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Ab initio quantum chemistry is an independent source of information supplying an ever widening group of

experimental chemists. However, bridging the gap between these ab initio data and chemical insight

remains a challenge. In particular, there is a need for a bond order index that characterizes novel

bonding patterns in a reliable manner, while recovering the familiar effects occurring in well-known

bonds. In this article, through a large body of calculations, we show how the delocalization index derived

from Quantum Chemical Topology (QCT) serves as such a bond order. This index is defined in

a parameter-free, intuitive and consistent manner, and with little qualitative dependency on the level of

theory used. The delocalization index is also able to detect the subtler bonding effects that underpin

most practical organic and inorganic chemistry. We explore and connect the properties of this index and

open the door for its extensive usage in the understanding and discovery of novel chemistry.
Introduction

Central to chemistry is the development of concepts capable of
capturing the complexities of the behaviour of matter with as far
reaching predictive power as possible. Among these concepts,
the Lewis pair1 shines brighter than any other, even a hundred
years aer its introduction. Indeed, chemical bonds are inti-
mately linked to electron sharing between atoms. This pair idea
soon spawned a number of quantitative reications, as well as
answers to how many pairs, or to how evenly these pairs are
shared between atoms. Bond order, for instance, is one of these
basic quantitative measures that has proven crucial to the
taxonomic success of practical organic and inorganic chemistry.

As with many pre-quantum mechanics chemical concepts,
the Lewis pair does not t directly into the abstract algebraic
structure of the quantum mechanical edice. Wavefunctions,
dwelling in a Hilbert functional space, are entities devoid of
atoms and bonds. Hence, reconciling the Lewis picture with the
quantum mechanical world has been one of the classical
conundrums of theoretical chemistry, leading to several, diverse
solutions. Very succinctly, different formal landscapes end up
reifying chemical concepts through different plausibility argu-
ments. First, in the formalism of näıve molecular orbital theory,
B), 131 Princess Street, Manchester M1
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bond order is obtained by simple electron counting aer iden-
tifying bonding and antibonding occupied orbitals. Secondly, if
orbitals are constructed from nucleus-centered localized prim-
itive functions, then the electron population of a molecule can
be partitioned into atomic and interatomic (overlap) contribu-
tions, the latter being associated to electron sharing and to
bond orders.

Difficulties arise in the rst formalism in the step of iden-
tifying bonding versus antibonding, or whenever a single elec-
tron conguration is not a good approximation to the electronic
structure. A plethora of more or less arbitrarily founded modi-
cations have been proposed over the years to cope with these
situations. Similarly, in second formalism, a branch of Mullik-
en's population analysis,2 is heavily dependent on the nature of
the basis functions. The latter cease to have any physical
meaning with a delocalized basis set, such as the plane waves
used in many modern periodic calculations. Within this
framework, several well-known indices, from Coulson's charge-
bond order matrix in Hückel theory to Wiberg's index, have
recently been reviewed by Mayer.3,4

To emphasize today's blurry state of affairs, the IUPAC's Gold
Book introduces bond order as “The electron population in the
region between atoms A and B of a molecular entity at the expense
of electron density in the immediate vicinity of the individual
atomic centers”.5 This denition leans more towards population
analyses than towards counting shared electrons.

The issues surrounding the uniqueness in denitions have
contributed to the slow decay of quantitative measures of bond
orders, and that of several other fuzzy chemical indicators in the
modern literature. Oen, these descriptors are le as qualitative
devices that are not taken too seriously. In this inexorable
Chem. Sci., 2018, 9, 5517–5529 | 5517
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ageing process, much predictive power may have fallen by the
wayside. Nonetheless, we feel that the situation can be reversed
if physically andmathematically well-founded characterizations
of these concepts are found and if the chemical community
agrees with them. Focusing on bond order, ideal indices should
simultaneously gauge electron sharing and electron population
partitioning, all of which should appear in the wake of
a sensible atomic decomposition.

A formalism meeting these requirements exists, and is
based on using measurable quantities (Dirac observables in
the language of quantum mechanics). Its conclusions are
guaranteed to be independent of modelling particularities (i.e.
what orbitals are used, what level of theory, and if the basis
functions are localized or delocalized). We apply the proba-
bility of nding electrons at a point in space, using the elec-
tron density or one-particle density, to dene atoms. The
electron density leads to the fertile terrain of Quantum
Chemical Topology (QCT) as pioneered by the group of
Bader.6,7 Fig. 1 shows the result of such a real-space and
parameter-free partitioning. Similarly, we employ the proba-
bility of nding pairs of electrons at two points in space, called
the electron pair density or two-particle density,8 in order to
introduce electron sharing and bond order, which is referred9

to as the Delocalization Index (DI).
DIs have been used for some years in the specialized liter-

ature,10–16 including recent generalizations such as localiza-
tion–delocalization matrices17,18 or n-center DIs,19,20 but they
have not yet permeated many other chemical disciplines. In
this paper we intend to show, through an extensive analysis of
nearly 200 diverse chemical compounds, how DIs can actually
account for the bond order where its predecessors experienced
difficulties providing powerful insight into the nature of
electron sharing.

This paper is structured as follows. First we briey develop
the theoretical background behind the delocalization index.
Subsequently, we point out the general trends of the delocal-
ization indices, and show how not only to recover bond order
but also especially how to understand electron sharing properly.
Fig. 1 Quantum atoms appearing in the N8 molecule. The values of
the delocalization indices, one for each bond, and calculated at the
HF/6-311++G(2d,2p) level of theory, are marked in white.

5518 | Chem. Sci., 2018, 9, 5517–5529
Finally, we apply the results to three examples of uncommon
bonding patterns: the molecule N8, an example of planar tet-
racoordinated carbon, and an iron complex whose structure has
been discussed in the literature.
Theory

Quantum chemical topology is a branch of theoretical chem-
istry that employs the mathematical language of dynamical
systems (e.g. critical point, basin, attractor, separatrix) to
partition a quantum mechanical density function. When this
function is the electron density then one denes atoms within
a system. This is what the Quantum Theory of Atoms in Mole-
cules (QTAIM) achieves, as part of the QCT approach. Here, the
quantum mechanical density function is the electron density,
an important function legitimized by the Hohenberg and Kohn
theorems. Thus, one denes an atomic basin U, also called
quantum atom for our purpose, as a subspace of R3 bounded by
a number of interatomic surfaces S, each surface being dened
by the zero-ux condition or

Vr(r)$n(r) ¼ 0 c r ˛ S (1)

The justication for this partitioning is quantum mechanical
in nature, and it may be shown that all molecular properties can
be rigorously partitioned as a sum of atomic (or atomic plus
interatomic) contributions dened through basins (or basins and
pairs of basins). This formalism allows recovering the vivid and
chemically appealing picture of atomswithin amolecule, without
abandoning the theoretical stability of Dirac observables and the
well-developed methods of computational quantum chemistry.

Once the quantum atoms {UA, UB, .} constituting a molec-
ular or condensed system have been dened, their electronic
properties can be rigorously studied through the formalism of
Reduced Density Matrices (RDM). Following McWeeny's conven-
tion,21 the spinless RDMs of rst and second order are respectively
dened as

r1

�
r1; r

0
1

�
¼ N

ð
J
�
x1; x2;.; xN

�
J*

�
x

0
1; x2;.; xN

�
ds1dx2.dxN

(2)

r2

�
r1; r2; r

0
1; r

0
2

�
¼N

�
N� 1

�ð
J
�
x1; x2;.; xN

�
J*

�
x

0
1; x

0
2;.; xN

�

� ds1ds2dx3.dxN

(3)

where N is the number of electrons in the system,J denotes the
normalized electronic wavefunction, while the xi vectors include
the spatial (ri) and spin (si) coordinates of the ith electron, and
the primes keep track of J*. As the typical non-relativistic,
Born–Oppenheimer Hamiltonian only contains two-body
interactions, the 1-RDM and the diagonal part of the 2-RDM
suffice to compute any wavefunction-related property. Note that
no requirement has been imposed on the structure of the
wavefunction, so any level of theory can be treated on an equal
footing. For the ansatz of density functional theory a suitable
practical solution has been proposed recently.22
This journal is © The Royal Society of Chemistry 2018
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From the 2-RDM it is possible to extract its diagonal part in
order to dene the second order reduced density (2-RD) or pair
density r2(r1,r2), which is the probability density of nding
a pair of electrons at the volume elements dr1 and dr2. This
magnitude has a natural partition in three terms: Coulomb
r1(r1)r1(r2), exchange r1(r1;r2)r1(r2;r1) and correlation, which is
the difference between the 2-RD and the HF 2-RD (the latter
lacks correlation). In general, the last two terms are grouped in
the exchange–correlation density rxc(r1,r2), which is formally
equal to r1(r1)r1(r2)� r2(r1,r2). Note that rxc(r1,r2) is sometimes23

dened with the opposite sign.
If the exchange–correlation density is averaged over a pair of

basins, one obtains a measure of the number of electron pairs
that are being shared between quantum atoms UA and UB. We
then arrive at a denition23 of the delocalization index:

dðA;BÞ ¼ 2

ð
UA

ð
UB

rxcðr1; r2Þdr1dr2 (4)

In the same vein, a localization index l can be dened by
integration in the same basin

lðAÞ ¼
ð
UA

ð
UA

rxcðr1; r2Þdr1dr2 (5)

As the quantum atoms are non-overlapping and ll all of R3

space, it is evident that the integration of the exchange–corre-
lation density over the whole real space yields:ð

ℝ3

ð
ℝ3

rxcðr1; r2Þdr1dr2 ¼ N ¼
X
A

lðAÞ þ
X
A

X
BsA

dðA;BÞ (6)

We can ask how to obtain the number of electron pairs Np

shared between two quantum atoms, UA and UB. Depending on
whether we prefer to think24 of ordered or unordered pairs,
r2(r1,r2) will integrate over all space either to Np ¼ N(N� 1) or to
Np ¼ N(N � 1)/2 depending on the normalization chosen. We
adopt the rst option here. A system with two quantum atoms
contains (NA + NB) electrons in total. Hence the total number of
(ordered) pairs is given by Np ¼ (NA + NB)(NA + NB � 1). Imagine
that the electrons contained in UA are not shared, i.e. they are
localized in UA. Imagine also that the same applies to UB.
Counting the number of pairs formed by the electrons ofUA and
UB then yields NANB. Similarly, the number of pairs within UA

and UB (called intra-pairs) will be NA(NA � 1) and NB(NB � 1),
respectively. However, when some electrons are shared, i.e.
whenever electrons are allowed to delocalize between basins UA

and UB, then the number of pairs is obtained by six-
dimensional integration of r2(r1,r2), that is, simultaneously
over two electrons. If both electrons are averaged over the same
region then we obtain the number of intra-basin pairs, Np

AA and
Np

BB. If one electron is averaged in UA and the other in UB then
we obtain the number of inter-basin pairs, Np

AB. Obviously, N
p

¼ Np
AA + Np

BB + 2Np
AB. Now it is useful to dene the discrep-

ancy, denoted dAA, between the number of pairs found if the
average number of electrons in A were completely localized in A,
i.e. NA(NA � 1), and the number of pairs that one actually sees in
This journal is © The Royal Society of Chemistry 2018
A,Np
AA. So dAA¼NA(NA� 1)�Np

AA. Similarly one can dene dBB
¼ NB(NB � 1) � Np

BB, and dAB ¼ NANB � Np
AB. Using the last

three equations and the earlier equation, Np ¼ Np
AA + Np

BB +
2Np

AB, a straightforward derivation shows that dAA + dBB + 2dAB
¼ 0, which means that the total difference vanishes over the
whole system. Finally, one can show that the discrepancy dAA is
directly to l(A), and dAB to d(A, B). Indeed, from eqn (5) and
rxc(r1,r2) ¼ r1(r1)r1(r2) � r2(r1,r2) it follows that l(A) is NANA �
Np

AA, which is equal to NA(NA � 1) + NA � Np
AA ¼ NA + dAA.

Secondly and similarly, from eqn (4) and rxc(r1,r2) ¼ r1(r1)r1(r2)
� r2(r1,r2) it follows that d(A, B) ¼ NANB � Np

AB ¼ dAB. All this
provides the sought link, because if all the electrons in A are
localized then dAA ¼ 0 and l(A) ¼ NA. Similarly, the delocaliza-
tion index measures directly the number of inter-basin pairs.

Counting the number of delocalized pairs through delocal-
ization indices provides a mean to partition the electron pairs of
an atom into two subsets: (i) those pairs that are unshared,
localized in the atom, and (ii) those that are shared or delo-
calized between that atom and other atoms. These subsets are
of paramount importance, since they link the two prevailing
images of what bond order is and how it can be properly ob-
tained. Indeed, on the one hand there is the Lewis picture of
electron sharing, while on the other hand, there is the picture of
electron population partitioning contained in the IUPAC de-
nition and in the standard population analyses going from
Mulliken to Wiberg and Mayer.

Being constructed from quantum mechanical observables
(i.e. the one- and two-particle densities), the delocalization
index possesses a large number of properties, and is related to
many modern chemical bonding interpretations. One of these
interpretations is the Interacting Quantum Atoms (IQA)
formalism,25 which has been extensively used to understand
molecular interactions. We show here how the delocalization
index is a rst-order approximation to the exchange energy Vx in
Hartree–Fock theory. Let us write the exchange–correlation
energy as

VxðA;BÞ ¼ �2
ð
UA

dr1

ð
UB

dr2
X
i

X
j

Sijðr1ÞSijðr2Þ
jRþ r2 � r1j (7)

where R is a vector joining nucleus A and B, while r1 and r2 are
the electronic coordinates in the system of reference of the
respective atoms. The denominator is thus the distance
between two innitesimal portions of electron density, one in
the atomic volume UA and the other in UB. Finally, Sij is
a convenient overlap function dened as follows, in terms of
molecular orbitals ji and jj

Sij(r) ¼ ji(r)jj(r) (8)

Note that the numerator in eqn (7) is the exchange–correla-
tion density in Hartree–Fock theory. The 6D integral in this
expression can be simplied by a binomial Taylor expansion of
|R + r2 � r1|

�1 and subsequent application of the spherical
harmonics addition theorem.26 This allows the factorization of
the electronic (r1, r2) and the geometric coordinates (R) as
follows:
Chem. Sci., 2018, 9, 5517–5529 | 5519
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VxðA; BÞ ¼ �2
XN
l1¼0

XN
l2¼0

Xl1
m1¼�l1

Xl2
m2¼�l2

Tl1m1 l2m2
ðRÞ

�
X
ij

Q
ij
l1m1

ðUAÞQij
l2m2

ðUBÞ (9)

where Tl1m1l2m2
is an interaction tensor and Qlm

ij(U) is an atomic
multipole moment, both formulated within the spherical tensor
formalism (rather than the Cartesian one). The multipole
moment arises from the separation of the 6D integral in eqn (7)
into two 3D integrals of the form

Q
ij
lmðUÞ ¼

ð
U

drSijðrÞRlmðrÞ (10)

If we truncate the expansion of Vx(A, B) given in eqn (9) aer
the rst term then we obtain

VxðA; BÞx� 2

R

X
i

X
j

Q
ij
00ðUAÞQij

00ðUBÞ (11)

where we have set l ¼ m ¼ 0, and T0000(r) ¼ 1/R where R is the
internuclear distance. Independently from the derivation above
we also know27 that

dðA;BÞ ¼ 4
X
i

X
j

SijðUAÞSijðUBÞ (12)

where

SijðUÞ ¼
ð
U

drSijðrÞR00ðrÞ ¼ Q
ij
00ðUÞ (13)

because R00(r) ¼ 1. Hence, substituting eqn (13) into eqn (12),
and the resulting equation into eqn (11) leads to eqn (14),

VxðA;BÞx� dðA;BÞ
2R

(14)

This equation enables one to interpret the delocalization
index as the equivalent of a charge–charge interaction albeit
then not for the Coulomb energy but for the exchange energy. A
generalization of these arguments to general correlated wave-
functions also exists.28

There are other interesting statements to make about the
delocalization index: it reduces to the Wiberg–Mayer bond
order when the quantum atoms are imagined to collapse over
the nuclear positions, such that the region associated with
each atom is effectively point-like and the domain overlap
integrals Sij(U) in eqn (13) can be reduced to the product of
the coefficients of the U-centered primitives of orbitals ji and
jj. Also, the delocalization index can be shown to directly
measure the uctuation (covariance) of the electron pop-
ulation of two atoms. The latter result is most remarkable and
its consequence should appear in chemical textbooks:
bonded atoms display statistically correlated electron counts.
When the population of one atom increases, that of the other
atom decreases, and vice versa. In fact, this insight may be
used to introduce the concept of multi-center bonding in
a general way, as a many-atom statistical covariance among
electron populations.
5520 | Chem. Sci., 2018, 9, 5517–5529
Finally, as will be made evident in further sections, the
delocalization indices are sensitive to electron correlation.
When the orbital model fails (i.e. when more than a Slater
determinant is necessary to obtain even a qualitative descrip-
tion of a system), the number of effectively shared electron pairs
may become considerably smaller than those obtained from
näıve counting techniques. This explains why large formal bond
orders, like those proposed in some transition metal diatomics,
fail29 to correlate to experimental bond strengths.

We remark that all the information needed to obtain
a delocalization index is experimentally observable in principle,
and that no further theoretical model is needed to obtain it.
Since the exchange–correlation density is the expectation value
of a Hermitian quantum mechanical operator (i.e. it is a Dirac
observable), all that is needed is an appropriate experimental
setup able to measure electron densities and pair densities.
Actually, quantum atoms are obtained today routinely through
the electron densities provided by high precision X-ray diffrac-
tion data. Unfortunately, there is still no reliable way to measure
pair densities, although efforts in that direction are being made
in the eld of quantum crystallography.30
Results and discussion
Methodology

The basic aim of this work is to show that revitalizing bond orders
in chemistry is worth the effort. To that end, we have performed
electronic structure calculations on almost 200 molecules, both
organic and inorganic. Our scope covers the majority of the most
typical functional groups in organic chemistry: saturated and
unsaturated (including several aromatic) hydrocarbons, halo-
alkanes, alcohols, aldehydes, ketones, acids (and derivatives),
amines, sulphides, several heterocyclic derivatives (of pyrrole and
thiophene, as well as the nitrogenated bases), cyanides and iso-
cyanides, ethers, diazo-compounds and nitro-derivatives, and
additionally the most common amino acids. We also included 28
simple inorganic molecules. This study is, to our knowledge, the
most complete to date.

The calculations were carried out with the GAUSSIAN09 (ref.
31) package using the 6-311++G(2d,2p) basis set, in conjunction
with the Hartree–Fock (HF) and CCSD levels of theory. Unless
otherwise stated, default values correspond to HF data. Once
the wave function was obtained, quantum atoms and QTAIM
descriptors, including the delocalization index between each
pair of atoms, were calculated using the AIMAll code.32

As a note of caution, AIMAll employs Müller's approxima-
tion33 to calculate the two-particle density matrix for correlated
wavefunctions. To properly account for this source of error, we
performed a calibration through the PROMOLDEN code,34

which makes use of the real two-particle density matrix. This
benchmark is described in the next section.

A detailed account of the results may be found in the ESI.†
Müller's approximation

The AIMAll code makes use of Müller's approximation: instead
of employing the full 2-RDM, this magnitude is approximated in
This journal is © The Royal Society of Chemistry 2018
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terms of the 1-RDM in an expression that is reminiscent of 2-
RDM HF formula. This estimation has a number of problems,
mainly that r2(x,x) s 0. This means that two same-spin elec-
trons would be able to occupy the same point of space, which
violates the Pauli principle. Although there is theoretical work
comparing Müller's approximation with the full 2-RDM,35–39

(and how to approximate higher-order density matrices from
lower-order ones) here we perform a short benchmark on 21
small molecules, using CCSD/6-311++G(2d,2p) and the
computer program PROMOLDEN, which avoids approxima-
tions. The 2-RDMs were calculated with pySCF,40 employing the
optimized geometries from GAUSSIAN. The basis set 6-
311++G(2d,2p) was obtained from EMSL Basis Set Exchange,41

for PROMOLDEN studies only, while the internally held 6-
311++G(2d,2p) was used in the GAUSSIAN calculations. A
comparison of the HF, CCSD/Müller and CCSD values is
provided in Table 1.

As stated in Müller's original paper,33 the complications of
his approximation can be compensated by its mean accuracy for
large numbers of electrons. It is expected that this approach will
become asymptotically better as the system size increases. In
this sense, the results shown in Table 1 can be interpreted as an
approximate upper bound in the error and justify a qualitative
use of the approximation in realistically-sized systems where
the full CCSD approach is intractable.

As expected, Müller's approximation works best when the
inclusion of correlation has a minor inuence on the system. As
a result, most of the bonds show relative errors below 5%, which
is pleasing given the enormous computational savings of using
this approximation. However, when correlation is important,
the errors can be large. This is made evident in N2 and HCN,
where the inadequate description of the triple bond causes
a relative error greater than 10%; this is a consequence of the
lack of static correlation. In addition, our analysis of non-
bonding interactions, which cannot be described in the
absence of dynamic correlation, shows errors in the range 20–
70% and always negative. An exception is the hydrogen bonds
which, as shown in Table 1, are overestimated by the Müller
approximation, and generally by a signicant amount.

Another, more important exception is introduced by the
molecule of F2. This system is well known to pose difficulties for
conventional levels of theory, being unbounded at the HF level42

and needing high levels of theory. This issue has traditionally
being related to the lone pair weakening effect,43 and more
recently to the concept of the so-called charge shi bond, in
which it is the covalent-ionic valence bond resonance that
stabilizes the system.44 The important role of dynamic correla-
tion in this system makes the Müller approximation behave
particularly badly in this system. Similar arguments can explain
the exceptionally large error in the HF dimer.

In any case, these results show that Müller delocalization
indices can offer a chemically rich and qualitative vision of
bonding. In the rst place, results for single bonds show good
agreement with the exact case, and there is enough evidence to
expect that higher-order bonds will be overestimated by
Müller's approximation. In addition, as non-bonding interac-
tions (with the exception of hydrogen bonds) are always
This journal is © The Royal Society of Chemistry 2018
underestimated by Müller, it is possible to employ the approx-
imate values as a lower bound.

The computation of exact values for correlated methods is
a very expensive task, both in terms of CPU time and memory,
which is prohibitive for even small molecules. Our benchmark
validates the use of Müller's approximation in a qualitative
manner, and provides insight on when this approach might
yield signicant errors.
The inuence of correlation

Following Table 1, we analyze the inuence of the level of theory
in the delocalization indices. Previous work has compared HF
calculations with MP2, CISD and DFT;11,12 here, we add the
comparison with CCSD/Müller, and extend the analysis to non-
covalent interactions.

It is found that the HF results are closer to the Lewis picture,
recovering well-known bond orders. For example, HF/6-
311++G(2d,2p) yields d(N, N) ¼ 3.043 for nitrogen or d(O, O) ¼
2.272 for oxygen. However, the inclusion of Coulomb correla-
tion tends to decrease the value of the delocalization index, and
at the CCSD/Müller level we nd that, respectively, d(N, N) ¼
2.310 and d(O, O) ¼ 1.615 for the same molecules. Thus, the
inclusion of Coulomb correlation induces a decrease in electron
sharing. Aer all, including Coulomb correlation (i.e. the
correlation among opposite spin electrons) means that, on
average, electrons repel more strongly than if only same spin
correlation is included (i.e. the Fermi correlation, which is
present in the Hartree–Fock model).

On the other hand, when turning to weak interactions, the
opposite effect is observed. For example, for Ar2 we obtain DIs of
0.002 and 0.015 for HF and CCSD/Müller, respectively, corre-
sponding to an increase of almost one order of magnitude. This
is also a Coulomb effect, because the instantaneous uctua-
tions that give rise to, for example, dispersion forces cannot be
accounted by mean eld approximations,45 such as Hartree–
Fock theory (or DFT functionals with local approximations). We
also note that, as explained above, the CCSD/Müller values for
non-bonded interactions are a lower bound of the exact CCSD
values; the interactions mentioned here are thus stronger in the
exact case.

In similar vein, ionic compounds show virtually no change
when Coulomb correlation is included. The two model ionic
molecules, LiH and NaCl, show d(Li, H) ¼ 0.193 and d(Na, Cl) ¼
0.216 for HF, and d(Li, H) ¼ 0.199 and d(Na, Cl) ¼ 0.222 for
CCSD/Müller; in both cases relative errors are below 3%.
Although the change in DI upon inclusion of electron correla-
tion is small in these systems, it is rather clear that the DI
increases, like in the weak-interaction limit.

In any case, delocalization indices obtained at the CCSD/
Müller level are highly correlated with the HF values: Pearson's
correlation coefficient for the 1666 bonds analyzed is 0.938. In
fact, the correlation coefficients are all above 0.9 for each
functional group.

In summary, as our calculated wave function approaches the
exact wave function, so does our view of the molecule. The
deviations from Lewis's scheme are not a theoretical
Chem. Sci., 2018, 9, 5517–5529 | 5521
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Table 1 Comparison of the delocalization indices obtained at the HF, CCSD/Müller and CCSD levels of theory. All the structures are reported in
their global minimum at the respective level of theory

Molecule Bond HF CCSD/Müller CCSD
Müller's
relative error

H2 H–H 1.000 0.844 0.850 �0.6%
LiH Li–H 0.192 0.199 0.203 �1.9%
O2 O–O 2.272 1.615 1.548 4.4%
N2 N–N 3.042 2.310 2.073 11.4%
F2 F–F 1.284 1.243 0.927 34.1%
Ne2 Ne–Ne 0.005 0.009 0.009 �7.1%
Ar2 Ar–Ar 0.002 0.015 0.016 �7.6%
CO C–O 1.573 1.452 1.446 0.4%
HCN H–C 0.928 0.816 0.810 0.8%

C–N 2.340 1.977 1.795 10.1%
HNC H–C 0.668 0.648 0.645 0.5%

C–N 1.766 1.586 1.536 3.2%
CH4 C–H 0.982 0.846 0.803 5.4%
H2O O–H 0.616 0.614 0.617 �0.4%
NH3 N–H 0.894 0.792 0.772 2.6%
BH3 B–H 0.508 0.522 0.520 0.4%
H2O2 O–H 1.298 0.972 0.960 1.2%

O–O 0.583 0.584 0.572 2.0%
H2CO C–O 1.379 1.271 1.203 5.6%

C–H 0.898 0.778 0.753 3.2%
HCOOH H–C 0.860 0.752 0.728 3.2%

C]O 1.137 1.125 1.080 4.1%
C–O 0.733 0.748 0.747 0.2%
O–H 0.544 0.551 0.544 1.3%

CH3OH O–H 0.618 0.610 0.602 1.3%
C–O 0.824 0.785 0.753 4.2%
C–H 0.933 0.807 0.762 5.8%

CH3CH2OH O–H 0.618 0.610 0.602 1.3%
C–O 0.800 0.762 0.728 4.7%
C–C 0.954 0.828 0.777 6.6%
HOCH–H 0.920 0.795 0.747 6.4%
HOCH2CH2–H 0.963 0.826 0.779 6.0%

HF/HF H–F (donor) 0.339 0.339 0.379 �10.5%
H/F 0.037 0.037 0.047 �22.2%
H–F (acceptor) 0.381 0.381 0.426 �10.6%

H2O/H2O H–O (donor) 0.574 0.574 0.576 �0.4%
H/O 0.061 0.061 0.016 273%
H–O (acceptor) 0.597 0.597 0.596 0.1%
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miscarriage, nor a failure to recover the bond order; quite the
contrary: they offer a deeper understanding into the physical
nature of bonding, be it a realization that electrons cannot be
shared in closed pairs, or an increased awareness of the
importance of weak interactions. The delocalization index thus
provides a tool that extends the classical idea of bond order
towards general domains.
The stability of the classical bonding patterns

Aer building a database of almost 200 compounds (accounting
for 14 756 entries of delocalization indices, only for Hartree–
Fock calculations), we can apply different analysis techniques to
scan for chemical insight in the delocalization indices. This
analysis focuses on the most abundant atom pairs in the study:
carbon–carbon (2364 data points), carbon–oxygen (632 data
points), carbon–nitrogen (724 data points) and carbon–
hydrogen interactions (5497 data points), and these are dis-
played in Fig. 2 and 3.
5522 | Chem. Sci., 2018, 9, 5517–5529
In Fig. 2, we show the spread of the delocalization indices for
several classes of bonds. There is a particular trend that stands
out: the presence of several plateaus. For example, in the
carbon–carbon plot (upper le panel), there is a wide plateau
around 1.0 that contains, among others, the C–C bonds of the
hydrocarbons, and many other bonds that are recognizable as
single. There are two other plateaus: one plateau around 1.4
contains many aromatic bonds (including benzene, thiophene
and pyrrole), and a small plateau at 1.8, which contains double
bonds. There are also some points in the extreme that corre-
spond to triple bonds, but these are underrepresented in our
study (not only because of their scarcity, but also due to the well-
known formation of a non-nuclear maximum in triple bonds,46

which tends to hinder the analysis).
The upper right plot of Fig. 2 covers carbon–oxygen inter-

actions, where we again recognize several plateaus. The wide
plateau between 0.8 and 0.9 comprises the typical single C–O
bond that can be found in alcohols and carboxylic acids, while
This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Plots showing the distribution of HF delocalization indices for carbon–carbon (upper left), carbon–oxygen (upper right), carbon–nitrogen
(lower left) and carbon–hydrogen (lower right) bonds. The presence of plateaus demonstrates the presence of remarkably stable patterns,
identifiable with the classical ‘single’, ‘double’ and ‘intermediate’ pictures. In this way, Lewis's picture can be recovered from the delocalization
indices.
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the other two plateaus in the area 1.2–1.4 correspond to double
C]O bonds. These two plateaus refer to aldehydes (�1.2) and
ketones (�1.4) whose C]O bond has been, respectively,
depleted or enriched in electron density. Finally, at the top of
the plot lies the triple bond occurring in carbon monoxide, with
a value considerably smaller than 3, due to the considerable
polarization of this bond. The reason that the delocalization
indices for carbon–oxygen bonds are slightly smaller than those
for carbon–carbon bonds is again polarization, and will be
discussed fully vide infra. In the lower le plot of Fig. 2, we
encounter the clear plateau of the single C–N bond, such as in
amines, and also the several intermediate points, such as the
C–N in amides and resonant heterocycles, and less common
double and triple bonds. Finally, the lower right plot shows
a unique plateau, around 0.8–1.0, as expected from carbon–
hydrogen bonds. The only outlier, at 0.5, corresponds to
This journal is © The Royal Society of Chemistry 2018
a through-space bond between two atoms in the amino acid
lysine that are not directly bonded according to classical Lewis
theory (but show a bond critical point connecting them, at HF
level).

These results lead to the conclusion that there are several
very stable bonding patterns, which correlate with the classical
vision of single, double and triple bonds, as well as aromatic
intermediates, while there are also intermediate cases that give
rise to a quasi-continuous distribution. In this way, the delo-
calization index conrms and extends Lewis's vision. Addi-
tionally, the sharp discontinuity between non-bonded (separate
cluster of DI values appearing at the bottom le of each panel)
and bonded interactions revitalizes the picture of the chemical
bond.

In Fig. 3 we perform a more sophisticated statistical analysis,
through k-means clustering, a common technique to recognize
Chem. Sci., 2018, 9, 5517–5529 | 5523
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Fig. 3 k-Means clustering of the internuclear distance d versus d plot for carbon–carbon (left) and carbon–oxygen (right) bonds (interactions
smaller than 0.5 a.u. have been removed). The vast majority of examples are concentrated in a band between 1.0 and 2.0 Å, and correspond to the
single, double and triple bonds for carbon–carbon interactions, and to the single and double bonds for carbon–oxygen interactions.
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clustering of data points in a scatter plot. This analysis has been
performed on the (d, d) (where d is the internuclear distance) pairs
computed from optimized HF wavefunctions. The DI values cor-
responding to non-bonded pairs, as well as some outliers arising
from the presence of non-nuclear critical points (most of the
triple bonds) have been removed. In both cases, the clusters can
be easily identied with the plateaus described above.
The subtler bonding effects

Since it condenses information about the full electronic struc-
ture of a system, the delocalization index is also sensitive to the
environment of a given bond and is able to reect certain
classical effects in practical chemistry. We may understand the
delocalization index to be under the inuence of two responses:
one from the atoms constituting the “bond”, and the other from
the surroundings.

In terms of the rst response, the DI is an indicator of
covalency: it measures the amount of electron pairs shared
between two atoms. Thus, apolar bonds will return larger DI
values than polar bonds because then no atom has a greater
electronegativity than another atom, and thus the electrons are
equally shared. On the other hand, in polar bonds, one of the
atoms tends to hoard the electrons, making equal sharing less
favourable. A clear example of this effect is that of N2 and HCN
where d(N, N) ¼ 3.043 and d(C, N) ¼ 2.340, at HF level. This
phenomenon can also be read in terms of the partition of
electrons into localized and delocalized sets. For instance, on
changing from a two-center, two-electron non-polar link to
a polar one, the electrons that were originally delocalized
between the two centers tend to localize toward the electro-
negative atom. From eqn (6) it follows that the increase in the
number of localized electrons must necessarily be accompanied
by a decrease in the number of delocalized electrons. The end
5524 | Chem. Sci., 2018, 9, 5517–5529
results is that polarity decreases the DI, as we observed for LiH
and NaCl vide supra.

In terms of the second response, the DI recovers all textbook
bonding effects. Here we will focus on two effects that are
ubiquitous throughout chemistry: the inductive effect and the
resonance effect. We discuss these two effects in turn, starting
with the inductive effect.

The inductive effect is the action of a charged group, or one
with a signicant electronegativity difference compared to the
surrounding atoms in a given bonded interaction. An electro-
negative atom or group positioned near a bond under study will
withdraw electron density from the pair of atoms of interest. As
the withdrawal of electron density will probably occur through
mobile (i.e. participating in delocalization) electrons, we expect
that the number of electron pairs delocalized between both
atoms will decrease. This effect manifests itself in a homolo-
gous series, where the DI between two atoms in a given bond
converges to a constant value with an increasing number of
carbons separating it from the electronegative group. Because
carbon is more electronegative than hydrogen, it polarizes the
electron density towards itself. Of course, this effect is highly
local, and almost vanishes with more than two intermediate
carbon atoms. A straightforward example of the inductive effect
is the comparison of the C–C bond in ethanol, d(C, C) ¼ 0.828,
and that in ethanamine, d(C, C) ¼ 0.960, which has the less
electronegative substituent. Thus, the presence of an electroneg-
ative element near a bond decreases its number of delocalized
electron pairs and thus the DI of this bond.

Secondly, the resonance effect appears in the form of elec-
tron delocalization. In conjugated systems, the delocalization
index takes account of this effect, for example, by reducing the
double bond character in double bonds, while enhancing the
double bond character in single bonds. In this way, the stan-
dard arrow-pushing rules used in the explanation of
This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Resonance canonicals for benzaldehyde, phenol and phenoxide. As stated in the text, d(C, O) is 0.798 for benzaldehyde, 0.829 for phenol
and 1.070 in phenoxide, as these structures would suggest.
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mesomerism are reproduced. This effect is shown, for example,
in Fig. 4: in phenol, d(C, O) ¼ 0.829, which is higher compared
to propanol's value of d(C, O) ¼ 0.798, while in benzaldehyde
d(C, O) ¼ 1.297, compared to propanal's d(C, O) ¼ 1.312. Simi-
larly, d(C, O) ¼ 1.070 for phenoxide, reecting that the resonant
forms with a formal positive charge on the oxygen are less
favourable.
Delocalization indices in uncommon bonding patterns

In the previous section we have shown how delocalization
indices can contain a signicant amount of chemical infor-
mation. However, our study has been limited to very well-
known molecules. Here, we take a step forward and apply
the knowledge, acquired in the previous part, to some
uncommon bonding patterns. We hope that this will pave the
way for a more widespread application of delocalization
indices and help towards the understanding of molecular
interactions.
The N8 molecule

The existence of a molecule of N8 was rst analyzed in 2000 by
Gordon's group.47 In 2012, this line of research was revitalized
aer Hirshberg et al. described calculations predicting the
remarkable stability of a molecular crystal consisting of N8
Fig. 5 Lewis structure of the N8 molecule. On the left, the structure depi
bond length analysis. On the right, the structure suggested by DI analys

This journal is © The Royal Society of Chemistry 2018
molecules.48 Additionally, Wu et al. described the synthesis of
an N8 anion stabilized on multi-wall carbon nanotubes.49

Here, we briey compare the bond orders proposed by
Hirshberg et al. (which are derived from NBO calculations) with
the information provided by the delocalization indices. The
suggested Lewis structures are depicted in Fig. 5.

Fig. 6 displays the optimized structures of the EEE and EZE
isomers, calculated at the HF (le) and CCSD (right) levels of
theory, together with the computed delocalization indices. Most
of the DI results seem to agree with the picture proposed by
Hirshberg et al. The terminal pairs, N8–N7 and N4–N5, show
large DI values, close to 2.00 (in CCSD), which are reminiscent
of acetylene suggesting triple bonds. In addition, the central
bond N1–N2 has a clear double character, while the N6–N2 and
N3–N1 are clearly single.

However, the intermediate bonds N6–N7 and N3–N4 do not
comply with the picture of “strong ionic character” proposed by
Hirshberg et al. The delocalization index d(N, N) ¼ 1.17 corre-
sponds to a single bond that is enriched by some conjugation.
In fact, although ionicity and covalency are not necessarily
opposed concepts,50 the calculation of QTAIM charges disagrees
with the presence of charge transfer. Indeed, the largest charges
are of the order of 0.14e, and contrary to what was suggested by
Hirshberg et al., lie on terminal nitrogen atoms. These ndings
altogether seem to suggest a pentavalent nitrogen (depicted in
cted by Hirshberg et al. in their 2014 paper, obtained through NBO and
is.

Chem. Sci., 2018, 9, 5517–5529 | 5525
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Fig. 6 Optimized structures with delocalization indices displayed for the isomers EEE (top) and EZE (bottom) of the N8 molecule. The left
diagrams show the HF values, and the right diagrams the CCSD values.
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the right part of Fig. 5) that is reminiscent of the bonding
pattern in N2O.

A molecule with planar tetracoordinate carbon

The tetrahedral coordination of carbon is, since van't Hoff and
Le Bel, one of the milestones of modern organic chemistry.
However, since more than a decade ago, several compounds
with planar tetracoordinate carbon have been studied both
theoretically and experimentally. Here, we address one of these
compounds, a cyclopropane where both hydrogens, attached to
one of the carbon, have been substituted by lithium.51 The
optimized structures, together with the delocalization indices,
are displayed in Fig. 7. In the rst place, carbon–carbon bonds
are clearly single: the values of 0.98 and 1.11 lie in the rst
plateau of the upper le plot of Fig. 2. The increase of the
delocalization index for the C3–C1 and C3–C2 bonds, in
comparison with the C1–C2, is explained by the enormous
negative charge in C3 (�1.42e) induced by the two lithium
Fig. 7 Optimized structures with delocalization indices displayed for the
HF values, and the right to CCSD values.

5526 | Chem. Sci., 2018, 9, 5517–5529
atoms, who of course release their electronic charge due to their
electropositive character. On the other hand, both C–Li bonds
are basically ionic, with a DI value that is almost identical to
that in LiH. In similar vein, we observe that the CCSD values are
slightly larger than the HF results, a feature that is not observed
in covalent bonds (but seen in ionic molecules, e.g. LiH and
NaCl as discussed vide supra).

A discussed organometallic complex

To conclude, we extend our study to the realm of organometallic
chemistry. We will analyse the complex (h4-C4H6)Fe(CO)3, which
has been used as an example of the absence of QTAIM bond paths
in chemically intuitive bonds,52 since the terminal carbons in the
trimethylenemethane (TMM) ligand are not directly bonded in
the equilibrium geometry (although this paths appear upon
deformations such as in ab initio molecular dynamics53).

Metallic complexes are notoriously multicongurational,
and the inability of Müller's approximation to treat static
dilithium-substituted cyclopropane. The left structure corresponds to

This journal is © The Royal Society of Chemistry 2018
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Fig. 8 Equilibrium geometries for (h4-C4H6)Fe(CO)3 at the B3LYP/6-311++G(2d,2p) level of theory, displaying delocalization indices at the usual
levels of theory. The left structure corresponds to HF values, and the right to CCSD values. The Fe–Cb values are not displayed, and are
commented in text.
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correlation has led us to avoid these compounds during this
study. However, (h4-C4H6)Fe(CO)3 is an organometallic complex
fullling the 18-electron rule, and thus with a notable HOMO–
LUMO separation that suggests scarce multicongurational
character. In fact, a CASSCF(10,10) calculation shows that the
single determinant contribution has a coefficient of 0.91 (in
comparison with an approximate coefficient of 0.8 for an anal-
ogous calculation in methane). This seems to indicate that the
correlation is mostly dynamic, and can therefore be modelled
appropriately with CCSD.

The geometry was optimized at the B3LYP/6-311++G(2d,2p)
level of theory, and single point calculations were performed at
the HF and CCSD levels of theory. The delocalization indices,
computed with AIMAll, are displayed in Fig. 8. The results show
that, while there is a direct bond path between the iron atom
and the central carbon in TMM, the bonding interaction is
actually stronger with the rest of the carbons. Proof of this
assertion is the difference between d(Fe, Ca) ¼ 0.292 and d(Fe,
Cb) ¼ 0.469 at the HF level, the latter being about 60% larger.
CCSD results only emphasize this difference, with d(Fe, Ca) ¼
0.286 and d(Fe, Cb) ¼ 0.788.

Altogether, the three Fe–Cb and the Fe–Ca bond account for
a somewhat “total delocalization index” of 1.7, which seems
quite close to a h4 double bond, as would be expected from
simple electron-counting techniques. Although the value of the
DI in coupled cluster theory is signicantly larger (around 2.5),
this is a result of the increased p delocalization in the TMM.
Conclusions

To the best of our knowledge the current data set is the largest
ever surveyed in terms of a delocalization index. We have shown
how the delocalization index derived from quantum chemical
This journal is © The Royal Society of Chemistry 2018
topology can account for bond order. In particular, we have
analyzed a large dataset comprising almost 200 molecules
calculated at the HF and CCSD levels of theory, and shown how
it recovers many well-known bonding effects. We have also
shown, through a reduced benchmark, that the Müller
approximation can compute qualitatively trustworthy (within
a 5% error) delocalization indices at the CCSD level of theory.

Delocalization indices emerge from a rigorous topological
formulation of electron sharing in terms of reduced density
matrices, and recover the IUPAC formulation of bond order in
terms of population analysis. Moreover, it can be shown that
their distribution provides a natural clustering of values that is
reminiscent of the classical single, double and triple bonds
described in practical chemistry textbooks. In particular, the
values of this index evaluated at Hartree–Fock level are closest
to the formal bond orders appearing in Lewis diagrams.

We have found this index capable of recovering many widely
known chemical effects in a natural way. For example, the
presence of an electronegative element in the proximity of
a bond provokes a reduction in the surrounding delocalization
indices as a result of electron withdrawal. Equally, the presence
of delocalized electrons favours the equal sharing of electron
pairs, thus increasing the delocalization indices. In this way,
phenomena such as induction or resonance are suitably re-
ected in the variation of the delocalization index at every level
of theory.

In addition, the delocalization index can be shown to directly
measure the uctuation (covariance) of the electron population
shared between two atoms. As Coulomb correlation is added,
the delocalization index approaches its real world value, where
electrons are not shared in the form of complete pairs, because
they repel each other.
Chem. Sci., 2018, 9, 5517–5529 | 5527
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All these results have led us to conclude that the delocal-
ization index is a generalization of the bond order that can be
suitably applied to any quantum chemical calculation. We hope
that this work lays the foundation for a novel tool in the study of
chemical bonding.
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Electron-pairing analysis from localization and
delocalization indices in the framework of the atoms-in-
molecules theory, Theor. Chem. Acc., 2002, 108(4), 214–224.

16 C. F. Matta and J. Hernández-Trujillo, Bonding in polycyclic
aromatic hydrocarbons in terms of the electron density and
of electron delocalization, J. Phys. Chem. A, 2003, 107(38),
7496–7504.

17 C. F. Matta, Molecules as networks: A localization–
delocalization matrices approach, Comput. Theor. Chem.,
2018, 1124, 1–14.

18 C. F. Matta, Modeling biophysical and biological properties
from the characteristics of the molecular electron density,
electron localization and delocalization matrices, and the
electrostatic potential, J. Comput. Chem., 2014, 35(16),
1165–1198.
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