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Mastering the metal—electrolyte interface is mandatory for the development of reliable rechargeable
magnesium batteries. Nevertheless, most of the current electrolytes contain chloride species to bypass
the surface passivation of magnesium, making them corrosive to other cell components and potentially
irrelevant for industrial application. Here, we demonstrate a novel approach to bypass the use of such
electrolytes via the mediation of an alloy-type interface prepared by coating the surface of a magnesium
electrode with liquid gallium. Chemical alloying induces the formation of a surface layer, mainly
composed of intermetallic Mg,Gas, enabling significantly improved electrochemical performance with
a simple chloride-free Mg(TFSI),/DME electrolyte. Sensibly less-polarized and more stable plating/

stripping is observed with symmetric cells at a current density of 0.1 mA cm™2

, and longer cycle life is
achieved in full cells with positive electrodes based on sulphur and organic composites. This proof-of-
concept offers room for improvement in the coating protocol and could be tuned with other liquid
metals. More importantly, it opens the door to electrolytes previously considered as non-compatible

with magnesium metal, and consequently paves the way for the application of metal electrodes in
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Introduction

Lithium-ion batteries have revolutionised the field of energy
storage. At the root of the constant electrification of our socie-
ties by powering mobile electronics, now they equip new
generations of hybrid and electric vehicles and are also
considered for stationary storage of renewable energies.
Consequently, the global battery production is significantly
increasing and sustainability issues might arise even with
implementing efficient battery recycling. In this regard,
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alternative electrochemical storage systems that offer high
energy density together with reduced cost and low environ-
mental footprint must be developed. Magnesium batteries,
belonging to so-called post-lithium-ion systems, have attracted
significant attention since the first rechargeable cell prototype
was reported by Aurbach and co-workers." Indeed, using
magnesium as the negative electrode theoretically enables high
energy density batteries, thanks to the low density of magne-
sium, the low redox potential of the Mg>*/Mg couple and the
double charge carried by Mg>" cations.>* In addition, magne-
sium is abundant and cheap, safer than lithium, and already
widely processed on an industrial scale. In spite of these
promising features, magnesium batteries are still far from
a realistic application.

One of the reasons for such delayed commercialization is
rooted in the passivation film created on the surface of the
magnesium electrode in contact with common aprotic battery
electrolyte solvents which, unlike lithium metal, inhibits the
reversible plating/stripping process of magnesium.*>” In the last
20 years, many electrolyte formulations have been proposed to
bypass this major hurdle, from the early use of Grignard
reagents to solutions employing borate-based magnesium
salts.*®® Unfortunately, despite significant improvements, no
miracle formulation coupling good electrochemical perfor-
mance with low-cost, easily scalable production and eco-

This journal is © The Royal Society of Chemistry 2022
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friendly properties has been found until now. Only the use of
chloride species enables breaking the passivation Ilayer,
however making the electrolytes corrosive and consequently not
suitable for real applications.

Mastering the interface between magnesium and the elec-
trolyte is then crucial. In 2018, Ban and co-workers designed
a polymeric coating combining thermally-cyclized poly-
acrylonitrile and magnesium trifluoromethanesulfonate, and
succeeded in further employing carbonate-based electrolytes.'®
An organic coating made of reduced perylene diimide-ethylene
diamine (rPDI) also enabled fast and reversible magnesium
plating/stripping, however with the electrolyte Mg(TFSI),-
MgCl,/DME." Moving to inorganic coatings, the teams of Nazar
and Archer almost simultaneously proposed the protection of
lithium and sodium electrodes by using an alloy-type coating,
created through the chemical reduction of a metallic salt in
solution, followed by an alloying reaction with the alkali metal
surface.”** Eventually, the passivating film formed in this way
is in reality a composite layer, as insulating by-products are also
present and offer a potential gradient to prevent plating onto
the coating layer. The as-protected electrodes exhibit enhanced
electrochemical performance, mainly induced by the mini-
mised dendritic growth during plating.*® Although magnesium
dendrites are not unexpected,"”* similar protocols were thus
applied to magnesium electrodes with the objective of using
more conventional electrolytes. For example, in contact with
a SnCl, or BiCl; solution, a composite layer containing the
Mg,Sn or Mg;Bi, alloy covers the magnesium electrode surface
and enables fast ion transport.*** The creation of such
a protective layer could be achieved by modifying the electrolyte
formulation with the action of other salts (GeCl,, SiCl,, and
Bi(OTf);) in solution or as an electrolyte additive.””* Despite
significant improvement in the electrochemical performance,
using chloride species remains questionable with respect to
possible corrosion side reactions with other components of the
cell (Table S17).

An alternative coating strategy, recently proposed for the
alkali metals, is the direct reaction with a liquid metal.
Protective layers of alkali amalgams were thus obtained on the
surface of lithium, sodium and potassium, respectively, by the
reaction with mercury drops. The as-protected electrodes
exhibit an improved electrochemical behaviour such as less
severe dendritic growth and improved stability towards mois-
ture.”>*>® However, the well-known toxicity of mercury precludes
any chance of realistic applications. Furthermore, the very high
density of the obtained amalgams would dramatically lower the
theoretical specific energy density of possible full cells.

Searching for other lighter and environmentally-friendly
liquid metals, we demonstrate in this work the feasibility of
protecting the surface of a magnesium electrode with a gallium-
based coating. Gallium has a relatively low abundance on the
Earth's crust, but is very widely spread as a trace element and is
generally obtained from processing to produce aluminium or
zinc, and good recyclability enables its wide use in the elec-
tronics industry.”*?*' Moreover gallium has been shown to be
compatible with magnesium electrochemistry. Indeed, magne-
sium electrochemically alloys with gallium to form Mg,Gas.
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Like other alloy-type electrodes,* the reaction occurs at low
potential (~200 mV) and offers high specific capacity
(~300 mA h g'). In addition, a self-healing behaviour is
observed due to the near-room temperature solid-liquid phase
change between solid Mg,Gas and liquid gallium.*

As shown hereafter, the chemical reaction between liquid
gallium and magnesium forms an alloy layer mainly composed
of Mg,Gas at the surface of the electrode. With the chloride-free
electrolyte Mg(TFSI),/DME, while the strong surface passivation
of uncoated magnesium electrodes significantly alters the
electrochemical activity, the as-protected magnesium electrodes
exhibit enhanced performance. Consequently, extended cycling
is achievable with full cells with various positive electrode
composites. This proof-of-concept encourages similar coating
strategies through the surface reaction with other liquid metals
and may open the door to realistic application of magnesium
batteries.

Surface alloying of the magnesium anode

The low melting point of gallium (29.8 °C) enables its easy
melting before spreading drops on the surface of a magnesium
electrode in an argon-filled glovebox. The metallic shiny aspect
of magnesium rapidly evolves and turns grey after few hours
(Fig. 1a). Multiple surface layers could be evidenced in cross-
sectional scanning electron microscopy (SEM) images. Start-
ing from the surface, we can distinguish the first thick layer of
around 10-30 pm, then a very thin oxygen-rich layer (200-300
nm) and lastly an irregular micrometric sublayer (1-2 pm)
observed at the interface with the magnesium bulk electrode
(Fig. 1b, e and f). Elemental cross-sectional mapping by scan-
ning Auger microscopy (SAM) shows distribution of gallium and
magnesium through the interfaces. Semi-quantitative analysis
based on the relative intensities of the Auger spectra of selected
areas and their derivative curves, taking into account the rela-
tive sensitivity factors of Mg KLL and Ga LMM lines, unam-
biguously reveals a richer gallium content in the thick top layer
than in the sublayer (Fig. 1e-g). The oxygen-rich thin interlayer
most probably originates from the native oxide/carbonate
surface layer that cannot be fully removed even when oper-
ating in a glovebox, as shown later by XPS, and possibly from
contamination during sample preparation.

X-ray diffraction was used to get more insights into the
coating. The formation of highly crystalline Mg,Gas is evi-
denced in reflection geometry (Fig. 1c), with refined cell
parameters in line with the literature (I4/mmm, a = 8.646(1) A
and ¢ = 7.126(1) A, Fig. S11) while second acquisition performed
on a high brilliance diffractometer (Mo-Ka rotating anode
source) in transmission geometry enables the detection of an
additional contribution (shown in Fig. 1d) that could be
reasonably attributed to the (102) peak of Mg,Ga, a Ga-rich
composition of the Mg-Ga phase diagram (Fig. S2t). Overall,
in agreement with the gallium concentration gradient evi-
denced by Auger spectroscopy, the thickest top layer and the
sublayer below can be reasonably assigned to Mg,Gas and
Mg,Ga, respectively, as the latter is only detected in trans-
mission geometry.

J. Mater. Chem. A, 2022, 10, 12104-1213 | 12105
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Fig.1 Multi-technique characterization of the Mg—Ga alloy coating. Pictures of magnesium discs showing the colour changes after the reaction
with liquid gallium (a), SEM cross-sectional image of a Ga-treated magnesium disc (b), XRD patterns of bare and treated discs in reflection and
transmission modes ((c) and (d), respectively) with peak identification and a special enlarged view to detect the (102) peak of Mg,Ga, SAM
mapping images of O, Ga and Mg elements at the interface (e), and Auger electron spectra of selected areas in direct mode “N(E)" and derivative
mode “dN(E)/dE" displaying the chemical composition changes ((f) and (g)).

On the practical side, while controlling the weight of the
gallium drops is not straightforward, the thickness of the
deposit can be manually tuned during the coating process by
adjusting the amount of gallium drops and/or by subsequently
wiping out some gallium. Following this procedure, the elec-
trode mass increase after gallium addition experimentally
ranges from 18 to 56%. By simply considering the formation of
only Mg,Gas, this mass uptake corresponds to an average layer
thickness of around 15 to 60 pm (Fig. S37), in good agreement
with our SEM observation. Importantly, owing to the molecular
weight and density of magnesium, the coating formation does
not consume an important volume of the magnesium electrode.

Benefits on the electrochemical behaviour

Unlike alkali metals, magnesium is not ductile and cannot be
pressed and flattened on the surface of a current collector.
Consequently, it appears necessary to cover both sides of each

12106 | J Mater. Chem. A, 2022, 10, 12104-12113

magnesium disc electrode before performing any electro-
chemical tests. For a better understanding of the magnesium
plating and stripping, galvanostatic polarization measurements
were first carried out in symmetric cells at a current density of
0.1 mA cm > for a better comparison with the existing literature
(Table S1f) with a conventional electrolyte Mg(TFSI),/DME at
0.8 M. Note that this relatively high concentration was chosen
with the initial purpose of mitigating the diffusion of poly-
sulphide species in the electrolyte usually observed with
a carbon-sulphur positive electrode.

With uncoated magnesium electrodes, after an initial peak,
the overpotential is rapidly stabilized around 0.6 V during the
first polarization sweep. However, in the subsequent ones the
galvanostatic profile is strongly modified and the overpotential
remains around 2 V, indicating a strong impedance of the
plating/stripping process due to the surface passivation and
consequent cycling failure generally after 100 hours (Fig. 2a).

This journal is © The Royal Society of Chemistry 2022
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Fig. 2 Enhanced magnesium plating/stripping. Evolution of the overpotential during subsequent magnesium plating/stripping processes in
symmetrical cells with bare and Ga-protected magnesium electrodes (blue and red lines, respectively) in 0.8 M Mg(TFSI),/DME electrolyte and at
40 °C, with sweeps of 30 min at a current density of 0.1 mA cm™2 (a); structures of the magnesium epitaxial surface on Mg,Gas with increasing
number of layers and the corresponding DFT-calculated plating energy (b) and schematic representation of plating underneath (c).

The picture is significantly different with gallium-protected
magnesium electrodes. The overall overpotential remains
around 0.5 V, and the profile is stable for several hundred
cycles. In detail, each sweep exhibits a weak nucleation peak
followed by a flat plateau throughout the whole electrochemical
process. It is worth pointing out that a highly concentrated

This journal is © The Royal Society of Chemistry 2022

electrolyte was employed, and that the metastability of
Mg(TFSI), is known to strongly participate in the surface
passivation of magnesium.**** Despite this, the value of the
overall potential is in line with previous studies where less
concentrated electrolytes are used (Table S1f). Given that
a current density of 0.1 mA cm ? is far from realistic

J. Mater. Chem. A, 2022, 10, 12104-12113 | 12107
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applications, additional tests were performed at higher current
densities; under these conditions, however, the plating/
stripping behavior of the Ga-coated electrode was not signifi-
cantly improved in comparison with that of bare magnesium.

In the literature, the charge transfer and the plating mech-
anism processes occurring on the surface of these coated elec-
trodes are not yet fully understood.*® The presence of insulating
by-products (mainly chlorides) in the composite layers was
proposed to create a potential gradient, further enabling the
ionic diffusion across the coating and leading to plating
occurring below the coating layer, further denoted as plating
underneath.'> Moreover, the existence of chloride species dis-
solved in the electrolyte has been suggested to prevent further
passivation through the formation of surface adsorbed
species.’® With our coating approach, the protective surface
layer is mainly composed of the alloys Mg,Gas and Mg,Ga.
Density of states obtained from density functional theory (DFT)
calculations confirms the metallic state of the alloys (Fig. S47).
The very thin oxygen-rich interlayer might be insulating and its
influence on the properties of the coating is still unclear. Given
its narrow thickness and its ubiquitous presence in all studied
coatings, it cannot be considered as a major contributor to the
observed improvement of the electrochemical properties.

As previously done for lithium systems,*”*® DFT calculations
were carried out to rationalize the magnesium plating onto our
Ga-coated electrode. Here, the stability of the different Mg,Gas
surfaces was first analyzed as a function of the surface orien-
tation and the applied potential. As a result, the (001) surface is
found to be the most stable one in the potential range of
interest (Fig. S51). Then, the plating energy AE, i.e., the energy
difference between a magnesium layer epitaxially plated on
Mg,Ga; and the same amount of Mg atoms in their bulk envi-
ronment, was computed for increasing number of adsorbed
layers in order to qualitatively link the plating mechanism with
the current rate, as the greater the current density, the larger the
number of Mg atoms accumulated on the coating surface
(Fig. 2b, see details in the Methods section and ESIf).

Most of the magnesium adsorbed layer configurations lead
to a strongly negative AE,, suggesting an plating underneath
favorably independent of the current rate. Note that only the 3-,
6- and 9- layer configurations possess a slightly positive plating
energy, well below room temperature kgT. Therefore, for such
configurations, the surface plating is either unstable or meta-
stable at low temperature. At room temperature, because of the
extremely weak surface stabilization, even the metastable Mg
layers should dissolve in the Mg,Ga; coating because of both
entropic (defect creation) and enthalpic (increase of the number
of the strong Mg-Ga bonds relative to the weaker Ga-Ga ones)
effects. To summarise, from a thermodynamic point of view,
a magnesium layer epitaxially plated above the Mg,Ga; coating
is expected to migrate underneath it to form a magnesium bulk
layer on the electrode surface. The physical reason for such
a behaviour can be revealed through the competition between
the adsorption energy and the epitaxial stress. The chemical
bond between the adsorbed Mg-layer and the Mg,Gas substrate
appears weak, with an adsorption energy of only —0.12 eV per
atom, and cannot compensate the epitaxial stress of the Mg-

12108 | J Mater. Chem. A, 2022, 10, 12104-12113
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layer which is constrained to the Mg,Gas crystallographic
environment (+0.22 eV per atom).

To confirm the plating underneath the coating suggested by
the electrochemical results and the DFT calculations, the
evolution of the Ga-coated electrode during repeated plating
and stripping cycles was followed by in situ XRD in transmission
mode. Indeed, the Mg,Ga; layer is highly crystalline and any
structural evolution should be detectable in this way. The use of
a rotating Mo anode X-ray source enables collection of high-
quality diffraction patterns with a relatively short acquisition
time (3 minutes), allowing us to follow precisely any changes
occurring through the whole electrode (bulk magnesium, alloy
coating and the interface with the liquid electrolyte).

At first glance, the pristine highly crystalline Mg,Gas and the
secondary diffraction peaks assigned to Mg,Ga remain
unmodified all along the electrochemical process (Fig. 3a). Only
tiny peak broadening is observed, which can be linked to
a decrease of crystallinity and/or increase of the lattice strain of
the Mg,Ga; crystallites (Fig. S77).

Focusing now on the composition of the electrode surface, ex
situ XPS analysis was performed on coated magnesium before
and after 50 hours of successive plating and stripping in
a symmetrical cell in order to approach what could occur at the
electrode-electrolyte interface in full cells (Fig. 3b). The pres-
ence of the Mg,Ga; alloy in Ga-coated magnesium is evidenced
by a significant shift of the thin Auger Mg KLL metallic signa-
ture (301.8 eV compared to 301.2 eV for bare magnesium). Due
to the greater amount of oxide and carbonate on the surface of
Ga-coated Mg, the relative contribution of the alloy vs. MgO/
MgCO; decreases, which can be observed in the Mg 2p spec-
trum as well. After cycling, Mg,Gas remains present as no shift
of the peak is observed. Magnesium metal is consequently not
plated above the coating, in agreement with operando XRD and
DFT calculations. Additionally, the presence of Mg(TFSI), salt
and its degradation product MgF, can also be observed by XPS
(Mg 2p in Fig. 3, and F 1s and Ga 3d in Fig. S8t). Cross-sectional
electron microscopy coupled with Auger electron spectroscopy
reveals a global resistance of the coating in spite of some
changes in the morphology, with the apparition of small cracks
in some parts of the protective layer (Fig. S971). After 50 hours of
continuous plating, which could correspond to long unique
discharge in a full cell, electrolyte decomposition localized on
these cracks could be observed (Fig. S107).

Towards better magnesium batteries

The gallium alloy coating was shown to enhance the electro-
chemical features and remain chemically constant during
polarization measurements. The coated magnesium electrodes
were then evaluated in a full cell configuration using the same
Mg(TFSI),-based electrolyte. We first tested the protected Ga-
treated magnesium electrode with the Chevrel phase MogSg
prepared by the conventional procedure (Fig. S117), which can
be considered as the standard electrode material for
magnesium-based batteries for which the electrochemical
activity with magnesium is well established."*** However,
Mo,Ss is characterised by a relatively low reversible capacity and

This journal is © The Royal Society of Chemistry 2022
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Fig. 3 Inside the coating evolution. Top-view representation of XRD patterns collected in situ in transmission mode during galvanostatic

polarization measurements of a symmetric cell at 0.1 mA cm™2

, with blue, red and green markers for Mg, Mg,Gas and Mg,Ga, respectively (a); XPS

spectra (Mg 2p and Auger Mg KLL) of pristine Mg, Ga-coated Mg before and after 50 hours of plating/stripping, normalized by the most intense
contribution (b); SEM cross-sectional image of the coated electrode after plating/stripping (c). Note that XRD acquisitions were performed at
room temperature as the in situ cell does not allow working at 40 °C, even if the coating efficiency is not optimized at such temperature (Fig. S67).

by a low working voltage and therefore should not be consid-
ered for realistic applications. Galvanostatic profiles obtained
with bare and protected magnesium electrodes appear quite
similar in the first cycles with two typical plateaus assigned to
distinct insertion sites of magnesium ions in the sulphide
framework (Fig. 4a and b). Electrolyte decomposition parasite
reactions could explain the exceeding initial discharge capacity
and certainly induce increasing polarization which causes
battery failure after a few cycles. Remarkably, the potential
values of the plateaus are very close for both cells, either in
charge or in discharge. This is another observation that
supports the role of the alloy layer as a composition-invariant
coating. Indeed, the potential is significantly lower with the
negative electrode of bulk Mg,Gas prepared by mechanical
alloying with a difference of 200 mV (i.e., approaching the
potential of the alloying/dealloying process of gallium®)
(Fig. S12 and S13f).

On the way towards realistic magnesium batteries, sulphur-
and organic-based composites were then considered. Indeed,

This journal is © The Royal Society of Chemistry 2022

given the sluggish diffusion of Mg®" ions in classical insertion
hosts such as high-voltage layered oxides or polyanionic
compounds, working with sulphur, a conversion-type electrode,
is a promising pathway and Mg/S cells could potentially exhibit
high energy density while meeting sustainability and durability
criteria.*** Nevertheless, the well-known intrinsic drawbacks of
sulphur-based electrodes, from the insulating character of
sulphur to the well-known polysulphide shuttle effect, could
lower these promising values and therefore still need to be
overcome. Besides sulphur, organic compounds, mainly
quinone derivatives involving a carbonyl group as the redox
centre, are now regularly highlighted as possible cathode
materials in divalent batteries. Despite the solubility issue,
which can be mitigated with polymer synthesis, promising
electrochemical cycling could be performed with appropriate
electrolytes.**>* We used sulphur-impregnated activated carbon
clothes (ACC-S, Fig. S147) which are commonly used as model
electrodes in magnesium batteries despite their limited sulphur
loading (10 wt% of sulphur, corresponding to a surface density

J. Mater. Chem. A, 2022, 10, 12104-12113 | 12109
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composite PAQS-CNT (e and f, at 122 mA g~* for PAQS, corresponding to 0.21 mA cm™2 for Mg). Battery tests performed at 40 °C.

of around 1 mg cm™ ). In parallel, the popular redox poly-
mer poly (anthraquinonyl sulphide) (PAQS, Fig. S151) was
chosen due to its reversible electrochemical mechanism with
divalent ions with Mg(B(hfip),), and Mg(TFSI),-2MgCl, elec-
trolytes and combined with carbon nanotubes (CNT) for
improved capacity utilization.

For both electrode composites, the comparison between bare
and protected magnesium electrodes strikingly highlights the
benefits of the alloy coating. The strong passivation of

12110 | J. Mater. Chem. A, 2022, 10, 12104-12113

magnesium metal induces an immediate cell failure (Fig. 4c
and d for ACC-S and Fig. 4e and f for PAQS-CNT). In contrast,
despite a certain increase of overpotential, features of the
plateaus are not strongly modified, indicating no change in the
electrochemical mechanisms with coated magnesium elec-
trodes for both ACC-S and PAQS-CNT composites.

With the ACC-S positive electrode, XPS analysis performed ex
situ after 15 cycles confirms the chemical integrity of the coating
and also highlights the important polysulphide species
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dissolution and their well-known shuttle to the negative elec-
trode side that strongly participates in the important capacity
fading (Fig. S16 and S17t). Concerning the PAQS-CNT positive
electrode, the capacity decay here could also be mainly attrib-
uted to partial dissolution of the active material (Fig. S17 and
S18%).

Conclusions and perspectives

In this work, we propose an innovative protocol to create an
alloy layer on the surface of magnesium to unlock the use of
non-corrosive chloride-free electrolytes for magnesium
batteries. From preliminary galvanostatic polarization
measurements to full cells with various positive electrode
materials, the Ga-coated magnesium electrodes exhibit
enhanced electrochemical performance. The magnesium
surface passivation, which usually precludes any electro-
chemical activity, does not occur, and reversible magnesium
plating and stripping is demonstrated. For this proof-of-
concept, liquid gallium was used to create a relatively thick
alloy layer. Although gallium is relatively light, the alloy layer
impacts the overall energy density (Fig. S19 and S207). There-
fore, the coating protocol must be further optimized to create
a thinner and more robust gallium-based protective layer that
resists higher current densities, together with a larger system-
atic benchmark of the electrolyte compositions. Designing
a self-healing composite coating could also be achieved with an
alloy coating based on liquid eutectic compositions.*® In addi-
tion, different types of magnesium electrolytes need to be
tested, keeping in mind the final purpose of using carbonate-
based electrolytes for benchmarking high-voltage positive
electrode materials, together with a detailed understanding of
the evolution of both the protective layer and the solid-
electrolyte interphase during battery cycling. Overall, this
study opens the door for the large-scale application of low-
melting-point elements and compounds to protect sensitive
metal electrodes such as magnesium and calcium.

Methods

Ga-coated Mg electrodes

Mg-Ga electrodes were prepared in an argon-filled glovebox
with <0.5 ppm oxygen and <0.5 ppm H,O at room tempera-
ture. Mg foil (Goodfellow, 99.9%, 250 pm) was first polished
with a blade to remove the native oxide layer. Then, the
coating was made by dropping liquid Ga (from molten ingots,
Alfa-Aesar) droplets onto the surface of Mg and spreading
over until a homogeneous liquid layer was formed. After
few hours, the liquid layer reacted with Mg to form a solid
alloy layer.

Positive electrode materials

Chevrel phase MogSg, and ACC-S and PAQS-CNT composites
were prepared following previous reports.***>-**%¢57 Details on
syntheses, characterization and electrode formulation are
provided in the ESL{
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Electrochemical tests

Electrodes were tested in coin-cells (2032, 316L stainless steel)
assembled in an argon-filled glove-box, and one glass-fibre
(Whatman, GF/A) surrounded by two polypropylene
membranes (Celgard 2325) was used as a separator and wetted
with 100 pL of electrolyte. Tests have been performed mainly in
an oven set at 40 °C, and also at room temperature, using
research-grade potentiostats (Neware and Bio-Logic).

X-ray diffraction (XRD)

Samples were prepared in an Ar-filled glove box and then
transferred under a protective airtight polymeric film to limit
the moisture reaction. XRD measurements in reflection mode
were performed with a Panalytical X'Pert Pro diffractometer
operating with Cu Ko radiation. For the operando XRD
measurement in transmission mode, a specially designed cell
using two Be windows acting as both the X-ray transparent
window and current collector was assembled in an Ar-filled
glovebox. Transmission XRD acquisitions were carried out
with a Bruker D8 Discover diffractometer equipped with
a rotating anode (Mo-Ka radiation) and a Dectris EIGER2 R
500K detector. In parallel, electrochemical measurements were
performed on a BCS potentiostat (Bio-Logic).

Auger electron spectroscopy (AES) and scanning Auger
microscopy (SAM)

Coated magnesium discs were mechanically cut and then pol-
ished by using an Ar" ion beam in a cross-section polisher
(model IB-09010CP, Jeol Ltd., Tokyo, Japan) operating at 4 keV
for 2 hours (working pressure of 1 x 10~ * Pa). Polished discs
were transferred without any air exposure into the Auger elec-
tron nano probe (JAMP 9500F, Jeol Ltd.) to perform SAM
imaging and the AES analyses of the electrode cross-cut
sections. The Auger analyses were carried out under UHV
conditions (pressure < 2 x 10”7 Pa), using the following beam
energy and current conditions: 10 keV and 8 nA, respectively.

X-ray photoelectron spectroscopy (XPS)

Samples were transferred without any air exposure into an Ar-
filled glove box (<1 ppm O,, <1 ppm H,0) directly connected
to an XPS spectrometer (Thermofischer Scientific Escalab 250
Xi) using focused monochromatized Al-Ke. radiation (hv =
1486.6 eV). No sputtering was used to clean the surface to
analyze in order to preserve the surface chemistry. The analyzed
surface area of the samples was a 650 um diameter disk. The
spectra were fit and analysed in CasaXPS software.

DFT calculations

Periodic calculations were performed within the density func-
tional theory (DFT) framework, using the Vienna ab initio
simulation package (VASP) implemented with projector
augmented wave (PAW) pseudopotentials.®®*® Exchange-
correlation effects have been accounted for by generalized
gradient approximation (GGA) using the functional of Perdew,
Burke and Ernzerhof (PBE).®® Surface calculations were
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performed on Mg,Gas (100), (010) and (001) slabs. The
surrounding environment was described with an implicit
solvent using the polarizable continuum model (PCM) as
implemented in VASPsol.** To vary the electrode potential, the
grand canonical density functional theory (GC-DFT) framework
has been used in association with the homogeneous back-
ground method (HBM) as detailed in previous studies.®> More
details can be found in the ESI} section.
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