frugal twins can be realized in three core areas. Firstly, hardware and

software modularity; secondly, purpose-built design (human-inspired vs. hardware-centric vs. human-in-

the-loop); and thirdly state-of-the-art (SOTA) software (e.g., multi-fidelity optimization). We also
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describe the ethical benefits and risks that come with the democratization of science through frugal twins.

For future work, we suggest ideas for new frugal twins, SDL educational course outcomes, and

a classification scheme for autonomy levels.
1 Introduction

Self-driving laboratories (SDLs) are autonomous experiment-
performing systems that have the potential to accelerate the
discovery of solutions for key societal needs such as carbon-
neutral/net-zero processes, food and agriculture, fuels, clean
energy, energy storage, drug discovery, and structural mate-
rials.1 SDLs can improve experimental reproducibility2 and
increase researcher productivity by automating tedious, repeti-
tive tasks. They require scientists to learn new skills relating to
the supervision, modication, andmaintenance of autonomous
systems, at both the hardware (e.g., liquid handlers, robotic
arms) and soware (e.g., optimization algorithms, workow
orchestration, data infrastructure) levels. This concept allows
scientists to focus on higher-level cognitive tasks such as
hypothesis formulation, experimental design, and data inter-
pretation, which are not easily automated.3

The concept of accelerated discovery via automation goes by
several names, including SDLs,3,4 materials acceleration plat-
forms,9 Lab 4.0,10–12 Internet of Laboratory Things,13–15 Robot
Scientists,16 the Autonomous Research System (ARES),17 and
autonomous experimentation systems.18 While each term has
its own nuances, here we use the term SDL exclusively and
interpret it as referring to autonomous research systems used to
accelerate materials discovery without human intervention. It is
important to note that for the rest of the article, automation
refers to the use of technology to perform tasks with minimal
human intervention, while autonomy implies the ability of
a system to operate independently, making decisions and
taking actions without human control.

SDLs that are used to solve societal challenges are considered
to be materials acceleration for societal solutions (MASS)
r Sparks, Associate Professor of
aterials Science and Engi-
eering at the University of
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he University of Liverpool, sup-
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the Royal Society of Chemistry
platforms.1 Such platforms need to be widely deployed and
adopted if societal challenges are to be addressed. However, such
“critical MASS” (in the words of Seifrid et al.1) will require lower
costs, enhanced ability to recongure and expand, and a joint
effort to make available easy-to-understand examples and systems
for more advanced research tasks. Since the introduction of the
concept of an articial intelligence system to laboratory automa-
tion in 1985 by Isenhour,19 the development of SDLs has gained
traction. However, there are only a handful of fully autonomous
low-cost SDLs reported in the literature. Stach et al.18 provide
a community perspective on SDLs in the context of academia,
industry, government laboratories, and funding agencies, and
supply a descriptive table of selected SDLs across a variety of
applications including chemical vapor deposition,20 nano-
crystals,21 ow-22 and vial-based23 chemistry, oil-in-water emul-
sions,24 additive manufacturing,25 thin lms,7 quantum
materials,26 and solid-state materials.27 Many review and perspec-
tive articles have already been contributed to the eld,1,3,4,9,18,28–46

and a list of 25 recent low-cost SDLs is given in Table 1.
What sets our review apart from others is that we explicitly

focus on low-cost SDLs, i.e., frugal twins of high-cost SDLs. We
hope that this attention to the importance of low-cost SDLs will
shi perspectives on the educational and research capabilities
of low-cost systems and provide a common reference point for
building new solutions.

The question of what is low- vs. high-cost is both a subjective
and contextual problem. Monetary cost and space constraints
are particularly apparent in educational settings, as indicated
by the large fraction of educational SDLs specically described
as low-cost, under 1000 USD,47–49 and which occupy relatively
small footprints. This is in part because the nal objectives are
Alán Aspuru-Guzik
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Table 1 Low-cost SDL summary

Name Field Purpose Costa Ref.

Educational ARES Education 3D printing 300 63
Additive manufacturing ARES Mat. Sci. 3D printing 1000 17
Pioreactor for real-time . culture measurements Biology Cell growth 250 64
Autonomous Research System (ARES) Mat. Sci. CNT growth 5000 20
Closed-loop Spectroscopy Lab: Light-mixing Education Color opt. 50 65
Bayesian Optimization Bartender (BOB) Education Color opt. 200 66
Accelerate Synthesis of MOFs Mat. Sci. Crystallinity 830 67
Evolution of oil droplets . Chemistry Evolution 1000 68
A . robot for discovering . protocell behavior Chemistry Evolution 1000 24
. a congurable 3D printed uidic platform Chemistry Evolution 2000 69
A microuidic platform [for] chemical evolution Chemistry Evolution 5000 70
Chemical synthesis robot for nanomaterials Mat. Sci. Morphology 15 000 71
Cheap automated synthesis platform Chemistry Organic synth. 450 72
Networking chemical robots Chemistry Organic synth. 500 73
Autonomous . platform for . synthesis Chemistry Organic synth. 10 000 74
“The Chemputer” Chemistry Organic synth. 30 000 75
3D printed [microuidic] autonomous analyzer. Chemistry Photometry 2050 76
High-Throughput [CdSe Nanocrystal Synthesis] Chemistry Quantum dots 2000 59
Crystallization Robot Mat. Sci. Randomness 3000 77
Scientic Inquiry in Middle Schools Education Titration 250 47
LEGO Low-cost Autonomous Science (LEGOLAS) Education Titration 300 48
Autonomous titration for chemistry classrooms Education Titration 600 78
Automated pH Adjustment . Education Titration 650 79
Automatic titrator for intro chemistry labs Education Titration 934 80
Automatic titration for teaching chemistry Education Titration 4160 81

a Estimated costs in USD. Abbreviations: carbon nanotube (CNT); additive manufacturing (AM); Autonomous Research System (ARES); LEGO Low-
cost Autonomous Science (LEGOLAS); Bayesian Optimization Bartender (BOB); metal–organic framework (MOF).
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oen based on learning outcomes rather than specic research
objectives.

In both contexts, there is a range betweenmonetary costs that
can be covered by business-as-usual “spare” monetary resources
vs. costs that require dedicated support from grants and other
funding sources. For example, the National Science Foundation
currently places a threshold of 5000 USD to differentiate between
consumables and equipment, above which a purchase must be
“adequately justied” on a grant proposal. An example such as
the Opentrons OT-2 platform (∼7500 USD starting cost) likely ts
more clearly into the “dedicated support” category for many
education-oriented systems and somewhere in-between “spare
resources” and “dedicated support” for research tasks. Never-
theless, the context depends on a multitude of other factors
including the specic research group, institution, country, and
socioeconomic status. For example, the monetary amount
a research group in a developed country considers low-cost will
be signicantly higher than what a local school in a developing
country would consider low-cost due to practical reasons such as
but not limited to lower amounts of funding, greater costs for
delivery, unfair pricing, difficulty of foreign exchange, and
priority to secure a livelihood.50–52

With an emphasis on chemistry and materials science
applications and as part of a broader focus on MAPs and MASS,
we walk through topics relevant to low-cost SDLs. First, we
describe the development of “frugal twins” that capture the core
principles of real-world systems at an education-friendly cost,
and present areas where the community benets from low-cost
844 | Digital Discovery, 2024, 3, 842–868
twins (Section 2). Next, we delineate how educational outcomes
and autonomy can equip the next generation of scientists with
industry-relevant skills (Section 3). Aerwards, we detail how
modularity for hardware and soware plays an important role in
reducing redesign costs for future systems (Section 4.1). We also
illustrate how using a hardware-centric approach when devel-
oping SDLs can reduce system complexity by leveraging existing
hardware in unconventional ways in comparison to other design
approaches (Section 4.2). Next, we highlight how discovery can be
accelerated further through high-throughput and parallelized
systems (Section 4.3.1). With the growth of cloud infrastructure,
we show that cloud experimentation (similar to cloud
computing, but for experiments) decentralizes hardware,
computing, and domain expertise, reducing the barrier-of-entry
for SDLs and enabling robust and efficient batch optimization
(Section 4.3.4). Finally, we describe ideas for new frugal twins,
suggest potential SDL course outcomes, and discuss how to
classify autonomy levels in SDLs (Section 6). To encourage
a continuing discussion, we also provide a list of public,
community-driven discussions (Section 7).
2 What are frugal twins, and why do
we need them?

Inspired by the digital twin, a virtual counterpart of a physical
entity, we introduce the concept of the frugal twin, a low-cost
counterpart of a physical entity.53 A digital twin is designed
for simulation, modelling, and evaluation, and can offer
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Spectrum of frugal twin capability vs. cost trade-off. (A) From left to right: solid dispenser for colored wax,55 chocolate 3D printer (*)56 with
a 3-point bend test,57 arc melter (*),58 metal 3D printer (**) andmechanical testing system for metals (**). (B) From left to right: liquid handling for
dye mixing,55 automated titrator built from LEGO,48 Jubilee sonochemical synthesis platform used with a plate reader (*) for absorbance and
fluorescence measurements,59–61 automated liquid handler (**) integrated directly with a plate reader (*),61,62 and Chemspeed integrated with an
HPLC-MS/MS. Images marked with (*) were reproduced with permission under the Creative Commons Attribution license (CC-BY). (**) Marked
images were rendered using ChatGPT 4.0.

Tutorial Review Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
va

sa
ri

o 
20

24
. D

ow
nl

oa
de

d 
on

 2
02

5-
10

-2
4 

23
:2

0:
55

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
insights into the physical entity, either before its inception53 or
during its lifetime.54 Likewise, a low-cost SDL can serve as
a frugal twin of a high-cost SDL. Frugal twins present a low-risk
environment for rapid prototyping and a new educational
platform which can offer insights into the high-cost entity.

Any frugal twin of an SDL is located within a trade-off
spectrum between cost and research capabilities, with the
balance between two factors determining its usefulness for
particular education and research activities (Section 2.1). We
show in Fig. 1 some illustrative examples of these trade-offs for
materials science and chemistry, and a list in Table 1 of various
low-cost SDLs.
2.1 Trade-offs between cost and capabilities

There are two primary ways to reduce costs when creating
a frugal twin: scale back research capabilities, or reduce accu-
racy and precision. The appropriate balance between cost and
capability will typically be governed by available resources, and
necessary functions to perform the desired task. We illustrate in
Fig. 1 possible trade-offs in the context of two experiments: one
inmaterials science and one in chemistry. Although some of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
examples shown in the gure are not standalone SDLs, each
could be integrated into an SDL for various research purposes.

In thematerials science experiment, the high-cost capability is
to 3D print various metal alloys at extremely high temperatures,
as can be accomplished, for example, by a metal 3D printer. As
cost decreases, the capabilities of frugal twins stray further away
from the high-cost capabilities (Fig. 1). The arc melter can form
alloys at high temperatures, but cannot 3D print them. The next
drop in cost renders the instrument only capable of toy problems:
the 3D chocolate printer can form and 3D print various chocolate
compositions. Lastly, the “Hello World” of a materials science
SDL, at the lowest cost shown, is the solid dispenser for colored
wax, capable of producing candle wax in customized colours.55

Likewise in the chemistry context, the high-cost capability of
multi-step, multi-batch synthesis and characterization can be
accomplished by a Chemspeed integrated with high-
performance liquid chromatography coupled with mass spec-
trometry (HPLC-MS). At a signicantly lower cost, the Opentrons
OT-2 platform can perform single-step, multi-batch synthesis
and limited characterization techniques using an integrated
plate reader, focused primarily on biological applications.62,82
Digital Discovery, 2024, 3, 842–868 | 845
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The next lowest in cost is the Jubilee system which can be
adapted to perform sonochemical synthesis and used with an
offline plate reader.59,60 The automated titrator built from LEGO,
one step lower in cost than the Jubilee, can no longer perform
synthesis but only multi-batch liquid dispensing, and uses a pH
probe for characterization.48 Lastly, the cheapest SDL is a liquid
handler for dyemixing, tasked with obtaining a customized color
as characterized by a light sensor.65,66,73,83,84

We note that it may not always be possible to create a useful
frugal twin for an SDL. For example, a large part of cutting-edge
research relies on expensive analytical instrumentation to be
able to obtain sufficient information about experiments. In the
context of compound characterization, instruments such as
nuclear magnetic resonance spectroscopy (NMR) and HPLC-MS
apparatus can cost hundreds of thousands of dollars to acquire
and operate. However, infrared radiation can be a cheaper alter-
native to expensive analytical techniques like the onesmentioned
before for tasks such as in-line reaction monitoring.85,86 This can
be sufficient for low-delity reaction monitoring but is incapable
of unknown compound characterization. Sacricing research
capabilities for lower costs is sometimes infeasible depending on
the task at hand. To perform robust unknown compound char-
acterization, low-cost (#10 000 USD) alternatives to NMR or
HPLC-MS do not currently exist on the market.

Analogous to the trade-off between cost and research capa-
bilities, there can be a trade-off between throughput and
delity.38 For example, a benchtop NMR is lower cost ($40 000
USD)87 and easily adapted to ow chemistry SDLs, but sacrices
measurement precision and accuracy. The cost/benet analysis
must consider the expected speedup in the rate of progress for
a lower delity analysis tool and the cost from potential inac-
curacies compared to the gold standard analysis tools.
Fig. 2 MIK-I, a low-cost automated synthesis workflow platform. (a)
Peristaltic pumps controlled by a Raspberry Pi, (b) synthesis reactor, (c)
reagent bottles.72

Fig. 3 The scheme for a general crossed aldol condensation reaction
as a proof of concept.72
2.2 Rapid, low-risk prototyping and proofs of concept for
research

SDLs are feats of both science and engineering which are typically
both complex and expensive such that rapid prototyping is
challenging. As a result, there is oen a gap between state-of-the-
art (SOTA) technologies and technologies found in current SDLs.
Typically, researchers building SDLs risk the “jack of all trades,
master of none” effect relative to more traditional researchers in
terms of scientic research, hardware, and soware advance-
ments. Oentimes, one or more of these components are sacri-
ced and/or large and diverse teams are required to build the SDL
in an appropriate time-frame. This is where frugal twins can close
the gap between SOTA technologies and high-cost SDLs. Frugal
twins can enable researchers to easily prototype and engage in an
iterative loop to explore new design concepts, gain new knowl-
edge, rene and validate existing designs, and easily share
information within a group of researchers.89 This relaxed
requirement prototyping approach89 leverages trade-offs between
accuracy and cost. As an example, advanced optimization algo-
rithms for SDLs can be integrated and tested on the frugal twin of
an SDL. In principle, any of the three components (scientic
objective, hardware, or soware) can have a relaxed requirement
to accelerate the prototyping of the other components.
846 | Digital Discovery, 2024, 3, 842–868
Preliminary evidence acquired from a low-cost SDL can serve
as a proof of concept for solving an analogous research problem
that can then justify the funding for a more capable high-cost
SDL. The low-cost SDL may have lower accuracy and reli-
ability, but still provide evidence of feasibility for the proposed
research, as well as answering some relevant research ques-
tions. In addition, the low-cost SDL can act as a proxy for esti-
mating the acceleration factor that an SDL can offer in
comparison to manual experimentation.

An example that compellingly captures how a frugal twin can
promote rapid prototyping and teach transferable skills to
students in a low-risk setting is the MIK-I, a frugal twin of “The
Machine”.72,88 The initial goal for researchers is to build “The
Machine”.88 However, prior to assembling this SOTA research
tool, they built MIK-I with approximately 450 USD (Fig. 2), the
main purpose of MIK-I's creation being to familiarize the
researchers with automated synthesis platforms. The frugal
twin is designed to handle liquids of different physicochemical
properties such as density, viscosity, and surface tension.
However, when building MIK-I, liquid handling became an
issue because the pumps needed to be calibrated differently for
each liquid in the system. This problem gave students hands-on
experience with an issue that would also occur with the SOTA
research tool, which would allow them to solve the eventual
problem more readily. To evaluate the scope of MIK-I, the
researchers successfully performed C–C bond formation reac-
tions widely used in organic chemistry such as the Claisen–
Schmidt condensations, Suzuki–Miyaura coupling,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Example of a titration setup that can be equipped with automation, voice activation, computer vision, high-throughput capabilities, and
machine learning. Adapted with permission from ref. 80, 81, 90 and 91. Copyright 2016, 2019, 2021 American Chemical Society. Adapted with
permission from ref. 79 under the Creative Commons Attribution license (CC-BY). Copyright Elsevier 2022.
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Knoevenagel condensations, and Morita–Baylis–Hillman reac-
tions in an automated fashion (Fig. 3).72
2.3 Education of future workforce will be critical for self-
driving labs

New skills, including AI, autonomy, and complex data analysis
will be required to design, build and operate SDLs. SOTA SDLs
can have a high training burden and potentially high cost from
mistakes. The frugal twin can provide a potential solution to
these problems by enabling new users to gain transferable skills
for the SOTA SDLs in a low-cost, low-risk setting. Low-cost SDLs
create an environment conducive to experiential learning via
trial and error, which acts as a stepping stone for new users with
limited robotics and programming experience. Furthermore, by
making SDLs affordable and easier to access, barriers to entry to
citizen scientists will be reduced, which enables a wider group
of citizens, both in terms of quantity and diversity, to partake in
the pursuit of scientic research. This feat requires overcoming
both nancial and technical barriers, by providing detailed
schematics, parts lists, assembly instructions, code documen-
tation, and troubleshooting guides.
3 How are frugal twins being used in
education and research?

In this section, we offer an in-depth overview of low-cost SDLs in
materials science and chemistry designed for education
(Section 3.1) and research (Section 3.2). From these examples,
© 2024 The Author(s). Published by the Royal Society of Chemistry
there are many lessons to be learned and areas to be improved,
which are later discussed in Section 4.
3.1 Designed for education

Two pertinent educational topics are examples of automated/
autonomous titration setups (Section 3.1.1) and minimal
working examples of SDLs (Section 3.1.2).

3.1.1 Titration. Titrations are a common experiment type
in high school and undergraduate chemistry curricula where
students determine the concentration of an unknown solution
by adding a titrant, a solution with a known concentration. In
acid–base titrations, the pH of an unknown solution is deter-
mined by quantitatively adding a titrant (acid or base) while
monitoring the pH using an indicator or detector (refer to Fig. 4
for a visualization).89 The automation of a titrator allows many
students, including those with certain disabilities who may
otherwise be excluded, to further their understanding of
chemistry, while simultaneously providing an opportunity to
learn about electronics and robotics90 (Fig. 4). A variety of
features can be incorporated around an automated titrator,
such as a web interface for remote work, a liquid (acid/base)
dispenser using a solenoid valve or peristaltic pump, a pH
probe for characterization, a pH indicator with computer vision,
voice activation via digital assistants such as Siri, and a LEGO
framework for modularity and high-throughput.48,80,81,90,91

A programmable titrator can also support a variety of other
educational tasks. Students can be tasked with developing their
own automationmethods for this previously manual procedure,
Digital Discovery, 2024, 3, 842–868 | 847
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a problem that is engaging, encourages critical thinking and
provides additional opportunities for learning. Typically,
students develop their own heuristics, such as adding large
amounts of titrant at the start of the experiment and slowly
reducing the addition of titrant until the endpoint is reached,
with the goal of optimizing for efficiency and accuracy. An
automated titrator can accelerate the pace at which students
can quantify and test multiple titration strategies for optimal
efficiency and/or accuracy.78

The applicability of skills acquired from educational settings
to research and industry settings is critical,92 andmodication of
a titration experiment presents a direct example of this trans-
ferability. For instance, Pomberger et al.79 designed their titration
apparatus with high-throughput batch samples, and active
machine learning (ML) to model the pH response of multi-
buffered polyprotic systems, a challenging yet important task
for many chemical labs and industrial plants. For context,
educational titration setups with a single-buffered system like
those mentioned above can be accurately described by the
Henderson–Hasselbalch equation;79 however, this does not hold
for multi-buffered polyprotic systems.79 Although the multi-
buffered polyprotic problem has greater complexity, students
can learn to adapt solutions to t their needs and work around
the limitations. By exploiting the benets of modularity (outlined
in Section 4.1), students can choose from several optimization
algorithms such as ML, proportional-integral-derivative control,
and model predictive control.79 Although automated solutions
improve efficiency and robustness, an educational apparatus
should also provide the option for a student to be put back in the
loop (i.e., manual mode) because it can provide the student with
more direct interactions with the hardware.

3.1.2 Color-matching. Another straightforward demo for
SDLs is color-matching, where the goal is to nd the optimal
mixture of a set of colors (e.g., primary colors) that will mix to
produce a target color. The concept is low-cost and
Fig. 5 The CLSLab:Light demo. (a) A summary schematic of CLSLab:Lig
permission from ref. 65. Copyright Elsevier 2022.

848 | Digital Discovery, 2024, 3, 842–868
straightforward and has been demonstrated for both light-
mixing65,83 and liquid-mixing examples.66,93

For the light-mixing example, Baird and Sparks65 developed
a system known as Closed-loop Spectroscopy Lab: Light-
mixing (CLSLab:Light) as a teaching and prototyping plat-
form that entails mixing the light from red, green, and blue
light-emitting diodes (LEDs) (Fig. 5). The demo employs light
rather than matter while retaining the principles of SDLs.
Taking language from the soware community, it is
a “minimal working example” of an SDL. The primary benets
of this device relative to more costly, time-intensive, higher-
footprint (and, of course, more chemistry-relevant) liquid
handlers such as Opentrons OT-2,82 Sidekick,94 evoBOT,95

OpenLH,96 OTTO,97 and OpenWorkstation98 are that it costs
under 100 USD, requires less than an hour of setup time, takes
up minimal desk space, and does not require chemical
consumables. While CLSLab:Light cannot provide experi-
mental data directly relevant to materials discovery, its
features make it a prime candidate for classroom settings,
allowing each student or team to obtain hands-on experience.
Additionally, the platform can be used to prototype concepts
such as creating a network of geographically distant experi-
ments and implementing advanced optimization topics such
as batch (Section 4.3.1) and multi-delity optimization
(Section 4.3.2). Over a dozen tutorials and examples for basic
optimization, advanced optimization, device communication,
and data ecosystems are given in the Closed-loop Spectroscopy
Lab documentation.

CLSLab:Light has also evolved as an example and suggestion
of SDL best practices. The soware is modular, and open-
source. Build instructions83 and a video build tutorial are
provided, with parts lists designed to be modular and robust to
supply chain issues. Additional features of the CLSLab:Light
platform that helps students to learn and implement best
practices are summarized in Table 2.
ht. (b) An annotated image of the CLSLab:Light. (c) Was adapted with

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Summary of best practice topics (Topic) that address development pain points (Pain point). Related resources/tools (Resources) and
corresponding implementations in the CLSLab:Light framework (CLSLab:Light) are also given. In other words, the Resources column links
directly to the tools while the CLSLab:Light column typically links to various places in https://github.com/sparks-baird/self-driving-lab-demo

Topic Pain point Resources CLSLab:Light

Version control Keep detailed, accessible, and
efficient snapshots of your code at
any point in time

Git, GitHub GitHub repo/history

Project generator Streamline setting up modular code
for a new project while conforming
to best practices

PyScaffold, cookiecutter-pypackage PyScaffold and initial commit

Python packages Make installation and setup easier
for users

PyPI (pip), Anaconda PyPI via setup.cfg

Unit tests Catch bugs and ensure functionality pytest Tests folder
Continuous integration Regularly and automatically

validate code, run tests, and publish
new versions

GitHub actions Actions via ci.yml

Secure wireless communication Safely communicate within and
between soware and hardware

MQTT MQTTa host/client

Data management Store data that is “Findable,
Accessible, Interoperable,
Reusable” (FAIR)

MongoDB, SQL MongoDBa main.py

Installation-free notebook tutorials Make it easy for users to learn, test,
and adapt the functionality

Google Colab, Binder Tutorials page

Documentation web host Host a website with your
documentation for free

Readthedocs, GitHub pages Readthedocs site

Documentation builder Package your documentation,
tutorials, and API as web-friendly
HTML les

Sphinx, Jekyll Source les, conf.py

a Detailed setup instructions for MQTT and MongoDB are provided in Baird and Sparks.83
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Baird and Sparks83 have explored the commercialization of
CLSLab:Light as an at-cost kit, with two successful rounds of
crowdfunding via the GroupGets platform (see Campaign #1112
and Campaign #1129), totalling 39 kits; many kits have already
been used in classroom settings at the University of Toronto,
Massachusetts Institute of Technology, and University of
Fig. 6 A photograph and diagram of the robotic work cell (indicated b
Sciclops picks up a 96-well plate from its plate storage towers and transfe
Opentrons OT-2, whichmixes the three target colors. When the liquid res
using peristaltic pumps. Once mixing is completed, the plate is transfe
between the camera and the Opentrons OT-2 until the experiment is ove
robotic platform to expand its capabilities, showcasing modular design.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Chicago. For continuing discussion related to packaging open-
source hardware as commercial kits, see Discussion #124.

CLSLab:Light has already seen success, but domain-specic
communities (biology, chemistry, solid-state materials science)
will benet from their own minimal working examples. Baird
and Sparks83 have explored extensions that adapt the instructive
y each blue box) used for a WEI-based color mixing experiment. The
rs it to its exchange location. The PF400 then transfers the plate to the
ervoirs in the system are empty, the custom robot, Barty, refills them by
rred to the camera location to be imaged. The plate is then looped
r. The empty work cells (i.e. blue boxes) provide additional space for the
Reprinted from Ginsburg et al.84
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Fig. 7 The CLSLab:Liquid demo. (a) A summary schematic of CLSLab:Liquid. (b) An annotated image of the CLSLab:Liquid.55
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lessons from CLSLab:Light to other domains. For example,
using the modular soware and hardware components, Baird
and Sparks83 extend the platform to a liquid-based color-
matching task (Closed-loop Spectroscopy Lab: Liquid-mixing
(CLSLab:Liquid)) which uses the prototypical example of mix-
ing red, yellow, and blue food coloring dyes (Fig. 7).

The inherent simplicity of the color matching application as
demonstrated in CLSLab:Light has also inspired others to
employ it in other settings. For example, Ginsburg et al.84 have
implemented a color matching application in the context of
their workcell execution interface science factory architecture.93

It is designed with modular instrument interfaces and workow
specications used to implement an application that connects
an Opentrons OT-2 liquid handler, liquid replenishment robot,
and camera station (see Fig. 6). The Globus platform is
employed45 to link optimization algorithms running on remote
computers and to publish results to a remote data portal.

In sharp contrast to chemistry applications, low-cost exam-
ples of SDLs for solid-state materials science are effectively non-
existent. To address this gap, an idea for a solid-state materials
science extension involving the melting and mixing of colored
wax powders is described in Section 6.1.
3.2 Designed for research

Typically, low-cost setups are not regarded as research tools
because of their lack of accuracy, precision, and capabilities.
However, many research groups are developing low-cost SDLs
for reasons such as full control over the end-to-end design
(Section 3.2.1), and ease of parallelization (Section 3.2.2). For
example, the Sidekick liquid dispenser94 was designed around
the liquid dispensing requirements associated with automated
850 | Digital Discovery, 2024, 3, 842–868
exploratory synthesis of halide perovskites,99 and only later used
for teaching an introductory chemistry laboratory on automa-
tion.100 Similarly, the Jubilee system59 was originally demon-
strated in the context of nanocrystal synthesis research,101 and
later used for education.60

3.2.1 End-to-end design. Instead of purchasing expensive
and inexible commercial systems to produce an SDL, building
a low-cost SDL from scratch gives the researcher full control
over the system. This concept of building a complete system
from beginning to end is referred to as end-to-end design. Salley
et al.102 demonstrate this process through several examples over
the last decade. With the wider availability of 3D printers and
low-cost development kits, growing supply chains, better tuto-
rials, and greater access to internet of things in the last two
decades, custom scientic apparatus can be built at low costs.
However, although low-cost electronic and hardware compo-
nents offer a wide range of unique capabilities compared to
fully developed systems, they generally require signicant time
and effort to design, engineer, and test.

Nevertheless, with a specic, unique, and focused research
problem, Gutierrez et al.68 take advantage of the full control over
the end-to-end design of a novel, custom-built chemorobotic
platform. This system is capable of exploring a diverse range of
oil-droplet formulations which was designed to improve the
understanding of evolutionary dynamics. Many low-cost
components such as a RepRap 3D printer, camera, Arduino
microcontroller, and 3D printed parts are used to gain the
desired functionality for this specic experimental task.68 Later,
this robot was redesigned with a 3D printed arena for droplet
mixing which could be easily transformed into different envi-
ronments, adding a new independent variable to
© 2024 The Author(s). Published by the Royal Society of Chemistry
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experimentation.69 With high-throughput experimentation and
automation, it is not crucial for the robot to be extremely
accurate or precise, due to the ease of performing multiple
replicates to reduce the uncertainty of results. In this oil-droplet
system, several replicates are performed and the uncertainty of
each measurement is accounted for before drawing conclusions
from general trends.69 Full control over the design of the
experimental apparatus is invaluable for niche research
problems.

The modular Geneva wheel platform engineered by Salley
et al.103,104 is another example of a low-cost SDL designed end-to-
end to leverage the advantages of low-cost components and
custom parts. The Geneva wheel platform is capable of rotating
24 reactors using the Geneva mechanism and a stepper motor
which enables it to run 24 parallel reactions. For every rotation,
the necessary reagents are dispensed serially into a reactor with
peristaltic pumps. Each reactor has a magnetic stirring module
which stirs 24 reactions in parallel. In addition, the sampling
and cleaning modules can move in x, y, and z directions along
the platform frame which enables in-line measurements,
sample extraction, transfer between vials, and cleaning of
reactors to prevent cross-contamination.103 Due to its modular
nature, it can be easily recongured for the synthesis of gold
nanoparticles, polyoxometalates, or other coordination
compounds.71,103–106 From this system, an important takeaway is
that “automation can only be so cheap before signicant frus-
tration is experienced”.102 In this example, Salley et al.102 replace
cheap aquarium pumps with motor-controlled stepper pumps,
which offer better control and accuracy over liquid dispensing
while still remaining affordable.

Although the “Chemputer” is not as low-cost as our other
considerations, it is worth mentioning because of its end-to-end
design for universal chemical synthesis. The Chemputer not
only has custom 3D printed parts and low-level electronic
components such as syringe pumps, but also interfaces with
existing chemistry instruments that may already be in the lab
such as hotplates, photoreactors, ow reactors, a rotary evapo-
rator, benchtop NMR spectrometers, and in-line spectrometers
(UV-Vis, infrared spectroscopy (IR) and electrospray ionization-
MS) to perform organic synthesis and characterization.107–116

Given its wide range of research capabilities, the “Chemputer”
can cost over 30 000 USD with a setup time of 1 week. Manzano
et al.74 develop the “mini-Chemputer,” which reduces the barrier
of entry from 30 000 USD to 10 000 USD, and 1 week to 1 day of
reported setup time. Having full control over the end-to-end
design of this system enabled the Cronin group to develop both
the Chemputer, and the low-cost, portable mini-Chemputer.

Another example of end-to-end design is the Jubilee platform
created by Vasquez et al.60 at the University of Washington.60

Originally, Jubilee was designed for multi-tool fabrication tasks
and more. Some examples of its intended application ranged
from multi-head 3D printing to multi-pen plotting, and simple
liquid handling through syringes. Jubilee presents a modular
tool-changing design that accommodates user-created tools and
beds (Fig. 8a).60 Politi et al.59 have demonstrated the use of this
versatile, multi-tool platform congured for automated ultra-
sound application (Fig. 8c), along with an Opentrons OT-2
© 2024 The Author(s). Published by the Royal Society of Chemistry
liquid-handling robot and a well-plate spectrometer for the
synthesis of CdSe nanocrystals. In this example, the authors
were able to test 625 unique sample conditions, in triplicate, in
less than two months, ensuring repeatability and reducing
uncertainty on the results. The components to build the Jubilee
platform can be individually sourced from readily available and
3D printed materials or even purchased as a kit, for a total cost
of #2000 USD. Furthermore, the project is fully open-hardware
and open-source, resulting in a series of resources, from build
instructions to an active Discord channel for informal
communication, and requires no previous building skills,
which signicantly lowers the barrier to its implementation in
materials research spaces. No modication of the off-the-shelf,
commercially available sonicator was required and simple
electronics allowed for instrument interfacing. There is
currently no commercially available solution for automating
single-point sonochemical processing, making this example
a great demonstration of how SOTA technology can be easily
democratized through “maker skills” (3D design and fabrica-
tion, electronics, and programming) and cheaper electronics.
While successful, the study by Politi et al.59 relied on three
different instruments to conduct the workow. It is however
possible to integrate all the synthesis, processing, and charac-
terization tools onto the same Jubilee platform, given its auto-
matic tool-changing capabilities, creating a closed-loop
experimental system. Finally, it should also be noted that
systems like Jubilee, which originated from the digital fabrica-
tion space, might require additional hardening and possible
small materials adjustments before they can be fully trusted as
science tools (Fig. 8).

3.2.2 Ease of parallelization.With lower costs per duplicate
of the system, several duplicates can be linked together for
a high degree of parallelization offering benets of decentral-
ization, high-throughput, and batch optimization. Caramelli
et al.73 built a network of robots from a series of simple chemical
robots that use several peristaltic pumps for liquid handling,
a glass reaction vial, a webcam for reaction analysis, and
a pcDuino board for electronic control. Due to its simplicity and
low cost, the hardware is easily replicated, which enables par-
allelization of experiments. The following experiments
described below exploit some of the advantages of building
a network of robots: collaborative azo dye chemical space
exploration, real-time control of an oscillating reaction,
a reproducibility assessment of inorganic cluster crystallization,
and gameplay-driven chemical discovery.73

First, the robots were able to communicate by uploading
results to the cloud and screening for results from other robots
via Twitter. This system prevents robots from duplicating
others' reactions and allows them to explore more efficiently as
a team. Using a network connection, multiple physically sepa-
rated robots can be synchronized in real time. Caramelli et al.73

use a chemical oscillator based on the Belousov–Zhabotinsky
(BZ) reaction to showcase real-time control performance. The
oscillation period is synchronized in real time between robots
with an uncertainty of 2 s.

Reproducibility in the context of parallelization is necessary
for accurate data acquisition. In one experiment, the network of
Digital Discovery, 2024, 3, 842–868 | 851
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Fig. 8 (a) The blueprint design of the Jubilee systemwhich can equip modular multi-headed tools. (b) Example of the Jubilee system dispensing
liquids into a 96-well plate. (c) The workflow of adapting Jubilee into the automated sonochemical synthesis of nanocrystals. Adapted from ref.
60 with written permission from the authors under the Creative Commons Attribution license (CC-BY). Adapted from ref. 59 with permission
from the Royal Society of Chemistry.
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robots collaboratively explored the conditions for the crystalli-
zation of tungsten POM clusters. Crystallization is a stochastic
process, which makes it challenging to determine its ideal
conditions, particularly on small scale. Nevertheless, the
network of robots found six sets of conditions that offered
reproducibility between 11.8 and 50%, which may be deemed
acceptable for a stochastic process on a small scale.

Lastly, success in gameplaying offers the insight that large
amounts of data enabled by powerful computation can pushML
models to reach superhuman performance.117 Highly robust
and reproducible materials chemistry SDLs can generate large
amounts of data with low-cost experimentation and paralleli-
zation. Caramelli et al.73 demonstrated that two robots can
compete against each other in a well-dened game to discover
novel colors in the context of an azo coupling reaction. The rules
are simple: novel results are rewarded, and common results are
punished. Each time that a loser emerges at the completion of
a game, the loser can change strategies by redening their
reaction space. The goal of the gamication of such an experi-
ment is for the model to develop an optimal strategy to maxi-
mize the objective without human guidance. The success of this
simple experiment provides the groundwork for similar SDLs to
solve more complex problems through a low-cost and paral-
lelized approach.
4 How do we make frugal twins
better?

We describe ways to continue improving and leveraging the
strengths of frugal twins in terms of hardware and soware
modularity (Section 4.1), human-inspired vs. hardware-centric
852 | Digital Discovery, 2024, 3, 842–868
vs. human-in-the-loop design approaches (Section 4.2), and
synergizing frugal twins with SOTA soware tools and algo-
rithms (Section 4.3).
4.1 Modularity

Modularity refers to the assembly of a cohesive system or device
that has discrete, self-contained modules which can be easily
interconnected and replaced. Each module performs a specic
function or task, and they can be combined or modied inde-
pendently. This approach allows for exibility, scalability, and
ease of maintenance, as well as facilitating the reuse of
components in different applications. In this section, we
explore modularity in the context of both low-cost hardware
(Section 4.1.1) and open-source soware (Section 4.1.2).

4.1.1 Hardware. MacLeod et al.36 emphasize “the charac-
teristic features of modern robots that make them useful for
exible automation [which] include large working areas, many
degrees of freedom, high positioning accuracy and repeat-
ability, intrinsic safety, and easy programming. Versatile multi-
axis robots that can interact with both liquids and solids offer
the exibility to automate a wide range of experiments” (Fig. 9).
Although low-cost SDLs cannot generally afford such charac-
teristics, the emphasis is on leveraging cost-effective and crea-
tive strategies to automate a diverse range of experiments
within their limitations. Gutierrez et al.68 demonstrated their
use of modular design for simple reconguration where parts
can be easily redesigned, replaced, and tested. Their oil-water
droplet robot can be readily recongured for adding new
chemicals and other formulation-based studies in a variety of
simple ways.24,68,70 For example, the 3D printed polypropylene
evolutionary arena can be interchanged with different designs
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Flexible automation for SDLs where components can be rearranged and replaced around the central robot arm. From L to R (main image):
automated film synthesis station, automated conductivity and imaging station, robot moving samples between stations (center; controller
labeled in white), profilometer (front), annealing station (back), X-ray fluorescence microscope, software modules. From L to R (inset image):
imaging and spectroscopy modules (back), slide storage rack (front), modules linked by robot (slide handling tool labeled in white), ultraviolet
module (front), disposable pipettes (back), spin-coating module (back), annealing module (front). MacLeod et al., flexible automation accelerates
materials discovery, Nature Materials, published 2022, Copyright © 2021, Springer Nature Limited.
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that have pillars, caves, or other arrangements.69 The well-plate
array for sample preparation can also be switched with a Geneva
wheel that automates drying and cleaning, increasing experi-
mental throughput.24 Another exible concept for simple
recongurations is Reactionware, which refers to low-cost 3D
printable reactors for custom reactions and volumes.113,118,119

Given that devices inevitably break down at times, incorpo-
rating modularity into SDLs reduces the time and cost of
maintenance. If one component breaks, then only that small
portion of the instrument needs to be repaired or replaced. In
addition, with smaller modular parts, debugging is simplied
since each individual component can be tested separately,
quickly determining the points of failure.

An SDL should be composed of a core infrastructure capable
of interchangeably adapting to domain-specic requirements
such as but not limited to liquid handling, solid dispensing,
and thin-lm manufacturing. This is more cost-effective than
building a xed, domain-specic system capable of performing
all the desired tasks for only one given type of experimentation.
Aer the rst discovery campaign is completed, the cost of
redesigning an inexible SDL for further work could be much
higher than for a modular system. To reduce the redesign cost
for future systems, we need to incorporate modularity at the
early conception stage of building any SDL.

Sometimes even small design choices can provide signicant
advantages and exibility for an automation platform. In this
© 2024 The Author(s). Published by the Royal Society of Chemistry
context, the Jubilee60 platform is a great example of hardware
modularity. In fact, the platform was designed in an
application-agnostic fashion where tools can be interchange-
ably loaded on the platform, which can then automatically pick
them up and return them aer their task is complete. All of this
is accomplished through a locking mechanism that allows the
tool to lock onto the central carriage and a tool template pattern
which ensures constant tool location. Another advantage of
Jubilee is its ability to host not only simple sample transfer
tools, such as a liquid handling pipette or syringe, but also tools
for processing or manipulation and subsequent characteriza-
tion such as a sonicator.59 This is not possible with commer-
cially available liquid-handling robotic platforms, which can
only complete a limited set of tasks before the labware needs to
be moved onto a different automation instrumentation. The
exibility of Jubilee, in fact, allows for rapid reconguration of
the platform for various applications, such as the nano-
materials synthesis shown by Politi et al.59

4.1.2 Soware. While existing efforts to enforce SDL hard-
ware modularity are valuable, in practice, it is still in its infancy.
Some lessons can be taken frommodern soware development,
such as functional and object-oriented programming (i.e.,
organized use of functions and classes), the single responsi-
bility principle (each module has a single, well-dened
responsibility), and related concepts like version control
(semantic versioning, commit history, backups, and rolling
Digital Discovery, 2024, 3, 842–868 | 853
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back to previous versions). These principles are applied out of
necessity to optimization and workow orchestration soware
ecosystems with large user bases such as Meta's Adaptive
Experimentation (Ax) Platform (https://ax.dev/) and Agnostic's
Covalent workow orchestration platform (https://
www.covalent.xyz/).

In some scenarios, soware development best practices have
been applied to chemistry and materials informatics optimi-
zation and workow orchestration packages. As a set of
computer instructions (codebase) evolves and matures, it oen
involves organizing lines of code into distinct blocks (functions)
that perform specic tasks, and then further organizing these
blocks into categories or groups (classes and modules) to create
a more structured and manageable system.

A practical example of this is Gryffin,120 a Bayesian optimi-
zation tool that supports continuous and categorical variables,
physicochemical descriptors, and batch optimization. Gryffin is
written in Python and uses a common structure called a class to
organize its code using “object-oriented programming.” Object-
oriented programming is a style of coding involving the creation
and use of ‘objects’, which are self-contained pieces of code that
can store information and perform tasks.

In the case of Gryffin, an “instance” (i.e., copy) of an object is
created based on the Gryffin class, which is referred to as
“object instantiation” in programming terms. This object can
be customized by supplying information about the variables to
be tuned and the objectives to be optimized. Once this object
has been created, you can use its built-in functions (class
Fig. 10 Examples of human-in-the-loop vs. human-inspired vs. hardwa
using a cloth attached to a robot arm vs. (c) helical insertion into a sponge
(CC-BY). Copyright © 2021, this is a U.S. government work and not und
apply. (d) Mixing liquids together in a traditional lab setting using manual p
leveraging a bidirectional peristaltic pump to perform both liquid transfe

854 | Digital Discovery, 2024, 3, 842–868
methods) to perform various operations. For example, you can
use the recommend function to get recommendations from
Gryffin, or the build_surrogate function to build a surrogate
model—a simplied representation of a more complex system.

Likewise, alab_management and Bluesky utilize classes. For
example, alab_management offers base classes for devices and
tasks. A user only needs to create a custom class for a specic
device or task once that can be reused, making it unnecessary to
copy-paste “boilerplate” code. Bluesky, designed with synchro-
tron facilities in mind, uses “motors” and “detectors” to clarify
the difference between hardware that performs tasks based on
inputs (e.g., temperature controllers, sample changers) and
characterization hardware that produces research data (e.g.,
photodiodes, CCD cameras, spectrometers).121

While the hardware associated with low-cost SDLs may not
be as performant as high-cost examples, the same SOTA so-
ware that is deployed on a high-cost SDL can be deployed to
a low-cost SDL with minimal effort. This enables both rapid,
low-risk prototyping (Section 2.2) and opportunities to integrate
low-cost and high-cost experiments via multi-delity optimiza-
tion (Section 4.3.2). A more general discussion of SOTA opti-
mization with workow orchestration tools and algorithms is
given in Section 4.3.
4.2 Design approaches

In this section, we describe three different design approaches
for SDLs. The most common of these for automation is the
re-centric design. (a) Wiping a needle by hand vs. (b) wiping a needle
. Adapted from ref. 17 under the Creative Commons Attribution license
er copyright protection in the U.S.; foreign copyright protection may
ouring vs. (e) using a peristaltic with a digitally controlled stir plate vs. (f)
r and mixing.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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human-inspired approach (Section 4.2.1) because of the intui-
tive translation between human and robotic motion. Alterna-
tively, hardware-centric design (Section 4.2.2) is becoming more
prevalent due to taking better advantage of the potential of
hardware components. However, at times, it is more cost-
effective and practical to keep the human in the loop (Section
4.2.3) for the main objective of accelerating scientic discovery.
Each of these approaches is conceptually summarized in
Fig. 10. At the end of Section 4.2.3, we describe the role of frugal
twins in bridging gaps between these seemingly disparate
design philosophies.

4.2.1 Human-inspired. When most people think of robots,
they think of human-inspired robotic design (Fig. 10b and e),
where robots perform tasks as a human would approach the
problem. For example, robotic arm setups23,36 are oen used to
mimic human behavior. While there are benets, this design
approach exhibits its own set of trade-offs. We dene human-
inspired design as mimicking human behavior to accommo-
date traditional experiments.

For example, robots can be made to use existing, human-
centric lab equipment without modication.23 However,
without complex sensing capabilities such as computer vision,
a hard-coded system is sensitive to slight perturbations in
absolute positions and orientations. This oen requires exten-
sive routine calibration and is tedious to implement when
integrating new scientic instrumentation. The introduction of
computer vision to recognize particular objects can introduce
greater exibility but suffers from the larger startup cost of the
vision algorithm and may not elegantly handle all possible
situations. Additionally, glassware is an essential component of
any chemistry lab, but it is incredibly challenging for computer
vision to recognize transparent objects.122

An alternative that combines the benets of hard-coded
routines and complex computer vision decisions is to use
ducial systems such as AprilTags,123,124 which are used by
Wang et al.125 and Xu et al.122 (Fig. 11). These can be thought of
as QR codes or bar codes attached to pieces of equipment to
Fig. 11 AprilTags, a type of fiducial marker, are affixed to a base plate to al
freedom) relative to the camera. Reproduced from ref. 122 with permiss
Garg, arXiv, 2021, https://doi.org/10.48550/arXiv.2110.00087.

© 2024 The Author(s). Published by the Royal Society of Chemistry
help with relative positioning. However, the true value is not
simply to identify hardware with unique IDs; the AprilTag
detection soware allows for computation of “the precise 3D
position, orientation, and identity of the tags relative to the
camera.” More recent work also enables exible ducial
markers to be placed on circular, annular, and other shaped
objects126 such as vials. Likewise, Krogius et al.126 demonstrate
the use of nested, recursive layouts for high dynamic range.
While there are challenges associated with mimicking human
behavior, there remain excellent use cases for the human-
inspired approach.

4.2.2 Hardware-centric. Replicating human behavior is
oen a difficult task such as computer vision using cameras or
sample transfer between modules, which are tasks that humans
excel at but robots do not. An effective alternative to the human-
inspired design approach exists which we refer to as hardware-
centric design where existing hardware is leveraged to carry out
experiments without mimicking human actions. This has been
previously noted. For example, Seifrid et al.3 state: “[It] is critical
to understand that adapting experimental procedures that were
designed for human experimenters is not as simple as trans-
ferring those same actions to an automated system, and there
may be more efficient ways to achieve the same goal in an
automated fashion.” Similarly, Abolhasani and Kumacheva4

discuss the nuances between using a mobile robot arm,
a stationary robot arm, and uidic sample transfer, each with
varying levels of human-likeness and difficulty.

In terms of low-cost SDLs, Deneault et al.17 provide a prudent
example of leveraging the existing robotic setup (a 3-axis
printer) and moving the syringe into and against a xed sponge
with a helical motion to clean the external surface of the syringe
(Fig. 10c). When cleaning a syringe, a humanmight run it under
water, wipe it with a cloth (Fig. 10a), put it in an ultrasonic
cleaner, or replace the tip entirely. A robotic arm with human-
inspired design could be equipped with a cloth to wipe the
syringe tip (Fig. 10b), or remove the tip and place it in an
ultrasonic cleaner. However, helical insertion into a sponge
low for accurate detection of its position and orientation (six degrees of
ion from H. Xu, Y. R. Wang, S. Eppel, A. Aspuru-Guzik, F. Shkurti and A.
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leverages existing equipment at a low cost. While it has limi-
tations (e.g., how well is the syringe tip cleaned relative to more
standard procedures; cross-contamination), it is an informative
example of hardware-centric design. Another example is liquid
handling that is dual-purposed for both dispensing and mixing,
where mixing occurs by cycles of forward and reverse pumping
to agitate the solution (Fig. 10f) instead of using a magnetic stir
bar and stir plate (Fig. 10d and e).

By designing equipment with desired material states and
processing conditions in mind, we create hardware that is time-
and cost-efficient for autonomous experimentation. Especially
in low-cost settings, we should try to do as much hardware-
centric design as possible. This will both lower cost and
require less equipment.

4.2.3 Human-in-the-loop. However, it can be easy to over-
automate, whether in hardware-centric or human-inspired
design. Sometimes, we need humans to be “in the loop” for
tasks where robots do not excel. We have evidence from
Amazon, Tesla, Carnegie Mellon University cloud labs, and
personal experience, where robots do not perform well on
certain tasks. We dene human-in-the-loop design as systems
that require manual human intervention during an experiment.

Here, we draw from the “Pareto principle,” described by Jana
and Tiwari127 as a commonplace case where “80% of the
outcomes are controlled or decided by 20% of the activities or
factors. For example, 80% of the total prot is generated by 20%
of the product categories, or 80% of the maintenance expenses
are incurred by 20% of the machines.” Applying the Pareto
principle, the last 20% of automation may require 80% of the
total effort towards bringing full autonomy to an experiment. A
common example is sample transfer between automated
experimental modules, especially of solid materials or sample
containers. For example, samples oen need to be moved
between synthesis and characterization equipment, such as the
transfer of wellplates between an OT-2 robot and a plate reader
in Vaddi et al.101

In the low-cost automation literature, there are many
examples which incorporate automated modules while leaving
experimental step(s) as human-in-the-loop because of high
opportunity cost (i.e., the benets that are lost when one makes
a decision over an alternative – such as the lost opportunity for
students to learn hands-on from running an experiment
manually when it is automated), time constraints, and tasks
where humans are naturally better than robots. Xie et al.67

automate the design and synthesis of metal–organic frame-
works (MOFs) using Bayesian optimization (BO) and a RepRap
3D printer but leave humans to transfer the sample from the
robot to the X-ray diffraction instrument. Since many of these
complex characterization techniques are costly and designed
for humans, the time and cost of building another robot to
perform sample transfer exceed the benets gained from
automating every single task in the workow for greater effi-
ciency. Rodriguez et al.128 provide an excellent example of
automating the most effective process steps such as synthesis
(with an Opentrons OT-2 liquid handling robot), melting point
determination, and electrochemical characterization for
discovering new deep eutectic solvent electrolytes. Rodriguez
856 | Digital Discovery, 2024, 3, 842–868
et al.128 did not automate the processes of sample transfer or
handling of existing equipment such as a dehydrator and
vacuum oven because of the great opportunity cost.

In a similar vein, most of the experimentation in Salley
et al.,103 Cao et al.,129 and Lachowski et al.130 is automated except
for the characterization tools which include XRD, viscosity
analysis, and UV-Vis spectroscopy, respectively. Conversely,
Chen et al.131 develop a new low-cost system, RAMSAY-2, for
automating the burdensome task of sample preparation for
mass spectroscopy. It involves two robot arms which aliquot
solutions, incubate the samples with the reagents, deliver the
samples to the ion source of the mass spectrometer, and initiate
data acquisition.131 This approach signicantly accelerates the
characterization workow but is a non-trivial solution that
requires substantial time and effort. It is also important to
consider the opportunity cost of automating tasks that are
trivial for humans but challenging for robots due to the
consequential researcher time spent. Automation is most
profoundly effective when researchers are freed from perform-
ing tedious, time-consuming, and repetitive tasks. Another
opportunity cost is the amount of money required to acquire
instruments that are already automated. For example, an
automated differential scanning calorimetry (DSC) instrument
can be purchased for ∼50 000 USD.132 However, Rodriguez
et al.133 automate DSC with a low-cost system of 1080 USD,
which can run samples in 15 minutes, with up to 96 samples at
a time.133 A cost/benet analysis of the different design
approaches and associated opportunity costs remains necessary
to automate any solution.

4.2.4 Role of frugal twins. While the implementation cost
of robotic solutions can currently be prohibitive, the exploration
of low-cost sample transfer, especially of solid materials and
across modules remains important and robotic solutions
remain a warranted goal. To push the agenda with a future-
looking vision, we need to put low-cost frugal twins in the
hands of the community.

Rather than polarizing the community between fully auton-
omous vs. human-in-the-loop generalist setups, we believe it is
wiser to meet in the middle and pair the tool to the task. This
type of experimentation and exploration, enabled by low-cost
frugal twins, can form a rich test bed in classroom settings.
For example, students could be tasked with a design problem
and divided into three groups: human-in-the-loop, human-
inspired robotic design, and hardware-centric design. The
students can present their experiences, learn from other groups,
and discuss trade-offs between each approach: how many
experiments could be performed within the rst day for each
group? Within the rst week? This can be replicated for
different experiments to solidify best practices related to
autonomous system design and cross-pollinate seemingly
disparate design approaches.
4.3 State-of-the-art soware

Seifrid et al.3 present challenges of setting up a SDL, such as the
need for algorithms that can handle constraints and unex-
pected outcomes, and difficulties surrounding soware control
© 2024 The Author(s). Published by the Royal Society of Chemistry
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and integration (stemming from instrument manufacturers
generally not designing with SDLs in mind). Here, we highlight
key places where SDLs can benet from leveraging and inte-
grating frugal twins with SOTA soware. This includes topics
such as batch and asynchronous optimization (Section 4.3.1),
multi-delity optimization (Section 4.3.2), workow orchestra-
tion (Section 4.3.3), and cloud experimentation (Section 4.3.4).

4.3.1 Batch and asynchronous optimization. Fundamental
to optimizing efficiency in the lab is the parallelization of
experiments, which reduces the time to obtain results and
allows more efficient experimental design. Using lower-cost
hardware, even with an initial potential for loss of accuracy,
facilitates parallelization of SDLs. This democratizes access to
cutting-edge research tools, such that geographically distant
labs can build clones of the same low-cost SDL. These SDLs can
then network to execute high-throughput and parallel materials
discovery campaigns. Caramelli et al.73 demonstrate the
advantages of low-cost parallelization of SDLs with their
network of identical autonomous research systems (Fig. 12).
The systems can evaluate the variability across different
instances of the robot with four different experimental tasks in
a nancially reasonable manner (i.e., the hardware components
of their SDLs are low-cost (#500 USD)). Similarly to adding
more cores to a CPU, adding more instances of an SDL (which
need not be in the same location or even operating on the same
step at a given point in time) increases throughput for an
optimization campaign at the cost of additional hardware.
However, it is important to acknowledge the trade-off between
parallelization and the total number of trials in an optimization
campaign. There is an adaptivity gap between the parallel and
the sequential approach for optimization models. In the
parallel approach, the model is required to make decisions in
advance of having all of the information. If time is not a limiting
factor and/or cost is a limiting factor, it is ideal to prioritize the
sequential approach. Conversely, if time is a limiting factor and/
Fig. 12 Illustration of a network of parallel chemical synthesis robots wo
with permission under the Creative Commons Attribution license (CC-B

© 2024 The Author(s). Published by the Royal Society of Chemistry
or cost is not a limiting factor, it is more efficient to prioritize
the parallel approach. For additional discussion, see “Tradeoff
between parallelism and total number of trials”.

While the batch optimization described earlier implies that
all experiments within the batch need to be completed before
moving on to the next one, the complementary topic of asyn-
chronous optimization uses resources as soon as they become
available. This is important when experimental runtimes can
vary depending on the input parameters: thereby, equipment
downtime is reduced. Whether using batch or asynchronous
optimization, care must be taken so that redundant or low-
value experiments are not suggested by considering either
completed or in-progress experiments. Examples of methods
that factor in-progress experiments into the optimization
scheme include Monte Carlo-based joint acquisition optimi-
zation and models where predictions for in-progress experi-
ments are sequentially added as “fantasy datapoints” before
suggesting the next experiment in the batch (see Appendix F2
of Balandat et al.134).

4.3.2 Multi-delity optimization. Another use of building
low-cost SDLs is to have them work in tandem with high-cost
SDLs on the same discovery campaign through multi-delity
optimization. Multi-delity optimization refers to leveraging
multiple information sources with varying accuracy and cost. In
chemistry and materials science, many optimization problems
involve nding the best set of parameters or conditions that
maximize a certain objective function, such as the yield of
a reaction or the strength of a material. However, obtaining
accurate predictions for these systems oen requires robust,
reproducible, and expensive experimental setups. In the case
for SDLs, multi-delity optimization seeks to balance the trade-
off between accuracy and cost by using multiple SDLs of varying
levels of delity, where delity refers to the degree to which an
SDL accurately represents the true system. One approach is to
start with a low-delity instrument which could be a low-cost
rking towards a common optimization goal.73 Reproduced from ref. 73
Y). Copyright © 2018, Caramelli et al.
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SDL, to explore the parameter space and identify promising
regions, and then employ a higher-delity SDL which is gener-
ally higher in costs to rene the optimization in those regions.
This can reduce the overall cost of the optimization while still
achieving high accuracy in the nal result. Multi-delity opti-
mization can also involve the incorporation of different types of
data, including both simulations and experiments or multiple
types of experiments.135,136 For example, as mentioned in
Section 2.1, in-line IR or benchtop NMR is a low-delity yet
high-throughput approach compared to the gold standard NMR
instrument which is high-delity but single-throughput. By
coarsely exploring the search space with in-line IR or benchtop
NMR, only the experiments for ner optimizations in promising
regions are directed to the gold standard NMR instruments
which can reduce the time and cost of operating the high-cost
NMR instruments.

4.3.3 Workow orchestration. When experiments contain
multiple steps, workow orchestration soware should ideally
be used. While custom code can be written to manage work-
ows, it is preferable to use existing packages that are fully-
featured, modular (see soware modularity in Section 4.1.2),
and well-maintained to streamline orchestration efforts.
Examples of workow orchestration platforms include Cova-
lent, BlueSky, alab-management, and HELAO. A curated list of
workow orchestration platforms applicable to SDLs is avail-
able in https://github.com/AccelerationConsortium/awesome-
self-driving-labs under the “Workow Orchestration” section.

4.3.4 Cloud experimentation. “Cloud experimentation”
allows users to be geographically distant from experimental
hardware, in analogy to cloud computing, where soware
programs can be executed remotely. One of the key benets of
removing geographic barriers is the decentralization of expertise.137

For example, domain specialists, roboticists, and soware devel-
opers can collaborate across continents on the same experiments.

Several examples of cloud-based SDLs exist.65,73,138–144 Many
commercial solutions have a heavy focus on biology applica-
tions such as Emerald Cloud Lab,139 the former Lilly-Strateos
lab,140 Culture Biosciences,141 and Arctoris.142 On the other
hand, solid-state materials science cloud laboratories are
effectively non-existent except for some minor capabilities of
biology- and chemistry-focused labs. While existing cloud labs
have primarily targeted industry users, a noteworthy example
beginning to target academic users is CMU Cloud Lab.145–150

This is a partnership between Carnegie Mellon University and
Emerald Cloud Labs to build a subscription-based, 40 million
USD facility with over 200 types of scientic instrument. Unlike
typical user research facilities, academic and industry users
can conduct an end-to-end experimental workow and acquire
the results from anywhere around the world, 24/7, 365 days
a year.145–150 Typically, a research group needs to secure fund-
ing for the reagents, cost of the instrument, and upkeep costs
to perform an experiment. Armer et al.151 outline several
systemic reasons for the lack of adoption of cloud-based
science, such as the lack of initial cloud access to gain
preliminary data for grant applications, the lack of cloud
science grants in general, the lack of academic training, and
the costs for a cloud lab subscription in addition to university
858 | Digital Discovery, 2024, 3, 842–868
facility expenses. To tackle some of these concerns, having an
academic institution such as CMU build its own cloud labs will
reduce some of the barriers of entry for academics to access
high-cost scientic equipment.151 In addition, CMU Cloud Lab
promotes open science, a recent movement that aims to
enhance the transparency, accessibility, inclusivity, and cred-
ibility of scientic knowledge,152 where problems and results
can be shared easily.

A platform such as CMU Cloud Lab typically requires
extensive capital and expertise to develop onboarding, secu-
rity, access restriction, priority queuing, and workow
orchestration protocols. It also relies on human-in-the-loop
sample transfer between modules, necessitating full-time
technicians to perform menial tasks. The costs associated
with these infrastructure components inevitably get passed
onto the user which can be prohibitive for educational settings
and citizen science. Since low-cost SDLs operate at a smaller
scale and the risks associated with data leakage and malicious
threats are lower, they are a great platform for prototyping SDL
infrastructure with low operational costs. For example, free,
open-source tools may be implemented into low-cost SDLs,
such as Bluesky for workow orchestration,121 secure,
encrypted IoT-style communication through platforms such as
HiveMQ,83 and the Google Authentication application
programming interface for security measures.121 By leveraging
the advantages of rapid, low-risk prototyping benets of SDL
frugal twins described in Section 2.2, we envision a low-cost
SDL cloud lab that can act as a test bed for research-grade
cloud experimentation ecosystems, but with dramatically
lower operational costs. See Discussion #62 and Discussion
#91 from Section 7.
5 Ethical benefits and risks

With any new technology, there are several ethical benets and
risks to consider, especially if low-cost SDLs can be put into the
hands of many without regulation or guidelines, due to their
low cost. In this section, we attempt to highlight why low-cost
SDLs should overcome societal barriers to enable citizen
science (Section 5.1), and address the concerns around
democratizing this technology which is capable of discovering
novel substances (Section 5.2).
5.1 Citizen science

Access to research facilities has historically been limited to
universities, government, and industry laboratories, and their
personnel. This limitation reduces access for non-professional,
citizen scientists, many of whom could contribute greatly to the
body of scientic understanding.153 The lack of gender, racial,
ethnic, and socioeconomic diversity, equity, and inclusion in
science hinders a truly representative citizen science.154 We
hope that by making SDLs low-cost, accessible, and open
source, it will be easier to build equity and inclusion into the
educational system.

Additive manufacturing (i.e., 3D printing) is a natural place
for citizen science, as it is low-cost, operationally fairly safe, easy
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/AccelerationConsortium/awesome-self-driving-labs
https://github.com/AccelerationConsortium/awesome-self-driving-labs
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3dd00223c


Fig. 13 A simplified closed-loop workflow of the AM ARES platform. Reproduced from ref. 17 with permission under the Creative Commons
Attribution license (CC-BY). Copyright © 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply.

‡ See “bad actor” denition in the Cambridge Dictionary.
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to learn with the abundance of online resources, and adaptable
to many different objectives. For example, Deneault et al.17

developed an SDL known as Additive Manufacturing Autono-
mous REsearch System (AM ARES) for optimizing the print
parameters of several materials for additive manufacturing.
This is a low-cost additive manufacturing SDL that uses a 300
USD commercial 3D printer with a custom syringe extruder,
Raspberry Pi controllers and webcams, and soware that will be
released as open-source (Fig. 13). The authors use BO to guide
the selection of 3D print parameters for latex caulk with silicone
additives, attaining excellent extrusion properties aer 100
iterations. In addition, AM ARES performed self-calibration for
three different unknown source laments, which resulted in
better performance than default manufacturer specications in
an average of 15 experimental iterations. Although this system
is robust, low-cost, and a stepping-stone for many to learn about
SDLs, there is yet to be widespread adoption due to the lack of
educational infrastructure such as open-source soware, course
materials, and a step-by-step build guide.

To address this problem, the project was extended between
the US Air Force Research Laboratory and Airship Consulting to
create ATHENA, an affordable AM ARES system with open-
source soware (ARES OS 2.0) and off-the-shelf hardware.
This initiative aims to make SDLs and autonomous experi-
mentation systems widely accessible in grade schools, trade
schools, and universities. ARES OS 2.0 is a platform-agnostic,
web-facing soware framework for autonomous experimenta-
tion SDLs which takes much of the soware development
burden from the researcher. The goal is to provide a library of
open-source modules for all to use and contribute back to the
growing community, with the intent that “Anyone Can Down-
load an Autonomous ‘Research Robot’”.155 ATHENA is an
example of the movement towards low-cost autonomous
experimentation systems/SDLs to improve access to citizen
scientists and especially under-served communities through
open-source soware and low-cost systems.
© 2024 The Author(s). Published by the Royal Society of Chemistry
5.2 Risks

While we have focused on how SDL systems accelerate the
discovery of benecial materials, autonomy can be a double-
edged sword if it leads to the creation of dangerous substances,
whether by accident or design. As with any technology, there are
risks for people or organizations to engage in actions that are
harmful, illegal, or morally wrong.‡ We recognize that this is
a polarizing topic. On one hand, there will always be some people
with malicious intent; people will gure out a way. For example,
the widespread adoption of low-cost 3D printers resulted in an
increase in 3D-printed guns. Updated legislation regarding
rearmmanufacturing and use plays a key role in regulating this
increase. However, the large majority of gun-related incidents do
not seem to involve so-called “ghost guns” (i.e., 3D printed guns).
In another example, explosives can be created from commonly
obtained materials, and safeguards have been put in place, such
as limiting purchase amounts or requiring licenses, permits, and
certications. Naturally, regulations are also region-dependent.
Recently, concerns have been raised about the potential for
large language models and autonomous platforms (e.g., cloud
laboratories) to be used for nefarious purposes such as the
synthesis of illicit drugs or chemical weapons.137,156–159

We do not have the solution for safeguarding SDLs, but
methods exist to make it harder for ill-intentioned people and
organizations to engage in harmful behavior and easier for
researchers to implement preventive strategies against the
(accidental) synthesis of harmful substances. The key is to
address this problem early, quickly, and judiciously through
governance, regulations, standards, education, awareness, and
self-adherence to ethical use.

There are valuable open source practices that can be learned
and adapted to low-cost SDLs because there are potential risks
associated with open sourcing, such as open access to
Digital Discovery, 2024, 3, 842–868 | 859
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hazardous information or datasets and the potential misuse of
research tools. To mitigate these risks, a cultural shi towards
open methodology and open review may help regulate the
dissemination of malicious code, data, or materials.160 Creators
of SDLs should also consider designs which mitigate misuses or
failure modes which would endanger lives or property. For
example, incorporating steps to assess the toxicity of autono-
mously generated substances can prevent the release of
unknown toxic chemicals into the environment.161
6 Future work

In this section, we describe ideas for new frugal twins (Section
6.1), suggested educational course content (Section 6.2), and
classifying levels of autonomy (Section 6.3).
Fig. 14 A summary schematic of the CLSLab:Solid demo, which is
envisioned as a minimal working example for an inorganic solid-state
SDL. Taking from the light- and liquid-based color-matching demos,
the task is to find the optimal mixture of wax powders and processing
conditions to reach a desired, solidified wax color. This demo incor-
porates more advanced features than other demos due to need to
handle and characterize solid samples. The demo is intended to be
have reasonable trade-offs between the monetary cost, the time
required for setup, and the device footprint.55
6.1 Ideas for new frugal twins

As mentioned in Section 3.1.2 there are several examples of low-
cost SDLs involving liquid handling; however, low-cost SDLs
involving the transfer and processing of solid matter are prac-
tically non-existent. This largely stems from the relative ease of
transferring liquids using, e.g., diaphragm or peristaltic pumps
and tubes compared with solids using, e.g., powder feeders and
robotic arms (see Discussion #92). For perspective, autonomous
powder dispensers such as Trajan's CHRONECT series cost
signicantly more (100k+ USD) than liquid handlers of similar
resolution. Liquid transfer issues such as viscosity, density, and
surface tension are largely solved problems. With powder
handling, variable particle sizes, consistencies, and electrostatic
interactions make it difficult to robustly dispense powders of
different types using the same type of equipment. One work-
around to transferring solids is to dissolve or disperse them in
liquids (i.e., as solutions or slurries); however, this approach is
not feasible for manymaterials science scenarios where suitable
solvents are unavailable or unwanted chemical reactions may
occur. To complicate matters further, substrates and sample
holders may be required to accommodate high temperatures,
high pressures, or state changes (e.g., solid to liquid).

To address the lack of solid-state materials science SDL
demos, we propose a solid-based color-matching demo extension
(Closed-loop Spectroscopy Lab: Solid-mixing (CLSLab:Solid)) that
uses a low-cost mobile robot arm, mixtures of granulated colored
wax powders (Fig. 14), and a halogen lamp. Similarly to moving
from a light-mixing to a liquid-mixing demo (Section 3.1.2), the
solid-mixing demo requires hardware and workow changes. At
the start of the experiment, a robotic arm will pick and place one
tealight candle in a holder from a stacked array of holders in
a storage array onto a motorized turntable. The turntable will
then move the candle holder to a position beneath a funnel
connected to red, yellow, and blue wax powder dispensers. The
candle will then be positioned beneath a heat source (e.g.,
halogen lamp) to melt and convectively mix the wax, followed by
color sensing using the same sensor as CLSLab:Light and
CLSLab:Liquid. When the candle holder returns to its original
position on the turntable, the robotic arm will pick it up and
place it into a separate storage/waste area.
860 | Digital Discovery, 2024, 3, 842–868
Moving one step further is the idea of a “robot chocolatier.”
Chocolate captures key materials science principles such as
liquid phase transformations, bulk material characterization
(as opposed to thin-lm), and processing–structure–property
(PSP) relationships. This robot chocolatier (RoboChocolatier)
will reuse many components from CLSLab:Solid and add a do-
it-yourself (DIY) tensile tester and a chocolate 3D printer such as
the highly customizable Cocoa Press. Both CLSLab:Solid and
RoboChocolatier act as toy examples for the more industry-
relevant materials discovery task of additively manufactured
metal alloys for aerospace and automotive applications. Again,
as a recurring theme, they can serve as proofs of concept that
can be used during prototyping and the preparation of grant
proposals (Section 2). For a continuing discussion of solid-state
materials science SDL demos, see Discussion #153.

Other topics that the community may consider exploring in
the context of SDL frugal twins include other types of inorganic
synthesis, battery formulations,162–164 batch chemical synthesis,
semiconductor fabrication, polymer synthesis,165 articial
organ compatibility, mobile and xed robotic arms, autono-
mous multi-agent systems,166 microuidic devices,44 and closed-
loop microscopy.167,168
6.2 Suggested course outcomes

Educators may be wondering how to incorporate SDL concepts
into existing and new curricula. To streamline efforts to
democratize SDLs, it is important to dene course structures
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Suggested learning outcomes of a course covering SDL topics. For a continuing discussion, see Discussion #186

Topic Potential learning outcome

Experience Familiarize the concept of SDLs (hardware, algorithms, orchestration)
Acquire hands-on and soware development experience by setting up a toy demo
Propose a design for a research-oriented SDL via a white paper

Best practices Identify SDL best practices (e.g., modularity, reproducibility, safety, documentation)
Identify best practices for “cloud experimentation” (e.g., data transfer, storage)
Identify best practices for ML (e.g., validation, prevention of data leakage)

Algorithms Compare and contrast three forms of experiment planning algorithms
Test the complexity/efficiency trade-offs for advanced optimization
Identify methods for incorporating domain knowledge
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and outcomes that can be tailored to meet the individual needs
and disciplines of each student. Ideally, this would begin as
early as middle- or high school and continue throughout asso-
ciate- and bachelor-level undergraduate degree programs,
including programming, data handling, physical “maker skills”
(3D design and fabrication, electronics, and programming),
automation, and the associated core science disciplines.28

We present in Table 3 suggestions for possible educational
outcomes for hands-on experience, learning best practices, and
using algorithms. Hands-on hardware and soware develop-
ment experience, brainstorming designs, and expertise in
applying optimization algorithms are emphasized. We
encourage the community to weigh in on and converge on a set
of desired outcomes and skills necessary for successful SDL
implementations. In future work, we plan to esh out the
details for creating a syllabus, course outline, and course
content along with practical examples for teaching SDLs to
students. Eventually, as the ecosystem matures, we envision
higher education programs and degrees specic to SDLs for
chemistry and materials science.

Once again, it is inevitable to mention the multi-tool motion
platform developed at the University of Washington.60 The
platform was designed with community development and cus-
tomization as one of the project's aims. Its original design was
inspired by the RepRap and maker movements, which have
already generated an array of open-source hardware toolkits
enabling exible and extensible technologies for laboratory
automation. This connection anticipates the co-development of
tools congured for platforms such as Jubilee. These features
also make the platform a great educational tool, as it provides
a solution with a low-cost barrier and allows students, from
most disciplines, to obtain skills for all steps of an experimental
campaign in a single SDL platform. A successful example of this
is the implementation of Jubilee into engineering design
courses at the University of Hawai'i at Mānoa.
6.3 Classifying levels of autonomy

In this work, we have focused on fully autonomous low-cost
examples but also pointed out several partially autonomous
examples that are equally important in accelerating the
discovery of new materials and teaching the next generation of
data-driven scientists. However, there are no established stan-
dards to dene the levels of autonomy for SDLs. To better
© 2024 The Author(s). Published by the Royal Society of Chemistry
categorize levels of automated chemical design, Goldman
et al.33 proposed a set of denitions in the context of ideation
(nding non-obvious trends) and decision making in chemical
design, similar to those for self-driving vehicles.169,170 They
dene the highest level of autonomy (level 5) as systems where
these two processes are handled without human intervention
over multiple iterations. Beal and Rogers171 propose levels of
autonomy for synthetic biology engineering which are also very
similar to those for self-driving vehicles. They dene the highest
level of autonomy (level 5) as biology workows where all of the
protocol executions, data analysis, and interpretation are done
by a machine, while the human only sets goals and receives
results. The same levels described by Beal and Rogers171 that
focus primarily on synthetic biology systems, can also be closely
described for the levels of autonomy of SDLs. The SDL
community will benet from collectively determining a set of
classications or standards. One possibility is to classify
autonomy levels on a per-category basis: synthesis, character-
ization, sample transfer, and experiment planning.

To make these categories conceptually and visually easy to
understand, emoji can be used to represent whether a process is
fully autonomous vs. one that requires manual intervention
(Fig. 15). This type of classication is utilized in https://
github.com/AccelerationConsortium/awesome-self-driving-labs as
of 2022-08-08. For a discussion centered on these
representations, see https://github.com/AccelerationConsortium/
awesome-self-driving-labs/discussions/15. Autonomy levels could
also include failure rate/tolerance, number of iterations without
manual intervention, or use of physics-based simulations to
supplement experiments.
6.4 Frugal twins in biology

Autonomous experimentation has also captured the attention
of biologists. Exciting examples in biology include autono-
mous experimentation for genome engineering,172–174 and
optimal growth of cell cultures.175 Si et al.173 and HamediRad
et al.174 utilize iBioFab, a delocalized biofoundry which is
similar to the concept of delocalized experimentation with
cloud labs. iBioFab can produce one gene sequence for <3 USD,
so it is inexpensive from the user's perspective. However, it is
expensive to build because it uses a Fanuc F5 robotic arm on
a 5-meter track, Tecan Evo200 liquid handling robot, TECAN
M1000 microplate reader, and more.176,177 Kanda et al.175 use an
Digital Discovery, 2024, 3, 842–868 | 861
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Fig. 15 (a) Legend for the emoji classification. (b) Classifying levels of autonomy in SDLs through multi-emoji classification. Emoji and their
names and unicode values are given. Synthesis ( “test tube”: U+1F9EA); characterization ( “microscope”: U+1F52C); sample transfer (
“building construction”: U+1F3D7); experiment planning ( “personal computer”: U+1F4BB); manual intervention ( “heavy multiplication X”:
U+2716). Please note that the exact symbols may appear differently on different systems. Alternatively, the symbols may be copy-pasted directly
from https://github.com/AccelerationConsortium/awesome-self-driving-labs/blob/main/contributing.md.

Table 4 Self-driving-lab-demo GitHub discussions and awesome-self-driving-labs GitHub discussions for various topics related to SDLs

Topic Repository Link

All discussions Self-driving-lab-demo All discussions
Data and access management Self-driving-lab-demo Category
Demo extensions and design Self-driving-lab-demo Category
Examples and tutorials Self-driving-lab-demo Category
Scaling up SDLs Self-driving-lab-demo Category
Packaging open-source hardware as commercial kits Self-driving-lab-demo Discussion #124
Experimental orchestration soware Self-driving-lab-demo Discussion #64
Educational outcomes and homework problems Self-driving-lab-demo Discussion #186
Solid-state materials science demo Self-driving-lab-demo Discussion #153
Low-cost powder handling Self-driving-lab-demo Discussion #153
Roadmap for demo extensions Self-driving-lab-demo Discussion #77
A network of cloud-based experiments Self-driving-lab-demo Discussion #62
Classifying level of autonomy Self-driving-lab-demo Discussion #15
What is a self-driving lab? Awesome-self-driving-labs Discussion #32
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industrial life science robotic system, Maholo LabDroid, which
costs approximately 890 000 USD.178 There are not yet
demonstrations of frugal twins for high-cost SDLs in biology
applications. However, we are aware of two frugal twin systems
for cell growth. PioReactor is <300 USD open-source bioreactor
which can control peristaltic pumps and temperature and
monitor realtime optical density to optimize yeast, bacteria,
and algae growth.64 Gerber et al.179 described the use of a LEGO
Mindstorm EV3 kit (<400 USD) to build a liquid handling robot
with a light sensor, and its use in a K-12 aerschool setting to
perform experiments related to sterile transfer and determine
optimal sucrose concentrations for yeast growth.179 Despite
these early examples, frugal twins in biology remain an
underexplored research direction.

7 A continuing discussion

While a review article represents a xed snapshot, there is
a benet to allowing a continuing discussion of these important
862 | Digital Discovery, 2024, 3, 842–868
topics in a less rigid environment180 that is amenable to the fast-
paced evolution of SDLs. While this can also take on many
forms such as social media and informal communication, we
provide a public, organized, and persistent set of public,
ongoing discussions hosted on GitHub, as summarized in
Table 4. Anyone can access up-to-date dialogue relevant to low-
cost SDLs, and SDLs in general. GitHub accounts are free, and
users may contribute to existing threads or open entirely new
discussions. We hope that the content in this article spurs
further dialogue in the community around democratizing SDLs,
dening best practices, and gaining hands-on experience with
advanced ML algorithms.

8 Conclusion

SDL frugal twins can equip the next generation with the
necessary skills, provide a low-risk environment for prototyping
and hands-on learning, and help to create a more equitable,
global ecosystem through decentralized equipment, soware,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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and expertise. SDL frugal twins are being used for both educa-
tion and research, and there is much room for improvement.
Modularity for both hardware and soware is an effective
design principle for reducing redesign and maintenance costs,
and care must be taken when considering human-inspired vs.
hardware-centric vs. human-in-the-loop design approaches. The
true value of these low-cost systems can be realized when SOTA
soware implementations such as batch and multi-delity
optimization, workow orchestration, and cloud experimenta-
tion are combined with SDL frugal twins across the spectrum.
With the ethical and responsible use of this technology, frugal
twins are poised to accelerate the discovery of society-beneting
materials within the SDL community.

Abbreviations
AM ARES
© 2024 The Auth
Additive Manufacturing Autonomous REsearch
System28,29
CLSLab:Light
 Closed-loop Spectroscopy Lab: Light-
mixing8,10–12,30
CLSLab:Liquid
 Closed-loop Spectroscopy Lab: Liquid-
mixing10,14,30
CLSLab:Solid
 Closed-loop Spectroscopy Lab: Solid-mixing30,31
HPLC-MS
 High-performance liquid chromatography
coupled with mass spectrometry6
ML
 Machine learning8,17,34
SDL
 Self-driving
laboratory1–3,5–8,10,12,14,17–20,23–25,27,28,30–36
SOTA
 State-of-the-art1,6,7,15,17,20,24,34
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