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We report a diversification strategy that enables the direct substituent exchange of tertiary phosphines.

Alkylated phosphonium salts, prepared by standard alkylation of phosphines, are selectively dearylated in
a nickel-catalysed process to access alkylphosphine products via a formal substitution at the phosphorus
center. The reaction can be used to introduce a wide range of alkyl substituents into both mono- and
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bisphosphines. We also show that the alkylation and dearylation steps can be conducted in a one-pot

sequence, enabling accelerated access to derivatives of the parent ligand. The phosphine products of
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Introduction

Many of the recent advances in transition metal catalysis have
been driven by the design of bespoke ancillary ligands that
modulate the catalyst's reactivity in an unprecedented fashion.*
Despite the emergence of a large variety of ligand classes,
phosphines remain the ligands of choice for many applica-
tions.>* A significant benefit of phosphines is that the ligand's
electronic and steric properties can be tuned with precision by
varying the substituents on the phosphorus centre. Taking
advantage of a versatile toolbox of synthetic methods to access
phosphines,* many powerful phosphine ligand architectures
have been developed.>** Phosphines have also been employed
in numerous other applications such as organocatalysis,****
frustrated Lewis pair catalysis,™ or material sciences.”>*® It can
be expected that the continued design of phosphines will lead to
even more active ligands, opening further avenues for the
application of this intriguing class of compounds.
Traditionally, phosphine ligands are prepared by de novo
synthetic approaches such as nucleophilic substitution reac-
tions of halophosphine substrates with organometallic
reagents.* Alternative strategies include the reduction of phos-
phine oxides' " or reactions of hydrophosphines such as the
hydrophosphination of unsaturated systems,>-** cross-coupling
with aryl halides,**** or substitution reactions with electrophiles
in the presence of base.*** Combined, these methods allow
access to a plethora of diverse phosphine architectures.
However, they typically require multi-step procedures involving
toxic or pyrophoric reagents and air-sensitive intermediates that
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the reaction are converted in situ to air-stable borane adducts for isolation, and versatile derivatisation
reactions of these adducts are demonstrated.

are challenging to isolate. These drawbacks can make the
preparation of phosphines arduous and restrict ligand optimi-
sation campaigns to the evaluation of the limited collection of
commercially available phosphines. However, if chemists only
evaluate commercially available phosphines, they might fail to
identify more active and selective catalysts. Therefore, new
approaches towards the straightforward synthesis of phos-
phines and other phosphorus-containing compounds are in
critical demand.>°

A strategy to address this problem is the direct modification
of tertiary phosphines (Scheme 1a). In this approach, substit-
uents of phosphines are either altered or exchanged entirely,
hence bypassing the need to handle toxic primary and
secondary phosphines or even PH;. It is also an efficient way to
quickly generate libraries of ligands, which is a central
endeavour for the rapid discovery and optimisation of new
reactions. The direct access to ligand derivatives from a hit
result also becomes increasingly important in light of recent
advances in statistical and machine learning-based approaches
that facilitate the in silico optimisation of ligand structures.****"
Most efforts directed at the modification of tertiary phosphines
have focused on altering substituents, for instance by C-H
functionalisation approaches.*>?* Reactions that entirely
replace one of the substituents of a phosphine remain rare
although they would arguably be the most versatile tools to
modify a wide range of phosphines. Such a strategy would be
particularly useful to access underexplored alkylated phos-
phines. Approaches towards this goal are however limited and
mainly rely on the formation and subsequent reaction of metal
phosphides by engaging phosphines with highly reactive alkali
metals (Scheme 1b).***” As an alternative, Wang and co-workers
reported that acyl phosphines can be used as surrogates for
secondary phosphines in metal-catalysed alkylation and aryla-
tion reactions.*®** While these methods expand the toolbox of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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a) Strategies for the modification of phosphines
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Scheme 1 Context of this work.

phosphine modification reactions, they suffer from poor
cleavage selectivity or limited scope, respectively. A general and
selective strategy to introduce alkyl substituents into tertiary
phosphines has thus remained elusive.

Our group*~* and others** have used the ability of tran-
sition metals to oxidatively add into P-C bonds of phospho-
nium salts for catalytic reactions. In the context of phosphine
modification, we have reported a palladium-catalysed process
that scrambles aryl groups between two triarylphosphines
(Scheme 1c top).* The in situ formed phenylpalladium iodide
catalyst undergoes C-P reductive elimination with a phosphine
and subsequent C-P oxidative addition into another C-P bond
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of the formed phosphonium salt, leading to an exchange of the
aryl group on the metal centre. Reaction with another phos-
phine results in further exchange of aryl groups between the
different phosphine starting materials. While this process
enables the formation of a large variety of triarylphosphines, it
is not synthetically useful as the scrambled triarylphosphines
are formed as a statistical mixture. Furthermore, the use of
triarylphosphines as the source of the transferred aryl group is
unpractical as separation of the desired product from the by-
products becomes very demanding. To improve this process,
we identified two key challenges that needed to be addressed.
First, selective cleavage of one C-P bond over another in the
intermediate phosphonium salt would be necessary to obtain
a single product. Second, the use of simple R-X compounds
instead of PAr; as source of the introduced phosphine substit-
uent would be more versatile and simplify purification.

Although the oxidative addition of transition metals into P-
C(aryl) bonds is well established, only few examples are known
in which a P-C(alkyl) bond of a phosphonium salt is cleaved.***
We hypothesized that this contrast in reactivity could provide
a convenient entry to alkylated phosphines. A metal catalyst
could undergo selective oxidative addition into a P-C(aryl) bond
of an alkylarylphosphonium salt, retaining the alkyl group, to
form the desired alkylphosphine (Scheme 1c bottom). The
resulting metal aryl complex could then be engaged in a stan-
dard cross-coupling manifold to enable catalyst turnover and to
avoid a challenging C-X reductive elimination.****” As the
phosphonium salt starting material could be prepared by
routine alkylation of a ubiquitous arylphosphine, the overall
process would represent a formal substitution of aryl for alkyl
groups at the phosphorus centre. Here, we report the realisation
of this strategy as a versatile method that enables rapid diver-
sification of commercial phosphines to access alkylphosphine
ligand space (Scheme 1d).*®

Results and discussion

After evaluation of a broad set of reaction conditions, we
discovered that a combination of Ni(COD), as pre-catalyst, the
ligand precursor IiPr-HBF, (IiPr-HBF, = 1,3-di(iso-propyl)
imidazolium tetrafluoroborate), and potassium phosphate as
base enabled the desired dearylation of a model phosphonium
salt in high yield by trapping the cleaved aryl group in a Suzuki-
type coupling with phenylboronic acid (see ESI} for details).*”*
The resulting biphenyl by-product from the Suzuki coupling can
be easily separated from the desired product. For convenience,
the reactions were typically set up in an argon-filled glovebox. Of
note, a benchtop setup also provided the products in only
slightly lower yield (see ESIt for details). Alternatively, the air-
stable Ni(0) precatalysts developed by the groups of Cor-
nella®>* and Engle® can be used instead of Ni(COD), to set the
reaction up on the benchtop with no decrease in yield (see ESIT).
With these results in hand, we investigated the scope of the
reaction. Phosphonium salts containing different alkyl groups
were prepared by alkylation of phosphines in good to high
yields using standard methods* (see ESIT) and then subjected to
the dearylation reaction (Scheme 2). For ease of purification, the
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phosphine products were typically isolated after in situ conver-
sion to the borane adducts. These adducts are air-stable, can be
conveniently purified by column chromatography, and are

easily deprotected (vide infra).*>*

19%

Phosphines containing both activated and unactivated
primary alkyl groups were prepared in high yield by our dear-
ylation strategy (2a-d). A cyclohexyl group was incorporated in
73% yield (2e). This moiety as well as the tert-butyl and ada-
mantyl groups are arguably the most widespread alkyl substit-
uents in modern ligands. Our reaction not only tolerates the
presence of these moieties (2e, 2i, 2q-r), but also allows to
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introduce other, less prevalent cyclic secondary alkyl groups (2f-
g) or tertiary alkyl groups (2h). Alkyl groups containing coordi-
nating moieties like pyridyl, primary alcohol, and ether groups
were incorporated in good yield (2j-21) and provide opportuni-
ties to use the reaction to prepare chelating ligands with two
different coordinating atoms. A low, but synthetically useful
yield was observed for a substrate containing a tertiary amine
(2m, 24%). As an alternative, a phthalimide moiety, which can
be used as a precursor for amines, was well tolerated (2n). The
reaction can also be used to synthesize phosphines containing
more than one alkyl group. Dialkylphosphonium salts with
differing steric demand afforded the desired product in good
yield (20-r). Trialkylphosphine 2s was prepared in a lowered,
but synthetically useful yield of 30%. In contrast, the caged
trialkylphosphine 2t was obtained in high yield (84%).

Besides the introduced alkyl group, the nature of the
removed aryl group can also be varied. Electron-rich and
electron-poor aryl groups can be cleaved in the reaction in high
yield (2u-2v). Notably, the reaction can also be conducted on
a large scale, as demonstrated by the preparation of two grams
of 2u. Besides the dearylation of phosphonium salts, the deal-
kylation is possible when the starting material does not contain
an aryl group. Tetraalkylphosphonium salt 1w was selectively
debenzylated in 19% yield without additional optimisation.

We next investigated reactions of phosphonium salts con-
taining two different aryl groups (Scheme 3a). The trans-
formation of phosphonium salt 1x, containing electron-

a) Dearylation of substrates containing two different aryl groups
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donating and electron-withdrawing aryl groups, resulted in
partial cleavage of both aryl groups to deliver the two alkylated
phosphines 2v and 2x in useful yields in a single reaction. The
products could be conveniently separated by column chroma-
tography. In contrast, the 2-methoxyphenyl group was exclu-
sively removed from phosphonium salt 1y, indicating
a directing effect of the ortho-methoxy moiety. The reaction can
also be used to modify Buchwald-type ligands, as demonstrated
by the synthesis of the air-stable JohnPhos derivative 2z in good
yield.

Results of further substrates that were tested in the reaction
are summarized in Fig. S3.t Generally, substrates with high
steric hindrance performed worse in the reaction than less
sterically hindered substrates. Additionally, substrates with
strongly coordinating moieties did not perform well or even led
to cleavage of the alkyl group.

To further increase the utility of our strategy, we developed
a one-pot protocol in which the phosphonium salt is first
formed by the alkylation of a phosphine and then directly
treated with the reagents for the nickel-catalysed dearylation.
Applying this protocol, we were able to prepare n-butyldiphe-
nylphosphine from triphenylphosphine (4) in 67% yield after
converting the product to its air-stable borane adduct 2b
(Scheme 3b). Notably, no intermediate workup or solvent
change is required, making this process a direct substitution at
the phosphorus centre and enabling rapid access to alkylated
phosphine ligands.

Due to the high importance of bidentate ligands in catalysis,>
we attempted the synthesis of bisphosphines by the twofold
dearylation of a bisphosphonium salt. However, no product was
detected. Mechanistic experiments showed that the desired
dearylation occurred, but the bidentate phosphine product L
deactivated the catalyst by irreversibly coordinating to it in
a NiL, complex (see ESIt). We thus tested a range of metal
scavengers to de-coordinate the product from the nickel centre
of this complex and found that sodium cyanide is highly active
for this process.®® This insight enabled us to develop
a strategy for the dearylative alkylation of bisphosphines. After
an alkylation step, the nickel complexes NiL, of the desired
dearylated ligand products were formed by a stoichiometric
Suzuki reaction of the bisphosphonium salt and then directly
exposed to sodium cyanide to afford the free bidentate phos-
phines. Notably, the protocol offers the possibility to modify the
starting ligand selectively on both phosphorus centres or just
one. 1,3-Bis(diphenylphosphino)propane (DPPP) (5) could be
mono- or dialkylated in good yield, respectively, by simply
changing the stoichiometry of the alkylation step (Scheme 4).
The dearylation of the resulting phosphonium salts 6 and 8
proceeded smoothly to yield the symmetrically modified ligand
7 in 44% yield and the unsymmetrical ligand 9 in 70% yield,
respectively. Other privileged ligand scaffolds such as 1,1’
bis(diphenylphosphino)ferrocene (DPPF) (10) can also be
altered using this process. Alkylation of 10 selectively yielded
the monophosphonium salt 12 potentially because of the
hindered nature of the second phosphino moiety after the first
alkylation. The dearylation of 12 occurred in good yield to
furnish the unsymmetrical DPPF-type ligand 13 that would be

© 2022 The Author(s). Published by the Royal Society of Chemistry
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difficult to prepare by traditional means. The reaction can not
only be used to modify bidentate ligands but also to construct
them. DPPP (5) could be prepared in 46% yield by the reaction
of triphenylphosphine (4) with the alkyl dihalide 14 and
subsequent two-fold dearylation.
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Scheme 5 Derivatisation of the phosphine borane products. DABCO
= 1,4-diazabicyclo[2.2.2]octane. RSM = recovered starting material.
See ESIf for detailed reaction conditions.
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The phosphine borane adducts, as which the phosphine
products were typically isolated, can be used in versatile deri-
vatisation reactions (Scheme 5). The free phosphine 16 was
accessed in nearly quantitative yield by treatment of the phos-
phine borane adduct 2u with DABCO and a subsequent simple
filtration through Celite.®® Conversion to the HBF, salt 17 was
achieved in good yield.**”® Such salts are air-stable and can be
used directly as ligand precursors in catalysis by releasing the
free phosphine in situ after treatment with a base.”

Phosphonium salt 18 was accessed in 83% yield from the
phosphine borane adduct 2u by treating it with an alkyl halide
in the presence of 1-octene.”” The product phosphonium salt
could then be used in the nickel-catalysed dearylation reaction
again, allowing to quickly introduce multiple alkyl groups in
a phosphine in a programmed fashion. As an additional way to
modify the products, the alkyl group in the phosphine borane
adduct 2c was deprotonated in alpha-position to the phos-
phorus, and subsequent oxidative dimerisation yielded the
bidentate product 19, providing a means to extend the ligand
diversification beyond the scope of the dearylation reaction.”

Conclusions

In conclusion, we demonstrated a general strategy for the modi-
fication of phosphine ligands. The reaction enables the substi-
tution of aryl groups in phosphines for alkyl groups in a protocol
relying on the straightforward alkylation of a phosphine and
a subsequent nickel-catalysed dearylation reaction. Besides the
broad scope of the dearylation method, we demonstrate that the
overall process can also be directly conducted as a one-pot
protocol. Together with the development of a related strategy for
the modification of bidentate ligands and versatile product deri-
vatisation methods, this methodology provides a rapid entry into
alkylphosphine ligand space. We expect that this strategy will
streamline ligand optimisation campaigns and enable the iden-
tification of new powerful ligands for use in catalysis.
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