
# **RSC Advances**



PAPER

View Article Online

View Journal | View Issue



Cite this: RSC Adv., 2017, 7, 48394

# Tri- and hexanuclear heterometallic Ni( $\parallel$ ) – M( $\parallel$ ) (M = Ca, Sr and Ba) bis(salamo)-type complexes: synthesis, structure and fluorescence properties†

Xiu-Yan Dong,<sup>a</sup> Xiao-Yan Li,<sup>a</sup> Ling-Zhi Liu,<sup>a</sup> Han Zhang,<sup>a</sup> Yu-Jie Ding<sup>b</sup> and Wen-Kui Dong \*\* \*\*

Three heterometallic Ni(II)-M(II) (M = Ca, Sr and Ba) complexes, two discrete heterotrinuclear complexes [Ni<sub>2</sub>(L)Ca(OAc)<sub>2</sub>(CH<sub>3</sub>OH)<sub>2</sub>] $\cdot$ 2C<sub>2</sub>H<sub>5</sub>OH $\cdot$ 2CHCl<sub>3</sub> (1) and [Ni<sub>2</sub>(L)Sr(OAc)<sub>2</sub>(CH<sub>3</sub>OH)<sub>2</sub>] $\cdot$ 2CH<sub>3</sub>OH $\cdot$ 2CH<sub>2</sub>Cl<sub>2</sub> (2) and a discrete heterohexanuclear dimer [Ni<sub>2</sub>(L)Ba(OAc)<sub>2</sub>(CH<sub>3</sub>OH)<sub>2</sub>(H<sub>2</sub>O)]<sub>2</sub> $\cdot$ 2CH<sub>3</sub>OH (3), were synthesized with a naphthalenediol-based acyclic bis(salamo)-type ligand (H<sub>4</sub>L), and characterized by elemental analyses, IR, UV-vis spectra, fluorescence spectra and X-ray crystallography. The heterometallic complexes were acquired by the reaction of H<sub>4</sub>L with 2 equiv. of Ni(OAc)<sub>2</sub> $\cdot$ 4H<sub>2</sub>O and 1 equiv. of M(OAc)<sub>2</sub> (M = Ca, Sr and Ba). The crystal structures of complexes 1–3 have been determined by single-crystal X-ray diffractions. Owing to the different nature of the N<sub>2</sub>O<sub>2</sub> and O<sub>6</sub> sites of the ligand H<sub>4</sub>L, the introduction of two different metal(II) atoms to the site-selective moiety, leads to the two Ni(II) atoms occupied both the N<sub>2</sub>O<sub>2</sub> sites, an alkaline earth metal atom occupied the O<sub>6</sub> site of the ligand (L)<sup>4-</sup> unit, respectively. Furthermore, the fluorescence properties have been discussed.

Received 16th July 2017 Accepted 10th October 2017

DOI: 10.1039/c7ra07826a

rsc.li/rsc-advances

# Introduction

The condensation between an aldehyde and an amine leading to a salamo-type bisoxime was first described by Nabeshima's group.1 Structurally, salen-type ligands2 are nitrogen analogue of an aldehyde or ketone in which the carbonyl group (CO) has been replaced by an imine or azomethine group. The properties of salen-type ligands may be easily altered and as such they are able to coordinate metals in a highly versatile way and combine with O-donors to provide multidentate ligand systems.3 Salentype N2O2 metal complexes are used as precursors to synthesize the oligometallic complexes owing to the high coordination ability of the phenoxo groups which can bridge two metal centers in a μ<sub>2</sub>-M-O-M fashion.<sup>4</sup> Then, such μ<sub>2</sub>-phenoxo bridging is also particularly important for the d-block homoand heterometallic complexes of salen-type ligands, some of which exhibit interesting catalysis,<sup>5</sup> sensors,<sup>6</sup> electrochemical,<sup>7</sup> luminescence8 and magnetism.9 In recent years, our group has focused on the conversion of an acyclic molecule (bis(salamo)type ligand) to the corresponding cyclic metal host, which can afford a larger C-shaped O<sub>6</sub> site on the metalation of the N<sub>2</sub>O<sub>2</sub>

Herein, as an extension of our previous studies, 10 a new acyclic bis(salamo)-type ligand H<sub>4</sub>L is synthesized, in which two N<sub>2</sub>O<sub>2</sub> salamo moieties share one naphthalenediol. As sizes of N<sub>2</sub>O<sub>2</sub> and O<sub>6</sub> cavities are different, it is possible to synthesize the heterometallic complexes. 11,12 In this paper, heterometallic complexes  $[Ni_2(L)Ca(OAc)_2(CH_3OH)_2] \cdot 2C_2H_5OH \cdot 2CHCl_3$  (1)  $[Ni_2(L)Sr(OAc)_2(CH_3OH)_2] \cdot 2CH_3OH \cdot 2CH_2Cl_2$  (2) and  $[Ni_2(L)$  $Ba(OAc)_2(CH_3OH)_2(H_2O)]_2 \cdot 2CH_3OH$  (3) have been synthesized and structurally characterized. In complex 2, two  $\mu_2$ -acetate ions bridge Ni(II) and Sr(II) atoms in a common  $\mu_2$ -fashion, another  $\mu_2$ -acetate ion chelates Sr(II) atom as a bidentate ligand. In complex 3, two  $\mu_2$ -acetate ions bridge the Ba1 and Ba1<sup>#2</sup> atoms in a familiar µ2-fashion, finally forming a hetero-hexanuclear dimer. To our knowledge, this novel 2:6 ((L)<sup>4-</sup>: M<sup>2+</sup>) heterohexanuclear complex isn't reported in the bis(salamo)-type complexes.1,2e,11c

# Experimental

# Materials and general methods

2-Hydroxy-3-methoxybenzaldehyde (99%), methyl trioctyl ammonium chloride (90%), pyridiniumchlorochromate (98%) and borontribromide (99.9%) were purchased from Alfa Aesar. Hydrobromic acid 33 wt% solution in acetic acid was purchased

sites and effectively control the guest recognition. <sup>10</sup> Thus, the  $O_6$  site of this type of ligands are particularly suitable for the larger radius of the alkaline earth and rare earth metals to afford 3d–2s and 3d–4f heterometallic complexes exhibiting better crystal structures and photochemical properties.

<sup>&</sup>quot;School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China. E-mail: dongwk@126.com

<sup>&</sup>lt;sup>b</sup>School of Biological & Chemical Engineering, Anhui Polytechnic University, Wuhu 241000. PR China

<sup>†</sup> Electronic supplementary information (ESI) available. CCDC 1562392–1562394. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7ra07826a

from J&K Scientific Ltd. The other reagents and solvents were purchased from Shanghai Darui Chemical Fine Chemicals Company. Elemental analyses were performed by using a GmbH Vario EL V3.00 automatic elemental analysis instrument. Elemental analyses for metals were detected with an IRIS ER/S-WP-1 ICP atomic emission spectrometer. FT-IR spectra were recorded on a VERTEX70 FT-IR spectrophotometer, with samples prepared as KBr (400-4000 cm<sup>-1</sup>) pellets. UV-vis absorption spectra were recorded on a Hitachi U-3900H spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were determined by German Bruker AVANCE DRX-400 spectrometer. Fluorescent spectra were taken on a LS-55 fluorescence photometer. X-ray single crystal structure determinations were carried out on a Super-Nova, Dual, Cu at zero, Eos four-circle diffractometer. FTICR-MS spectra were obtained on a Bruker Daltonics APEX-II 47e spectrometer. Melting points were obtained with the use of an X4 microscopic melting point apparatus made by the Beijing Taike Instrument Limited Company and were uncorrected.

## Synthesis of the ligand H<sub>4</sub>L

The reaction steps involved in the synthesis of the bis(salamo)-type tetraoxime ligand (H<sub>4</sub>L) are shown in Scheme 1. 2,3-Dihydroxynaphthalene-1,4-dicarbaldehyde was prepared according to a literature procedure;<sup>13</sup> 1,2-bis(aminooxy)ethane<sup>14</sup> and 2-[O-(1-ethyloxyamide)]oxime-6-methoxyphenol<sup>15</sup> were synthesized according to an analogous method.

A solution of 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (432.08 mg, 2 mmol) in ethanol (20 mL) was added dropwise to a solution of 2-[O-(1-ethyloxyamide)]oxime-6-methoxyphenol (904.4 mg, 4 mmol) in ethanol (20 mL) under room temperature, the mixture was heated to reflux and kept refluxing for 6 h. Then cooled down to room temperature and the yellow precipitates were filtered and washed successively with ethanol and n-hexane, respectively. Several light yellow powdery solid (H<sub>4</sub>L) were obtained and collected by filtration, washed with absolute ethanol and dried under vacuum. Yield: 712.63 mg, 56.36%; mp: 172 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  11.03 (s, 2H, OH), 9.82 (s, 2H, OH), 9.14 (s, 2H, CH=N), 8.29 (s, 2H, CH=N), 7.97 (q, J = 3.2 Hz, 2H, ArH), 7.41 (q, J = 6.0, 2.9 Hz, 2H, ArH), 7.06-6.68 (m, 6H, ArH), 4.58 (t, 8H, CH<sub>2</sub>), 3.89 (s, 6H, CH<sub>3</sub>) (Fig. S1†).  $^{13}$ C NMR (DMSO, 151 MHz)  $\delta$  148.4 (s), 148.2 (s), 147.3 (s), 147.2 (s), 146.1 (s), 126.2 (s), 125.4 (s), 123.9 (s), 119.7 (s), 119.0 (s), 118.4 (s), 113.7 (s), 111.4 (s), 73.0 (s), 72.8 (s), 56.3 (s)

$$H_4L$$
  $[Ni_2(L)M]$   $M=Ca, Sr, Ba$ 

Scheme 2 Synthesis of heterometallic Ni(II)-M(II) complexes 1-3.

(Fig. S2†). HRMS m/z: calc. for  $C_{32}H_{32}N_4O_{10}Na$ :  $[H_4L + Na]^+$  655.20, found: 655.2011 (Fig. S3†). Elemental analysis: anal. calc. for  $C_{32}H_{32}N_4O_{10}$ : C, 60.75; H, 5.10; N, 8.86, found (%): C, 60.38; H, 5.38; N, 8.65. IR (KBr; cm<sup>-1</sup>): 1604 [ $\nu$ (C=N)], 1248 [ $\nu$ (Ar-O)], 3172 [ $\nu$ (O-H)]. UV-vis [in methanol/dichloromethane (1:1)],  $\lambda_{max}$  (nm) [2.5 × 10<sup>-5</sup> M]: 267, 341, 356, 376.

#### Preparation of complexes 1-3

Heterometallic complexes were synthesized by the reaction of  $H_4L$  with  $Ni(OAc)_2 \cdot 4H_2O$  and  $M(OAc)_2$  ( $M(\pi) = Ca$ , Sr and Ba) (Scheme 2).

A solution of  $Ni(OAc)_2 \cdot 4H_2O$  (9.96 mg, 0.040 mmol) in ethanol (2 mL) and  $Ca(OAc)_2$  (3.16 mg, 0.020 mmol) in water/methanol (1:3, 2 mL) were added to a solution of  $H_4L$  (12.64 mg, 0.020 mmol) in chloroform (4 mL), and the resulting solution was evaporated to dryness, after which the residue was added to dichloromethane/methanol (1:1,8 mL) and heated to dissolve it and then cooled in the refrigerator and recrystallized. The color of the mixed solution turned dark green. The mixture was filtered and the filtrate was allowed to stand at room temperature for approximately three weeks. The solvent was partially evaporated and several clear dark green prismatic single crystals of complex 1 were obtained.

A solution of Ni(OAc)<sub>2</sub>·4H<sub>2</sub>O (9.96 mg, 0.040 mmol) in methanol (2 mL) and Sr(OAc)<sub>2</sub> (3.16 mg, 0.020 mmol) in water/methanol (1:3, 2 mL) were added to a solution of  $H_4L$  (12.64 mg, 0.020 mmol) in dichloromethane (4 mL). The next steps are similar to complex 1. Complex 3 was prepared by a similar procedure as for complex 2.

$$H_2N-O$$
  $O-NH_2$   $O$ 

Scheme 1 Synthetic route to the bis(salamo)-type tetraoxime ligand H<sub>4</sub>L.

**RSC Advances** 

Table 1 Crystallographic data and refinement parameters for complexes 1, 2 and 3

| Complex                                                               | 1                                                                                              | 2                                               | 3                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|
| Formula                                                               | $C_{44}H_{56}Cl_6CaN_4O_{18}Ni_2$                                                              | $C_{42}H_{54}Cl_4SrN_4O_{18}Ni_2$               | $C_{78}H_{96}Ba_2N_8O_{36}Ni_4$        |
| Formula weight                                                        | 1299.12                                                                                        | 1247.99                                         | 2230.14                                |
| T(K)                                                                  | 291(2)                                                                                         | 155(10)                                         | 294(14)                                |
| Radiation (Å)                                                         | Μο Κα, 0.71073                                                                                 | Μο Κα, 0.71073                                  | Μο Κα, 0.71073                         |
| Crystal system                                                        | Monoclinic                                                                                     | Orthorhombic                                    | Monoclinic                             |
| Space group                                                           | $P2_1/n$                                                                                       | Pbcn                                            | $P2_1/n$                               |
| a (Å)                                                                 | 15.4086(8)                                                                                     | 23.6620(5)                                      | 15.8005(3)                             |
| b (Å)                                                                 | 12.0628(6)                                                                                     | 17.8187(5)                                      | 15.7041(3)                             |
| c (Å)                                                                 | 29.5294(9)                                                                                     | 12.4666(3)                                      | 18.2762(4)                             |
| $\alpha$ (°)                                                          | 90                                                                                             | 90                                              | 90                                     |
| $\beta$ (°)                                                           | 100.627(5)                                                                                     | 90                                              | 94.551(19)                             |
| γ (°)                                                                 | 90                                                                                             | 90                                              | 90                                     |
| Volume (Å <sup>3</sup> )                                              | 5394.5(4)                                                                                      | 5256.2(2)                                       | 4520.62(16)                            |
| Z                                                                     | 4                                                                                              | 4                                               | 4                                      |
| $D_{\rm c}$ (g cm <sup>-3</sup> )                                     | 1.600                                                                                          | 1.579                                           | 1.639                                  |
| Absorption coefficient (mm <sup>-1</sup> )                            | 1.164                                                                                          | 1.996                                           | 1.764                                  |
| Θ range for data collection(°)                                        | 1.397 to 25.997                                                                                | 3.862 to 24.112                                 | 3.510 to 27.218                        |
| F (000)                                                               | 2680                                                                                           | 2560.0                                          | 2264.0                                 |
| Index ranges                                                          | $-19 \le h \le 13$ ,                                                                           | $-23 \le h \le 29$ ,                            | $-18 \le h \le 18$ ,                   |
| -                                                                     | $-14 \le k \le 13$ ,                                                                           | $-21 \le k \le 21$                              | $-14 \le k \le 18$                     |
|                                                                       | $-36 \le l \le 35$ ,                                                                           | $-15 \le l \le 15$ ,                            | $-21 \le l \le 21,$                    |
| Crystal size (mm)                                                     | $0.24\times0.22\times0.20$                                                                     | $0.21\times0.22\times0.24$                      | 0.15 	imes 0.17 	imes 0.21             |
| Reflections collected                                                 | $21\ 343/10\ 337\ [R_{\rm int} = 0.0117]$                                                      | $16\ 016/5173\ [R_{\rm int}=0.050]$             | 17 095/7925 [ $R_{\rm int} = 0.030$ ]  |
| Independent reflection                                                | 10 337                                                                                         | 5173                                            | 7925                                   |
| Data/restraints/parameters                                            | 10 337/12/642                                                                                  | 5173/3/329                                      | 7925/45/600                            |
| Final R indices $[I > 2\sigma(I)]^a$                                  | $R_1 = 0.0469, wR_2 = 0.0959$                                                                  | $R_1 = 0.0479, wR_2 = 0.0888$                   | $R_1 = 0.0365, wR_2 = 0.0760$          |
| $R$ indices (all data) $^b$                                           | $R_1 = 0.0645, wR_2 = 0.0986$                                                                  | $R_1 = 0.082, \text{ w} R_2 = 0.1022$           | $R_1 = 0.0546, \text{ w} R_2 = 0.0874$ |
| $^{a} R_{1} = \sum   F_{0}  -  F_{c}   / \sum  F_{0} .$ $^{b} WR_{2}$ | = $\left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{1/2}$ , w = $\left[\sigma^2\right]$ | $(F_0^2) + (0.0784P)^2 + 1.3233P]^{-1}$ , where | $P = (F_0^2 + 2F_c^2)/3.$              |

Complex 1, dark green crystals, yields 12.57 mg, 48.37%. Elemental analysis: anal. calc. for C<sub>44</sub>H<sub>56</sub>Cl<sub>6</sub>CaN<sub>4</sub>O<sub>18</sub>Ni<sub>2</sub> (%): C 40.68; H 4.34; N 4.31; Ni 9.04; Ca 3.09. Found (%): C 40.25; H 4.31; N 4.62; Ni 8.98; Ca 3.01. IR (KBr; cm<sup>-1</sup>): 1599  $[\nu(C=N)]$ , 1231  $[\nu(Ar-O)]$ , 3413  $[\nu(O-H)]$ . UV-vis [in methanol/ dichloromethane (1 : 1)],  $\lambda_{max}$  (nm) [2.5 × 10<sup>-5</sup> M]: 284, 370.

Complex 2, dark green crystals, yields 11.14 mg, 44.65%. Elemental analysis: anal. calc. for C<sub>42</sub>H<sub>54</sub>Cl<sub>4</sub>SrN<sub>4</sub>O<sub>18</sub>Ni<sub>2</sub> (%): C 40.37; H 4.36; N 4.48; Ni 9.39; Sr 7.01. Found (%): C 40.25; H 4.31; N 4.62; Ni 9.26; Sr 6.92. IR (KBr; cm<sup>-1</sup>): 1597  $[\nu(C=N)]$ , 1233  $[\nu(Ar-O)]$ , 3413  $[\nu(O-H)]$ . UV-vis [in methanol/ dichloromethane (1 : 1)],  $\lambda_{max}$  (nm) [2.5 × 10<sup>-5</sup> M]: 284, 370.

Complex 3, dark green crystals, yields 17.26 mg, 38.69%. Elemental analysis: anal. calc. for C<sub>78</sub>H<sub>96</sub>Ba<sub>2</sub>N<sub>8</sub>O<sub>36</sub>Ni<sub>4</sub> (%): C 41.99; H 4.34; N 5.02; Ni 10.52; Ba 12.31. Found (%): C 41.82; H 4.28; N 5.96; Ni 10.47; Ba 12.26. IR (KBr; cm<sup>-1</sup>): 1593  $[\nu(C=N)]$ , 1242  $[\nu(Ar-O)]$ , 3402  $[\nu(O-H)]$ . UV-vis [in methanol/ dichloromethane (1 : 1)],  $\lambda_{\text{max}}$  (nm) [2.5 × 10<sup>-5</sup> M]: 284, 370.

## X-ray crystallographic analysis

The single crystals of complexes 1-3 were placed on a Super-Nova, Dual, Cu at zero, Eos four-circle diffractometer. The diffraction data were collected using a graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). Reflection data were corrected for Lorentz and polarization factor sand for absorption using the multi-scan method.16 The structures were solved by using the program SHELXL-2016 and Fourier difference techniques, and refined by the full-matrix least-squares

method on  $F^2$ . Anisotropic thermal parameters were used for the nonhydrogen atoms and isotropic parameters for the hydrogen atoms. Hydrogen atoms were added geometrically and refined using a riding model. The crystallographic data are summarized in Table 1. CCDC - 1562392 (1), 1562393 (2) and 1562394 (3)† contain the supplementary crystallographic data for this paper.

# Results and discussion

The ligand H<sub>4</sub>L and its corresponding metal complexes 1-3 are stable in air. The ligand H<sub>4</sub>L is remarkably soluble in DMF and DMSO, but slightly soluble in ethyl acetate, acetone, acetonitrile, methanol and ethanol. Complexes 1-3 are absolutely soluble in DMF and DMSO, but slightly soluble in chloroform, dichloromethane, methanol and ethanol at room temperature.

In the <sup>1</sup>H NMR spectrum of H<sub>4</sub>L, the peaks of methylene protons were observed ca. at 4.58 ppm, and the peaks of oxime protons were observed at 8.29 and 9.14 ppm. The OH resonances at 9.82 and 11.03 ppm strongly, respectively, showing the symmetrical structure of H<sub>4</sub>L (Fig. S1†). In the <sup>13</sup>C NMR spectrum of H<sub>4</sub>L, the peaks of the C=N carbon atoms were observed at 148.2 and 148.4 ppm, and the signals of CH<sub>3</sub> carbon atoms were observed at 56.31 ppm (Fig. S2†).

#### IR spectra analyses

IR spectra of H<sub>4</sub>L and its corresponding Ni(II)-M(II) complexes 1-3 exhibit various bands in the region of 4000-400 cm<sup>-1</sup>

Paper RSC Advances

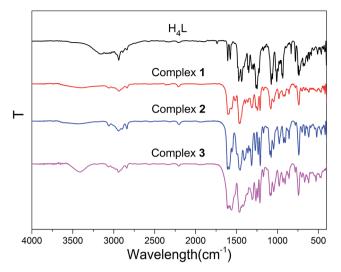



Fig. 1  $\,$  IR spectra of the ligand  $\,$ H $_4L$  and its corresponding complexes 1–3.

(Fig. 1). The O–H stretching band of the free ligand  $H_4L$  has been observed at  $ca.~3172~{\rm cm}^{-1}$  that belongs to the phenolic hydroxyl group, whereas complex 1, 2 and 3 shows a band at ca.~3413,~3413 and  $3402~{\rm cm}^{-1}$  that belongs to coordinated methanol molecules.<sup>17</sup>

The free ligand  $H_4L$  exhibits characteristic C=N stretching band at ca. 1604 cm<sup>-1</sup>, which is shifted by ca. 5, 7, 11 cm<sup>-1</sup> in complexes 1, 2 and 3, respectively, indicating that the nitrogen atoms of C=N group are coordinated to the Ni(II) atoms,<sup>18</sup> which is similar to previously reported Ni(II) complexes.<sup>19</sup>

The Ar–O stretching frequency appears at *ca.* 1248 cm<sup>-1</sup> for the ligand H<sub>4</sub>L, while the Ar–O stretching frequencies in complexes **1**, **2** and **3** are observed at *ca.* 1231, 1233 and 1242 cm<sup>-1</sup>, respectively. The Ar–O stretching frequencies are shifted to lower frequencies, indicating that the M–O bonds are formed between the metal(II) atoms and oxygen atoms of phenolic groups.<sup>20</sup>

# UV-vis spectra analyses and fluorescence properties

The methanol/dichloromethane (1:1) solutions of the ligand  $H_4L$  and its heterometallic  $Ni(\pi)-M(\pi)$  complexes show, as expected, almost identical UV-vis spectra (Fig. 2).

The free ligand  $H_4L$  shows four absorption peaks at 267, 341, 356 and 376 nm. The absorption peak at 267 nm can be assigned to the  $\pi$ - $\pi$ \* transition of the benzene rings and the other bands at 341, 356 and 376 nm can be attributed to the intra-ligand n- $\pi$ \* transition of the C=N bonds and conjugated aromatic chromophore. Compared to the absorption peaks of the free ligand  $H_4L$ , with the emergence of two absorption peaks at *ca.* 284 and 370 nm are observed in complexes 1-3, which can be assigned to  $\pi$ - $\pi$ \* type transition (MLCT). The absorption peaks of complexes 1-3 are bathochromically shifted, indicating coordination of (L) ligand unit. The coordination of metal atoms to the binding sites of  $N_2O_2$  and hydroxyl oxygen of the naphthalene ring breaks the intramolecular hydrogen-bonding interactions of  $H_4L$  and increases the coplanarity of the conjugated system which causes changes in the UV-vis spectra.

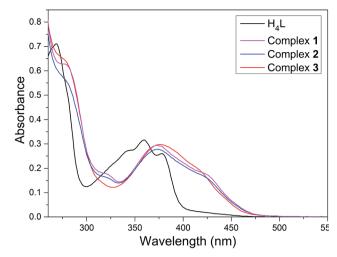



Fig. 2 UV-vis spectra of the ligand  $H_4L$  and its corresponding complexes 1–3 in methanol/dichloromethane (1 : 1) ( $c = 2.5 \times 10^{-5}$  M).

The fluorescent properties of  $H_4L$  was determined in DMF solution  $(2.5 \times 10^{-5} \text{ mol L}^{-1})$  by addition of  $Ni(OAc)_2 \cdot 4H_2O$ ,  $Ca(OAc)_2$ ,  $Sr(OAc)_2$  and  $Ba(OAc)_2$  in methanol/ $H_2O$  (1 : 1) solution  $(1 \times 10^{-3} \text{ mol L}^{-1})$  are shown in Fig. 3.

The excitation wavelengths of these complexes were measured several times by using the maximum absorption wavelengths, which is the UV-vis spectral theoretical excitation wavelength. The optimal excitation wavelength of these complexes at 378 nm with the maximum emission wavelength is 437 nm.

The fluorescence titration experiment were measured by the addition of Ni<sup>2+</sup> is shown in Fig. 3(a), the free ligand H<sub>4</sub>L shows remarkable fluorescence quenching with maximum emission at ca. 437 nm upon the addition of  $Ni^{2+}$ . When the added amount of the Ni<sup>2+</sup> reached 3.0 equiv., the fluorescence emission intensity almost complete quenching and became stable. Weakened of fluorescence is possible due to the coordination of metal ion with the ligand.24 The spectroscopic titration indicated that the stoichiometric ratio between Ni2+ and ligand unit (L)<sup>4-</sup> was 3: 1, which signify the Ni( $\pi$ ) complex was formed. <sup>6c,18b</sup> Then, Ca<sup>2+</sup>, Sr<sup>2+</sup> and Ba<sup>2+</sup> were added to the Ni(II) complex, respectively. As shown in Fig. 3(b)-(d), the fluorescence intensity gradually increased, when the added amount of the Ca2+ reached 1.0 equiv., the fluorescence intensity reached the maximum, which because one Ni2+ in the Ni(II) complex was replaced by one Ca2+, Sr2+ or Ba2+, respectively.6c,18b This phenomenon may be due to the difference between the radius of the Ni<sup>2+</sup> and the alkaline earth metal ion.

Titration of Ni(II) complex with Ca<sup>2+</sup>, Sr<sup>2+</sup> or Ba<sup>2+</sup> were followed by fluorescence spectroscopy to determine the binding constant, respectively. As shown in Fig. S4,† the binding constant K of Ni(II) complex with Ca<sup>2+</sup>, Sr<sup>2+</sup> and Ba<sup>2+</sup> were estimated to be  $8.14 \times 10^3 \, \mathrm{M}^{-1}$ ,  $3.01 \times 10^3 \, \mathrm{M}^{-1}$  and  $8.82 \times 10^2 \, \mathrm{M}^{-1}$  by the Benesi–Hildebrand equation (fluorescence method) way, respectively,<sup>25</sup> which unambiguously demonstrates stronger binding ability of Ni(II) complex with Ca<sup>2+</sup>.

According to the obtained experimental data, the differences among the three heterometallic complexes are very obvious and could be utilized in host-guest systems.

RSC Advances Paper

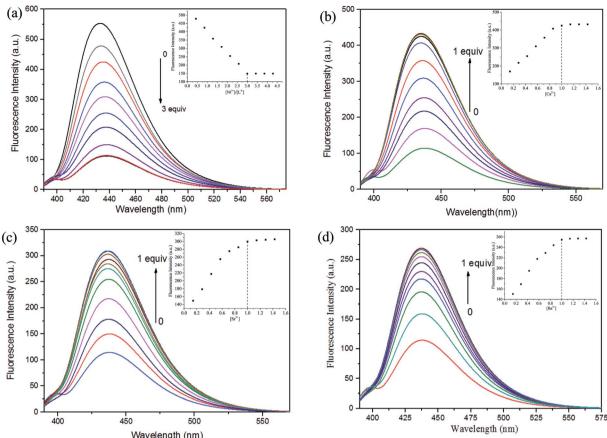



Fig. 3 (a) Absorption spectra of  $H_4L$  in DMF solution upon the addition of  $Ni^{2+}$ . (b) Absorption spectra of the  $Ni(\shortparallel)$  complex in DMF solution upon the addition of  $Ca^{2+}$ . (c) Absorption spectra of the  $Ni(\shortparallel)$  complex in DMF solution upon the addition of  $Sr^{2+}$ . (d) Absorption spectra of the  $Ni(\shortparallel)$  complex in DMF solution upon the addition of  $Ba^{2+}$ .

## Description of the crystal structures

The crystal structures of the heterometallic complexes 1–3 were determined by single-crystal X-ray diffraction. Selected bond lengths and angles of complexes 1–3 are listed in Table 2.

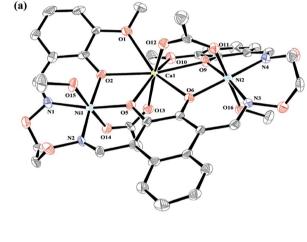
#### Crystal structure of complexes 1 and 2

The crystal structures and atom numberings of complexes 1 and 2 are shown in Fig. 4 and 5, respectively. X-ray crystallographic analysis of complex 1 reveals a trinuclear structure. It crystallizes in the monoclinic system, space group  $P2_1/n$ , and consists of two Ni(II) atoms, one Ca(II) atom, one (L)<sup>4-</sup> unit, two  $\mu_2$ -acetate ions, two coordinated methanol molecules and two crystallized ethanol and chloroform molecules. While complex 2 crystallizes in the orthorhombic crystal system, space group Pbcn, and consists of two Ni(II) atoms, one Sr(II) atom, one (L)<sup>4-</sup> unit, two  $\mu_2$ -acetate ions, two coordinated methanol molecules and two crystallized methanol and dichloromethane molecules. X-ray crystallography clearly shows the formation of complexes 1 and 2, which was isolated as dark green crystals.

Interestingly, the formation process of complex 1 was highly cooperative. In the crystal structure of complex 1, the terminal Ni( $\pi$ ) atom (Ni1 or Ni2) is located in the N<sub>2</sub>O<sub>2</sub> coordination cavity of completely deprotonated (L)<sup>4-</sup> unit, one oxygen atom

(O14 or O11) from the  $\mu_2$ -acetate bridge and one oxygen atom (O15 or O16) from the coordinated methanol molecule. Because of Ni1 and Ni2 are symmetry related, they have identical geometries. Thus, the Ni1 and Ni2 atoms are both hexacoordinated with slightly distorted octahedral geometries.26 While the central Ca1 atom is located in the O<sub>6</sub> cavity, the four are phenoxy oxygen atoms (O2, O5, O6 and O9) while two others (O1 and O10) come from methoxy groups. Besides, two  $\mu_2$ acetate ions bridge the two terminal Ni(II) atoms and the central  $Ca(\pi)$  atom in a  $\mu_2$ -fashion. So the Ca1 atom is octa-coordinated with a slightly distorted square antiprism geometry. The Ca1 atom of complex 1 has strong coordination with the four phenoxy oxygen atoms (O2, O5, O6 and O9) of the (L)4- units and the two oxygen atoms (O12 and O13) of the  $\mu_2$ -acetate ions by analyzing the distances of the eight Ca1-O bonds. The distances between the Ca1 atom and the four phenoxy oxygen atoms (O2, O5, O6 and O9) and the two  $\mu_2$ -acetate oxygen atoms (O12 and O13) are ranged from 2.386(2) to 2.409(2) Å, which are obviously shorter than the distances of the other two Ca1-O bonds (Ca1-O1 2.609(2) Å and Ca1-O10 2.605(2) Å). The coordination of complex 2 is similar to that of complex 1. In the crystal structure of complex 2, the distances between the Sr1 atom and the four phenoxy oxygen atoms (O2, O5, O2<sup>#1</sup> and O5<sup>#1</sup>) and the two  $\mu_2$ acetate oxygen atoms (O7 and O7#1) are ranged from 2.511(2) to

Table 2 Selected bond lengths (Å) and angles (°) of complexes 1, 2 and  $3^a$ 


| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mplex 1                           |           |             |            |             |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|-------------|------------|-------------|----------|
| $Ni2-06 \qquad 1.968(2) \qquad Ni2-09 \qquad 2.018(2) \qquad Ni2-01 \qquad 2 \\ Ni2-016 \qquad 2.107(2) \qquad Ni2-N3 \qquad 2.066(3) \qquad Ni2-N4 \qquad 2 \\ Cal-01 \qquad 2.609(2) \qquad Cal-02 \qquad 2.405(2) \qquad Cal-05 \qquad 2 \\ Cal-010 \qquad 2.609(2) \qquad Cal-09 \qquad 2.404(2) \qquad Cal-010 \qquad 2 \\ Cal-012 \qquad 2.303(2) \qquad Cal-013 \qquad 2.409(2) \qquad Cal-010 \qquad 2 \\ Cal-012 \qquad 2.303(2) \qquad Cal-013 \qquad 2.409(2) \qquad Cal-010 \qquad 2 \\ Cal-010 \qquad 2.303(2) \qquad Cal-014 \qquad 91.30(9) \qquad O2-Ni1-015 \qquad 8 \\ S.53(9) \qquad O2-Ni1-014 \qquad 91.30(9) \qquad O2-Ni1-015 \qquad 8 \\ S.53(9) \qquad O2-Ni1-N1 \qquad 169.72(10) \qquad O3-Ni1-015 \qquad 8 \\ S.53(9) \qquad O3-Ni1-N1 \qquad 169.72(10) \qquad O3-Ni1-014 \qquad 90.72(10) \qquad O3-Ni1-015 \qquad 90.72(10) \qquad O3-Ni1-02 \qquad 90.72(10) \qquad$ | i-O2                              | 2.020(2)  | Ni1-O5      |            | Ni1-O14     | 2.079(2) |
| $\begin{array}{c} Ni2-016 & 2.179(2) & Ni2-N3 & 2.066(3) & Ni2-N4 & 2 \\ Cal-O1 & 2.699(2) & Cal-O2 & 2.496(2) & Cal-O5 & 2 \\ Cal-O6 & 2.404(2) & Cal-O9 & 2.404(2) & Cal-O10 & 2 \\ Cal-O6 & 2.404(2) & Cal-O13 & 2.409(2) & Cal-O10 & 2 \\ Cal-O12 & 2.93(2) & Cal-O13 & 2.409(2) & Cal-O10 & 2 \\ Cal-O13 & 2.409(2) & Cal-O10 & 2 \\ Cal-O15 & 8.363(9) & O2-Ni1-N2 & 169.72(10) & O5-Ni1-O15 & 8 \\ O2-Ni1-N1 & 86.59(10) & O2-Ni1-N2 & 169.72(10) & O5-Ni1-O14 & 9 \\ O5-Ni1-O15 & 85.37(9) & O3-Ni1-N1 & 167.96(11) & O5-Ni1-N2 & 8 \\ O14-Ni1-O15 & 176.37(9) & O14-Ni1-N1 & 96.21(10) & O11-Ni1-N2 & 9 \\ O15-Ni1-N1 & 87.42(10) & O15-Ni1-N2 & 84.38(10) & N1-Ni1-N2 & 1 \\ O6-Ni2-O9 & 83.04(8) & O6-Ni2-O11 & 92.66(9) & O6-Ni2-O16 & 8 \\ O6-Ni2-O18 & 88.35(10) & O6-Ni2-N4 & 166.08(11) & O9-Ni2-O11 & 9 \\ O9-Ni2-O16 & 177.70(8) & O11-Ni2-N3 & 93.92(10) & O9-Ni2-N1 & 8 \\ O11-Ni2-O16 & 177.70(8) & O11-Ni2-N3 & 93.92(10) & O9-Ni2-N1 & 8 \\ O11-Cal-O2 & 61.28(7) & O1-Cal-O5 & 12.048(8) & O1-Cal-O6 & 1 \\ O1-Cal-O2 & 61.28(7) & O1-Cal-O15 & 12.048(8) & O1-Cal-O1 & 7 \\ O1-Cal-O3 & 102.34(7) & O2-Cal-O16 & 69.38(7) & O1-Cal-O12 & 7 \\ O1-Cal-O10 & 102.24(7) & O2-Cal-O1 & 102.24(7) & O2-Cal-O1 & 1 \\ O2-Cal-O10 & 151.85(8) & O3-Cal-O6 & 64.54(7) & O3-Cal-O1 & 1 \\ O3-Cal-O10 & 151.85(8) & O3-Cal-O10 & 102.24(7) & O2-Cal-O1 & 7 \\ O6-Cal-O10 & 66.65(7) & O6-Cal-O10 & 102.24(7) & O3-Cal-O1 & 7 \\ O6-Cal-O10 & 66.65(7) & O6-Cal-O10 & 10.23(7) & O7-Cal-O12 & 7 \\ O6-Cal-O10 & 90.21(8) & O9-Cal-O10 & 61.33(7) & O9-Cal-O13 & 7 \\ O6-Cal-O10 & 90.21(8) & O9-Cal-O10 & 61.33(7) & O9-Cal-O12 & 7 \\ O6-Cal-O10 & 90.21(8) & O9-Cal-O10 & 61.33(7) & O9-Cal-O12 & 7 \\ O6-Cal-O10 & 90.25(3) & Ni1-N2 & 2.517(2) & Sr1-O2^{-1} & 2.517(2) & Sr1-O2^{-1} & 2.517(2) & Sr1-O2^{-1} & 2.517(2) & Sr1-O2^{-1} & 2.517(2) & Sr1-O3^{-1} & 1.05.89(8) & O3-Sr1-O2^{-1} & 10.89(8) & O3-Sr1-O3^{-1} & 10.89(8) & O3-Sr1-O3^{-1} & 10.89(9) & O3-Sr1-O3^{-1} & 10.89($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -O15                              | 2.196(2)  | Ni1-N1      | 2.071(3)   | Ni1-N2      | 2.062(2) |
| Ca1-O1   2.609(2)   Ca1-O2   2.405(2)   Ca1-O5   2.61-O10   2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-O6                              | 1.968(2)  | Ni2-O9      | 2.018(2)   | Ni2-O11     | 2.082(2) |
| 231-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-O16                             | 2.179(2)  | Ni2-N3      | 2.066(3)   | Ni2-N4      | 2.055(3) |
| 23-012   2.393(2)   Cal-Ol3   2.409(2)   22-Nil-O5   83.63(9)   O2-Nil-Ol4   91.39(9)   O2-Nil-Ol5   83.2-Nil-Ni   86.59(10)   O2-Nil-Ni   169.72(10)   O5-Nil-Ol4   99.32-Nil-Ni   86.59(10)   O2-Nil-Ni   169.72(10)   O5-Nil-Ni   99.32-Nil-Ni   86.59(10)   O3-Nil-Ni   167.36(11)   O5-Nil-Ni   99.32-Nil-Ni   167.37(9)   O14-Nil-Ni   96.21(10)   O14-Nil-Ni   99.31(10)   O14-Nil-Ni   99.31(10)   O14-Nil-Ni   99.31(10)   O15-Nil-Ni   99.31(10)   O15-Nil-Ni   99.31(10)   O15-Nil-Ni   99.31(10)   O5-Nil-Ol6   88.35(10)   O6-Ni2-Ni   169.62(10)   O9-Ni2-Ol6   88.79(9)   O6-Ni2-Ni   169.62(10)   O9-Ni2-Ni   O9-Cal-Ol2   O9-Cal-Ol3   O9-Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-O1                              | 2.609(2)  | Ca1-O2      | 2.405(2)   | Ca1-O5      | 2.386(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-O6                              | 2.404(2)  | Ca1-O9      | 2.404(2)   | Ca1-O10     | 2.605(2) |
| $\begin{array}{c} 22\text{-NiI-N1} & 86.59(10) & 02-\text{NiI-N2} & 169.72(10) & 05-\text{NiI-O14} & 9 \\ 32-\text{NiI-O15} & 85.37(9) & 014-\text{NiI-N1} & 167.96(11) & 05-\text{NiI-N2} & 8 \\ 314-\text{NiI-O15} & 176.37(9) & 014-\text{NiI-N1} & 96.21(10) & 014-\text{NiI-N2} & 9 \\ 314-\text{NiI-O15} & 176.37(9) & 014-\text{NiI-N1} & 96.21(10) & 014-\text{NiI-N2} & 9 \\ 315-\text{NiI-N1} & 87.42(10) & 015-\text{NiI-N2} & 84.38(10) & NII-NII-N2} & 19 \\ 316-\text{Ni2-O9} & 83.04(8) & 06-\text{Ni2-O11} & 92.06(9) & 06-\text{Ni2-O16} & 8 \\ 38.55(10) & 06-\text{Ni2-N3} & 168.08(11) & 09-\text{Ni2-O16} & 9 \\ 39-\text{Ni2-O16} & 88.79(9) & 09-\text{Ni2-N3} & 169.62(10) & 09-\text{Ni2-N4} & 8 \\ 311-\text{Ni2-O16} & 177.70(8) & 011-\text{Ni2-N3} & 93.92(10) & 011-\text{Ni2-N4} & 9 \\ 311-\text{Ni2-O16} & 177.70(8) & 011-\text{Ni2-N3} & 93.92(10) & 011-\text{Ni2-N4} & 9 \\ 311-\text{Ni2-O16} & 177.70(8) & 016-\text{Ni2-N4} & 86.88(10) & N3-\text{Ni2-N4} & 1 \\ 311-\text{Ni2-O16} & 172.77(7) & 01-\text{Ca1-O10} & 69.83(7) & 02-\text{Ca1-O10} & 102.24(7) & 02-\text{Ca1-O10} & 102.24(7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-O12                             | 2.393(2)  | Ca1-O13     | 2.409(2)   |             |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -Ni1-O5                           | 83.63(9)  | O2-Ni1-O14  | 91.39(9)   | O2-Ni1-O15  | 88.79(9) |
| Did-Nit-O15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -Ni1-N1                           | 86.59(10) | O2-Ni1-N2   | 169.72(10) | O5-Ni1-O14  | 91.05(9) |
| 134-Ni1-O15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -Ni1-O15                          | 85.37(9)  | O5-Ni1-N1   | 167.96(11) | O5-Ni1-N2   | 88.15(10 |
| $\begin{array}{c} 135-Nit-N1 & 87.42(10) & 015-Nit-N2 & 84.38(10) & Ni-Nit-N2 & 1 \\ 0.6-Ni2-O9 & 83.04(8) & 06-Ni2-O11 & 92.06(9) & 06-Ni2-O11 & 9 \\ 0.6-Ni2-N3 & 88.35(10) & 06-Ni2-N4 & 168.08(11) & 09-Ni2-O11 & 9 \\ 0.6-Ni2-N3 & 88.35(10) & 06-Ni2-N4 & 168.08(11) & 09-Ni2-O11 & 9 \\ 0.6-Ni2-N3 & 88.35(10) & 01-Ni2-N3 & 169.62(10) & 09-Ni2-N4 & 8 \\ 0.6-Ni2-N3 & 84.83(10) & 01-Ni2-N3 & 89.92(10) & 011-Ni2-N4 & 9 \\ 0.16-Ni2-N3 & 84.83(10) & 016-Ni2-N3 & 86.88(10) & N3-Ni2-N4 & 1 \\ 0.16-Ca1-O2 & 61.28(7) & 01-Ca1-O5 & 120.48(8) & 01-Ca1-O6 & 6 \\ 0.10-Ca1-O9 & 102.73(7) & 01-Ca1-O10 & 69.83(7) & 01-Ca1-O12 & 7 \\ 0.15-Ca1-O9 & 102.73(7) & 02-Ca1-O5 & 67.31(7) & 02-Ca1-O6 & 1 \\ 0.15-Ca1-O13 & 117.57(8) & 02-Ca1-O5 & 67.31(7) & 02-Ca1-O6 & 1 \\ 0.2-Ca1-O9 & 161.47(8) & 02-Ca1-O6 & 64.54(7) & 02-Ca1-O9 & 1 \\ 0.2-Ca1-O13 & 77.80(8) & 05-Ca1-O6 & 64.54(7) & 05-Ca1-O9 & 1 \\ 0.5-Ca1-O10 & 151.85(8) & 05-Ca1-O10 & 119.98(8) & 06-Ca1-O12 & 7 \\ 0.6-Ca1-O13 & 90.21(8) & 09-Ca1-O10 & 119.98(8) & 06-Ca1-O12 & 7 \\ 0.9-Ca1-O13 & 104.34(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 104.34(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 164.39(8) & 010-Ca1-O12 & 117.38(8) & 010-Ca1-O13 & 7 \\ 0.9-Ca1-O13 & 0.2-Ni1-O6 & 91.73(10) & 02-Ni1-O6 & 91.73(10) & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Ni1-O15                         |           | O14-Ni1-N1  | . ,        | O14-Ni1-N2  | 94.94(11 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-Ni1-N1                          | . ,       |             | . ,        |             | 100.74(1 |
| $\begin{array}{c} 16-Ni2-N3 \\ 96-Ni2-N3 \\ 99-Ni2-O16 \\ 88.79(9) \\ 09-Ni2-N3 \\ 09-Ni2-O16 \\ 177.70(8) \\ 011-Ni2-N3 \\ 011-Ni2-O16 \\ 177.70(8) \\ 011-Ni2-N3 \\ 011-Ni2-N4 \\ 86.88(10) \\ 016-Ni2-N3 \\ 84.83(10) \\ 016-Ni2-N4 \\ 86.88(10) \\ 011-Ni2-N4 \\ 86.88(10) \\ 011-Ni2-N4 \\ 101-Ca1-O2 \\ 01-Ca1-O2 \\ 01-Ca1-O2 \\ 01-Ca1-O2 \\ 01-Ca1-O3 \\ 011-Ca1-O3 \\ 011-Ca1-O3 \\ 011-Ca1-O3 \\ 011-Ca1-O4 \\ 011-Ca1-O3 \\ 011-Ca1-O4 \\ 011-Ca1-O4 \\ 011-Ca1-O4 \\ 011-Ca1-O5 \\ 011-Ca1-O4 \\ 011-Ca1-O5 \\ 011-Ca1-O5 \\ 011-Ca1-O5 \\ 011-Ca1-O5 \\ 011-Ca1-O10 \\ 011-Ca1-Ca1-Ca1-Ca1-Ca1-Ca1-Ca1-Ca1-Ca1-C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Ni2-O9                           |           | O6-Ni2-O11  |            | O6-Ni2-O16  | 85.99(9) |
| $\begin{array}{c} 39-Ni2-016 & 88.79[9] & 09-Ni2-N3 & 169.62[10] & 09-Ni2-N4 & 8 \\ 101-Ni2-016 & 177.70[8] & 011-Ni2-N3 & 93.92[10] & 011-Ni2-N4 & 9 \\ 1016-Ni2-N3 & 84.83[10] & 016-Ni2-N4 & 86.88[10] & N3-Ni2-N4 & 1 \\ 1016-Ni2-N3 & 84.83[10] & 016-Ni2-N4 & 86.88[10] & N3-Ni2-N4 & 1 \\ 1016-Ni2-N3 & 84.83[10] & 016-Ni2-N4 & 86.88[10] & N3-Ni2-N4 & 1 \\ 1016-Ni2-N3 & 84.83[10] & 016-Ni2-N4 & 86.88[10] & N3-Ni2-N4 & 1 \\ 1016-Ni2-N3 & 84.83[10] & 016-Ni2-N4 & 86.88[10] & N3-Ni2-N4 & 1 \\ 1016-Ni2-N3 & 84.83[10] & 01-Cal-O15 & 120.48[8] & 01-Cal-O16 & 1 \\ 1016-Ni2-N3 & 91.20[10] & 17.57[8] & 02-Cal-O5 & 67.31[7] & 02-Cal-O6 & 1 \\ 1016-Ni2-N3 & 91.61-A7[8] & 02-Cal-O16 & 102.24[7] & 02-Cal-O6 & 1 \\ 1016-Ni2-N3 & 91.61-A7[8] & 02-Cal-O10 & 102.24[7] & 02-Cal-O19 & 1 \\ 1016-Cal-O13 & 77.80[8] & 05-Cal-O12 & 90.77[8] & 05-Cal-O13 & 7 \\ 1016-Cal-O19 & 66.68[7] & 06-Cal-O10 & 119.98[8] & 06-Cal-O12 & 7 \\ 1016-Cal-O13 & 90.21[8] & 09-Cal-O10 & 61.33[7] & 09-Cal-O12 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O12 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O12 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O13 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O13 & 117.38[8] & 010-Cal-O13 & 7 \\ 1016-Cal-O13 & 104.34[8] & 010-Cal-O13 & 117.38[8] & 010-Ca$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -Ni2-N3                           | 88.35(10) | O6-Ni2-N4   | 168.08(11) | O9-Ni2-O11  | 92.18(9) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -Ni2-O16                          | . ,       | O9-Ni2-N3   | . ,        | O9-Ni2-N4   | 87.27(10 |
| $\begin{array}{c} 0.16-Ni2-N3 \\ 0.16-Ni2-N3 \\ 0.16-Cal-O2 \\ 0.1-Cal-O2 \\ 0.1-Cal-O2 \\ 0.1-Cal-O3 \\ 0.1-Cal-O3 \\ 0.1-Cal-O9 \\ 0.10-Cal-O9 \\ 0.10-Cal-O1 \\ 0.1-Cal-O1 \\ 0.1-Cal-O2 \\ 0.1-Cal-O2 \\ 0.1-Cal-O2 \\ 0.1-Cal-O3 \\ 0.1-Cal-O3 \\ 0.1-Cal-O1 \\ 0.1-Cal-O3 \\ 0.1-Cal-O1 \\ 0.1-Cal-O9 \\ 0.16-1.47(8) \\ 0.2-Cal-O1 \\ 0.2-Cal-O2 \\ 0.6-Cal-O2 \\ 0.6-Cal-O2 \\ 0.6-Cal-O3 \\ 0.6-Cal-O3 \\ 0.6-Cal-O1 \\ 0.9-Cal-O1 \\ 0.119.98(8) \\ 0.6-Cal-O12 \\ 0.7-Cal-O13 \\ 0.9-Cal-O13 \\ 0.10-Cal-O13 \\ 0.10-Cal-O12 \\ 0.10-Cal-O13 \\ 0.10-Cal-O12 \\ 0.11-O38(8) \\ 0.10-Cal-O13 \\ 0.11-O38(8) \\ 0.10-Cal-O12 \\ 0.11-O38(8) \\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           |             |            |             | 95.25(10 |
| $\begin{array}{c} 10\text{-}1\text{-}2\text{-}1\text{-}2\text{-}2 \\ 01\text{-}2\text{-}1\text{-}2\text{-}2 \\ 01\text{-}2\text{-}1\text{-}0\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2 \\ 01\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2\text{-}2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |           |             | , ,        |             | 100.51(1 |
| $\begin{array}{c} -0.1-\text{Ca1}-\text{O9} & 102.73(7) & \text{O1-Ca1}-\text{O10} & 69.83(7) & \text{O1-Ca1}-\text{O12} & 77 \\ -0.1-\text{Ca1}-\text{O13} & 117.57(8) & \text{O2-Ca1}-\text{O5} & 67.31(7) & \text{O2-Ca1}-\text{O6} & 17 \\ -0.2-\text{Ca1}-\text{O9} & 161.47(8) & \text{O2-Ca1}-\text{O10} & 102.24(7) & \text{O2-Ca1}-\text{O12} & 17 \\ -0.2-\text{Ca1}-\text{O13} & 77.80(8) & \text{O5-Ca1}-\text{O6} & 64.54(7) & \text{O5-Ca1}-\text{O9} & 17 \\ -0.2-\text{Ca1}-\text{O9} & 66.68(7) & \text{O6-Ca1}-\text{O10} & 119.98(8) & \text{O5-Ca1}-\text{O12} & 77 \\ -0.6-\text{Ca1}-\text{O9} & 66.68(7) & \text{O6-Ca1}-\text{O10} & 119.98(8) & \text{O6-Ca1}-\text{O12} & 77 \\ -0.6-\text{Ca1}-\text{O13} & 90.21(8) & \text{O9-Ca1}-\text{O10} & 61.33(7) & \text{O9-Ca1}-\text{O12} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 104.34(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{O10-Ca1}-\text{O12} & 117.38(8) & \text{O10-Ca1}-\text{O13} & 77 \\ -0.2-\text{Ca1}-\text{O13} & 164.39(8) & \text{N1-N1} & 2.068(3) & \text{N1-N2} & 2.56(3) \\ -0.2-\text{N1}-\text{O1} & 2.66(3) & \text{S1}-\text{O2}^{-1} & 2.525(3) & \text{S1}-\text{O2}^{-1} & 2.525(3) \\ -0.2-\text{N1}-\text{O1} & 2.66(3) & \text{S1}-\text{O2}^{-1} & 2.525(3) & \text{S1}-\text{O2}^{-1} & 2.525(3) \\ -0.2-\text{N1}-\text{O5} & 86.26(10) & \text{O2-N1}-\text{O6} & 91.73(10) & \text{O2-N1}-\text{O8} & 88 \\ -0.2-\text{N1}-\text{N1} & 86.72(12) & \text{O2-N1}-\text{N1} & 170.72(12) & \text{O5-N1}-\text{O6} & 91.73(10) & 2.73(10) \\ -0.2-\text{N1}-\text{N1} & 86.72(12) & \text{O2-N1}-\text{N1} & 170.72(12) & \text{O5-N1}-\text{N1} & 90.73(10) \\ -0.2-\text{N1}-\text{O1} & 86.08(11) & \text{O5-N1}-\text{N1} & 170.72(12) & \text{O5-N1}-\text{N1} & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73(10) & 90.73($                                                                                                                                                                                                                                                                                                                   |                                   | . ,       |             | . ,        |             | 152.21(8 |
| $\begin{array}{c} \text{DI-Cal-O13} & 117,57(8) & \text{O2-Cal-O5} & 67,31(7) & \text{O2-Cal-O6} & 1\\ \text{D2-Cal-O9} & 161,47(8) & \text{O2-Cal-O10} & 102,24(7) & \text{O2-Cal-O12} & 1\\ \text{D2-Cal-O13} & 77,80(8) & \text{O5-Cal-O6} & 64,54(7) & \text{O5-Cal-O9} & 1\\ \text{D3-Cal-O10} & 151,85(8) & \text{O5-Cal-O12} & 90,77(8) & \text{O5-Cal-O13} & 7\\ \text{O6-Cal-O9} & 66,68(7) & \text{O6-Cal-O10} & 119,98(8) & \text{O6-Cal-O12} & 7\\ \text{D6-Cal-O3} & 90,21(8) & \text{O9-Cal-O10} & 61,33(7) & \text{O9-Cal-O12} & 7\\ \text{D9-Cal-O13} & 104,34(8) & \text{O10-Cal-O12} & 117,38(8) & \text{O10-Cal-O13} & 7\\ \text{D9-Cal-O13} & 104,34(8) & \text{O10-Cal-O12} & 117,38(8) & \text{O10-Cal-O13} & 7\\ \text{D9-Cal-O13} & 164,39(8) & \text{O10-Cal-O12} & 117,38(8) & \text{O10-Cal-O13} & 7\\ \text{D12-Cal-O13} & 164,39(8) & \text{D10-Cal-O12} & 117,38(8) & \text{O10-Cal-O13} & 7\\ \text{D12-Cal-O13} & 164,39(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 164,39(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 117,38(8) & \text{D10-Cal-O13} & 7\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O12} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1.984(2) & \text{D10-Cal-O13} & 1\\ \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 104,34(8) & \text{D10-Cal-O13} & 1\\ \text{D10-Cal-O13} & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | . ,       |             | ` '        |             | 76.33(8) |
| $\begin{array}{c} 12-\text{Cal}-\text{O9} & 161.47(8) & \text{O2-Cal}-\text{O10} & 102.24(7) & \text{O2-Cal}-\text{O12} & 1 \\ 202-\text{Cal}-\text{O13} & 77.80(8) & \text{O5-Cal}-\text{O6} & 64.54(7) & \text{O5-Cal}-\text{O9} & 1 \\ 151.85(8) & \text{O5-Cal}-\text{O12} & 90.77(8) & \text{O5-Cal}-\text{O12} & 7 \\ 06-\text{Cal}-\text{O10} & 151.85(8) & \text{O5-Cal}-\text{O10} & 119.98(8) & \text{O5-Cal}-\text{O12} & 7 \\ 06-\text{Cal}-\text{O13} & 90.21(8) & \text{O9-Cal}-\text{O10} & 61.33(7) & \text{O9-Cal}-\text{O12} & 7 \\ 09-\text{Cal}-\text{O13} & 104.34(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O12} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O12} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 7 \\ 09-\text{Cal}-\text{O13} & 164.39(8) & \text{O10-Cal}-\text{O12} & 117.38(8) & \text{O10-Cal}-\text{O13} & 11.09 \\ 09-\text{Cal}-\text{O13} & 11.096 & 1.096(3) & \text{Nil-N2} & 2 \\ 08-\text{Cal}-\text{O13} & 1.096(3) & \text{Nil-N2} & 2 \\ 08-\text{Cal}-\text{O13} & 1.096(3) & \text{Nil-N2} & 1.096(3) & \text{Nil-N2} & 1.096(3) \\ 09-\text{Cal}-\text{O10} & 1.096(3) & \text{Nil-N2} & 1.096(3) & \text{Nil-N2} & 1.096(3) \\ 09-\text{Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} \\ 09-\text{Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} \\ 09-\text{Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} \\ 09-\text{Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} & 1.096(3) & \text{O10-Cal}-\text{O10} \\ 09-\text{Cal}-O10$                                                                                                                                                                                                                                                                             |                                   |           |             | ` '        |             | 131.84(7 |
| $\begin{array}{c} 22\text{-}Cal-O13 & 77.80(8) & O5\text{-}Cal-O6 & 64.54(7) & O5\text{-}Cal-O9 & 1 \\ 05\text{-}Cal-O10 & 151.85(8) & O5\text{-}Cal-O12 & 90.77(8) & O5\text{-}Cal-O13 & 7 \\ 05\text{-}Cal-O10 & 66.68(7) & O6\text{-}Cal-O10 & 119.98(8) & O6\text{-}Cal-O12 & 7 \\ 05\text{-}Cal-O13 & 90.21(8) & O9\text{-}Cal-O10 & 61.33(7) & O9\text{-}Cal-O12 & 7 \\ 05\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & 104.34(8) & O10\text{-}Cal-O12 & 117.38(8) & O10\text{-}Cal-O13 & 7 \\ 102\text{-}Cal-O13 & Nil-O2 & S1-O2^{21} & O10\text{-}Cal-O13 & O10\text{-}Cal-O13 & O10\text{-}Cal-O13 & O10\text{-}Cal-O14 & O1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | . ,       |             |            |             | 105.29(8 |
| $\begin{array}{c} 35\text{-}\text{Ca1-}\text{-}010 & 151.85(8) & 05\text{-}\text{Ca1-}\text{-}012 & 90.77(8) & 05\text{-}\text{Ca1-}\text{-}013 & 77 \\ 36\text{-}\text{Ca1-}\text{-}09 & 66.68(7) & 06\text{-}\text{Ca1-}\text{-}010 & 119.98(8) & 06\text{-}\text{Ca1-}\text{-}012 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 90.21(8) & 99\text{-}\text{Ca1-}\text{-}010 & 61.33(7) & 09\text{-}\text{Ca1-}\text{-}012 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 104.34(8) & 010\text{-}\text{Ca1-}\text{-}012 & 117.38(8) & 010\text{-}\text{Ca1-}\text{-}013 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 010\text{-}\text{Ca1-}\text{-}012 & 117.38(8) & 010\text{-}\text{Ca1-}\text{-}013 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 010\text{-}\text{Ca1-}\text{-}012 & 117.38(8) & 010\text{-}\text{Ca1-}\text{-}013 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 010\text{-}\text{Ca1-}\text{-}012 & 117.38(8) & 010\text{-}\text{Ca1-}\text{-}013 & 77 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 010\text{-}\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 010\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 02\text{-}\text{Ca1-}\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 02\text{-}\text{Ca1-}\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 02\text{-}\text{Ca1-}\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 02\text{-}\text{Sa1-}\text{-}02\text{-}11 \\ 39\text{-}\text{Ca1-}\text{-}013 & 164.39(8) & 0$        |                                   |           |             |            |             | 131.22(8 |
| $\begin{array}{c} 06-\text{Ca1}-\text{O9} & 66.68(7) \\ 06-\text{Ca1}-\text{O10} & 90.21(8) \\ 09-\text{Ca1}-\text{O10} & 61.33(7) \\ 09-\text{Ca1}-\text{O12} & 7 \\ 09-\text{Ca1}-\text{O13} & 90.21(8) \\ 09-\text{Ca1}-\text{O10} & 61.33(7) \\ 09-\text{Ca1}-\text{O12} & 7 \\ 09-\text{Ca1}-\text{O12} & 7 \\ 09-\text{Ca1}-\text{O13} & 104.34(8) \\ 010-\text{Ca1}-\text{O12} & 117.38(8) \\ 010-\text{Ca1}-\text{O13} & 7 \\ 012-\text{Ca1}-\text{O13} & 164.39(8) \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | . ,       |             | ( )        |             | 76.17(8) |
| Object   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | . ,       |             | ( )        |             | 76.28(8) |
| Decat   Other   Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | ( )       |             | ( )        |             | 77.73(8) |
| Complex 2 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | ` '       |             |            |             | 76.06(8) |
| Complex 2 Ni1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |           | 010-Ca1-012 | 117.30(0)  | 010-Ca1-013 | 70.00(8) |
| $\begin{array}{c} \text{Ni1-O2} & 2.011(3) & \text{Ni1-O5} & 1.984(2) & \text{Ni1-O6} & 2\\ \text{Ni1-O8} & 2.169(3) & \text{Ni1-N1} & 2.068(3) & \text{Ni1-N2} & 2\\ \text{Sr1-O1} & 2.667(3) & \text{Sr1-O2} & 2.517(2) & \text{Sr1-O5} & 2\\ \text{Sr1-O7} & 2.525(3) & \text{Sr1-O7}^{\#1} & 2.667(3) & \text{Sr1-O2}^{\#1} & 2\\ \text{Sr1-O5}^{\#1} & 2.511(2) & \text{Sr1-O7}^{\#1} & 2.525(3) & \\ \text{Sr1-O5}^{\#1} & 2.511(2) & \text{Sr1-O7}^{\#1} & 2.525(3) & \\ \text{D2-Ni1-O5} & 86.26(10) & 02-\text{Ni1-O6} & 91.73(10) & 02-\text{Ni1-O6} & 92\\ \text{D2-Ni1-N1} & 86.72(12) & 02-\text{Ni1-N2} & 170.41(12) & 05-\text{Ni1-O6} & 92\\ \text{D5-Ni1-O8} & 86.08(11) & 05-\text{Ni1-N1} & 170.72(12) & 05-\text{Ni1-N2} & 88\\ \text{D6-Ni1-O8} & 178.00(10) & 06-\text{Ni1-N1} & 94.07(12) & 06-\text{Ni1-N2} & 92\\ \text{D8-Ni1-N1} & 87.51(12) & 08-\text{Ni1-N2} & 85.68(12) & \text{N1-Ni1-N2} & 92\\ \text{D8-Ni1-N1} & 87.51(12) & 08-\text{Ni1-N2} & 85.68(12) & \text{N1-Ni1-N2} & 92\\ \text{D1-Sr1-O2} & 60.20(8) & 01-\text{Sr1-O2}^{\#1} & 108.97(8) & 01-\text{Sr1-O7}^{\#1} & 10\\ \text{D1-Sr1-O7}^{\#1} & 76.99(1) & 01-\text{Sr1-O2}^{\#1} & 108.97(8) & 01-\text{Sr1-O7}^{\#1} & 10\\ \text{D2-Sr1-O7}^{\#1} & 76.83(9) & 02-\text{Sr1-O5}^{\#1} & 167.40(8) & 02-\text{Sr1-O7}^{\#1} & 10\\ \text{D2-Sr1-O7}^{\#1} & 108.97(8) & 02-\text{Sr1-O2}^{\#1} & 167.40(8) & 02-\text{Sr1-O7}^{\#1} & 1\\ \text{D5-Sr1-O2}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 105.89(8) & 07-\text{Sr1-O7}^{\#1} & 1\\ \text{D7-Sr1-O7}^{\#1} & 76.83(9) & 07-\text{Sr1-O2}^{\#1} & 105.89(8) & 07-\text{Sr1-O7}^{\#1} & 1\\ \text{D7-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 105.89(8) & 07-\text{Sr1-O7}^{\#1} & 1\\ \text{D7-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 163.99(10) & 01^{\#1-\text{Sr1-O2}^{\#1}} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 73.27(9) & 02-\text{SP1-O5}^{\#1} & 60.21(8) & 01^{\#1-\text{Sr1-O7}^{\#1}} & 7\\ \text{D5-Sr1-O7}^{\#1} & 73.27(9) & 02-D5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Cu1 O13                         | 104.35(0) |             |            |             |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mplex 2                           |           |             |            |             |          |
| $\begin{array}{c} \text{Ni1-O8} & 2.169(3) & \text{Ni1-N1} & 2.068(3) & \text{Ni1-N2} & 2\\ \text{Sr1-O1} & 2.667(3) & \text{Sr1-O2} & 2.517(2) & \text{Sr1-O5} & 2\\ \text{Sr1-O7} & 2.525(3) & \text{Sr1-O1}^{\sharp 1} & 2.667(3) & \text{Sr1-O2}^{\sharp 1} & 2\\ \text{Sr1-O7}^{\sharp 1} & 2.511(2) & \text{Sr1-O7}^{\sharp 1} & 2.657(3) & \text{Sr1-O2}^{\sharp 1} & 2\\ \text{Sr1-O5}^{\sharp 1} & 2.511(2) & \text{Sr1-O7}^{\sharp 1} & 2.525(3) & \\ \text{D2-Ni1-O5} & 86.26(10) & \text{O2-Ni1-O6} & 91.73(10) & \text{O2-Ni1-O6} & 9\\ \text{D2-Ni1-N1} & 86.72(12) & \text{O2-Ni1-N2} & 170.41(12) & \text{O5-Ni1-O6} & 9\\ \text{D2-Ni1-O8} & 86.08(11) & \text{O5-Ni1-N1} & 170.72(12) & \text{O5-Ni1-N2} & 8\\ \text{D6-Ni1-O8} & 178.00(10) & \text{O6-Ni1-N1} & 94.07(12) & \text{O6-Ni1-N2} & 9\\ \text{D8-Ni1-N1} & 87.51(12) & \text{O8-Ni1-N2} & 85.68(12) & \text{N1-Ni1-N2} & 9\\ \text{D8-Ni1-N1} & 87.51(12) & \text{O8-Ni1-O5} & 118.79(8) & \text{O1-Sr1-O7} & 1\\ \text{D1-Sr1-O2} & 60.20(8) & \text{O1-Sr1-O2}^{\sharp 1} & 108.97(8) & \text{O1-Sr1-O7} & 1\\ \text{D1-Sr1-O7}^{\sharp 1} & 76.99(1) & \text{O1-Sr1-O2}^{\sharp 1} & 108.97(8) & \text{O2-Sr1-O7}^{\sharp 1} & 1\\ \text{D2-Sr1-O7}^{\sharp 1} & 108.97(8) & \text{O2-Sr1-O2}^{\sharp 1} & 167.40(8) & \text{O2-Sr1-O5}^{\sharp 1} & 1\\ \text{D2-Sr1-O7}^{\sharp 1} & 108.97(8) & \text{O3-Sr1-O7}^{\sharp 1} & 167.40(8) & \text{O2-Sr1-O7}^{\sharp 1} & 1\\ \text{D3-Sr1-O7}^{\sharp 1} & 105.89(8) & \text{O5-Sr1-O7}^{\sharp 1} & 161.16(8) & \text{O5-Sr1-O7}^{\sharp 1} & 9\\ \text{O7-Sr1-O7}^{\sharp 1} & 163.99(10) & \text{O1}^{\sharp 1-Sr1-O2}^{\sharp 1} & 105.89(8) & \text{O7-Sr1-O7}^{\sharp 1} & 1\\ \text{D1}^{\sharp 1-Sr1-O7}^{\sharp 1} & 163.99(10) & \text{O1}^{\sharp 1-Sr1-O2}^{\sharp 1} & 105.89(8) & \text{O7-Sr1-O7}^{\sharp 1} & 1\\ \text{D3-Sr1-O7}^{\sharp 1} & 163.99(10) & \text{O1}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ \text{O5}^{\sharp 1-Sr1-O7}^{\sharp 1} & 164.9(9) & \text{O2}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ \text{O5}^{\sharp 1-Sr1-O7}^{\sharp 1} & 164.9(9) & \text{O2}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ \text{O5}^{\sharp 1-Sr1-O7}^{\sharp 1} & 164.9(9) & \text{O2}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ \text{O5}^{\sharp 1-Sr1-O7}^{\sharp 1} & 164.9(9) & \text{O2}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ \text{O5}^{\sharp 1-Sr1-O7}^{\sharp 1} & 164.9(9) & \text{O2}^{\sharp 1-Sr1-O5}^{\sharp 1} & 65.81(8) & \text{O2}^{\sharp 1-Sr1-O7}^{\sharp 1} & 7\\ $                                                                                                                                                                                                                              | •                                 | 2.011(3)  | Ni1-O5      | 1.984(2)   | Ni1-O6      | 2.063(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             | 2.042(3) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | . ,       |             | ( )        |             | 2.511(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | ` '       |             | ` '        |             | 2.517(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             | . ,        |             | (=)      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | ` '       |             | ` '        | O2-Ni1-O8   | 87.13(10 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | . ,       |             | . ,        |             | 92.21(10 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             | 86.94(12 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | ` '       |             | ` ,        |             | 95.27(12 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | . ,       |             | . ,        |             | 99.27(14 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             | 116.48(9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | ( )       |             | ( )        |             | 150.00(8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -Sr1-O7 <sup>#1</sup>             |           |             | . ,        |             | 75.92(8) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -Sr1-O1 <sup>#1</sup>             |           |             |            |             | 126.78(8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -511-01<br>-\$r1-07 <sup>#1</sup> | . ,       |             | . ,        |             | 150.00(8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             | 92.77(9) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           |             |            |             | 92.76(9) |
| Complex 3 Ni2-O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | . ,       |             |            |             | 118.79(8 |
| Complex 3 Ni2-O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |           | 02 -511-05  | 65.81(8)   | 02 -511-07  | 75.93(8) |
| Ni2-O5     2.085(3)     Ni2-O8     2.006(3)     Ni2-O20     2       Ni2-O22     2.14(6)     Ni2-N14     2.077(3)     Ni2-N18     2       Ni3-O9     2.005(3)     Ni3-O12     2.152(3)     Ni3-O13     2       Ni3-O16     2.059(3)     Ni3-N25     2.052(3)     Ni3-N35     2       Ba1-O8     2.699(3)     Ba1-O9     2.683(3)     Ba1-O11     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 511 07                            | 73.27(9)  |             |            |             |          |
| Ni2-O22       2.14(6)       Ni2-N14       2.077(3)       Ni2-N18       2         Ni3-O9       2.005(3)       Ni3-O12       2.152(3)       Ni3-O13       2         Ni3-O16       2.059(3)       Ni3-N25       2.052(3)       Ni3-N35       2         Ba1-O8       2.699(3)       Ba1-O9       2.683(3)       Ba1-O11       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mplex 3                           |           |             |            |             |          |
| Ni2-O22     2.14(6)     Ni2-N14     2.077(3)     Ni2-N18     2       Ni3-O9     2.005(3)     Ni3-O12     2.152(3)     Ni3-O13     2       Ni3-O16     2.059(3)     Ni3-N25     2.052(3)     Ni3-N35     2       Ba1-O8     2.699(3)     Ba1-O9     2.683(3)     Ba1-O11     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-O5                              | 2.085(3)  | Ni2-O8      | 2.006(3)   | Ni2-O20     | 2.017(3) |
| Ni3-O9       2.005(3)       Ni3-O12       2.152(3)       Ni3-O13       2         Ni3-O16       2.059(3)       Ni3-N25       2.052(3)       Ni3-N35       2         3a1-O8       2.699(3)       Ba1-O9       2.683(3)       Ba1-O11       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |           | Ni2-N14     |            |             | 2.033(3) |
| Ni3-O16 2.059(3) Ni3-N25 2.052(3) Ni3-N35 2<br>3a1-O8 2.699(3) Ba1-O9 2.683(3) Ba1-O11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | ` ,       |             |            |             | 2.045(3) |
| Ba1-O8 2.699(3) Ba1-O9 2.683(3) Ba1-O11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | ` '       |             | ` '        |             | 2.090(3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |             |            |             | 2.788(3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 2.695(3)  | Ba1-O17     | 2.897(3)   | Ba1-O19     | 2.858(3) |
| lio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | ` '       |             | ` '        |             | 3.128(3) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 1.1.      |             |            |             | 1.7      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | ` '       |             | ` '        |             | 177.6(1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |             |            |             | 85.98(1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | ` ,       |             |            |             | 86.40(1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |             | , ,        |             | 171.80(  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |             |            |             | 100.19(  |
| O9-Ni3-O12 84.24(11) O9-Ni3-O13 91.41(11) O9-Ni3-O16 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -Ni3-O12                          | 84.24(11) | O9-Ni3-O13  | 91.41(11)  | O9-Ni3-O16  | 89.72(1  |

**RSC Advances** 

| Ta | h | ما | 2 | C | $\sim$ | n | t | _ | 1 | ١ |
|----|---|----|---|---|--------|---|---|---|---|---|
|    |   |    |   |   |        |   |   |   |   |   |

| O9-Ni3-N25  | 174.23(13) | O9-Ni3-N35   | 83.75(12) | O12-Ni3-O13 | 87.89(12)  |
|-------------|------------|--------------|-----------|-------------|------------|
| O12-Ni3-O16 | 173.76(11) | O12-Ni3- N25 | 90.16(13) | O12-Ni3-N35 | 87.00(12)  |
| O13-Ni3-O16 | 90.70(12)  | O13-Ni3-N25  | 86.97(13) | O13-Ni3-N35 | 173.28(11) |
| O16-Ni3-N25 | 95.83(13)  | O16-Ni3-N35  | 93.92(13) | N25-Ni3-N35 | 97.39(14)  |
| O8-Ba1-O9   | 57.67(7)   | O8-Ba1-O11   | 107.89(8) | O8-Ba1-O13  | 122.39(8)  |
| O8-Ba1-O17  | 172.94(8)  | O8-Ba1-O19   | 111.07(8) | O8-Ba1-O20  | 61.13(8)   |
| O8-Ba1-O23  | 90.11(9)   | O9-Ba1-O11   | 145.91(8) | O9-Ba1-O13  | 65.25(8)   |
| O9-Ba1-O17  | 121.39(8)  | O9-Ba1-O19   | 135.21(8) | O9-Ba1-O20  | 115.47(8)  |
| O9-Ba1-O23  | 65.68(9)   | O11-Ba1-O13  | 115.18(9) | O11-Ba1-O17 | 68.85(8)   |
| O11-Ba1-O19 | 77.65(9)   | O11-Ba1-O20  | 71.30(9)  | O11-Ba1-O23 | 148.41(9)  |
| O13-Ba1-O17 | 56.15(8)   | O13-Ba1-O19  | 113.98(9) | O13-Ba1-O20 | 168.29(8)  |
| O13-Ba1-O23 | 72.47(9)   | O17-Ba1-O19  | 74.75(9)  | O17-Ba1-O20 | 121.90(8)  |
| O17-Ba1-O23 | 95.67(9)   | O19-Ba1-O20  | 56.57(8)  | O19-Ba1-O23 | 71.61(9)   |
| O20-Ba1-O23 | 96.91(9)   |              |           |             |            |

<sup>&</sup>lt;sup>a</sup> Symmetry transformations used to generate equivalent atoms:  $^{#1} - x + 1$ , -y + 1, -z + 1 (complex 2);  $^{#2} - x + 1$ , y, -z + 3/2 (complex 3).



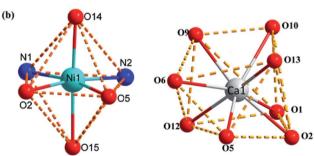
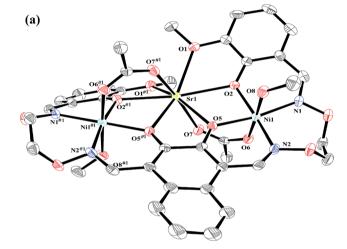




Fig. 4 (a) View of the molecular structure of complex 1 (hydrogen atoms and solvent molecules are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level). (b) Coordination polyhedra for Ni(II) and Ca(II) atoms of complex 1.

2.525(3) Å, which are obviously shorter than the distances of the other two Sr1-O bonds (Sr1-O1 2.667(3) Å and Sr1-O1<sup>#1</sup> 2.667(3) Å). Obviously, the Sr-O bond lengths in complex 2 are larger than the corresponding Ca-O bond lengths found in complex 1.

#### Crystal structure of complex 3

The crystal structure and atom numbering of complex 3 is shown in Fig. 6. Complex 3 crystallizes in the monoclinic crystal



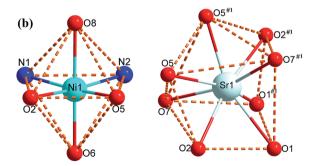
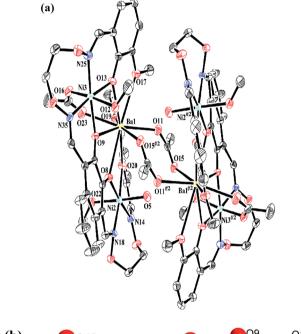



Fig. 5 (a) View of the molecular structure of complex 2 (hydrogen atoms and solvent molecules are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level). (b) Coordination polyhedra for Ni(II) and Sr(II) atoms of complex 2.

system, space group  $P2_1/n$ . In complex 3, the terminal Ni(II) atom (Ni2 or Ni3) is hexa-coordinated with a slightly distorted octahedral geometry. Where the inner N2O2 cavities of completely deprotonated  $(L)^{4-}$  units as the basal plane, and one oxygen atom (O22) from the coordinated methanol molecule, the other oxygen atom (O5) from the coordinated H<sub>2</sub>O molecule


Paper

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Open Access Article. Published on 16 spalio 2017. Downloaded on 2025-08-27 12:23:43.

for the Ni2 atom. Similarly, one oxygen atom (O12) from the coordinated methanol molecule, the other oxygen atom (O16) from the  $\mu$ -acetate ion for the Ni3 atom. It is unexpected that the coordination of two µ<sub>2</sub>-acetate ions bridge the Ba1 and Ba1<sup>#2</sup> atoms in a familiar  $\mu_2$ -fashion, finally forming a heterohexanuclear dimer. To our knowledge, this novel 2:6  $((L)^{4-}: M^{2+})$  heterohexanuclear complex isn't reported in the bis(salamo)-type complexes. 1,2e,11c

The central Ba1 atom is nona-coordinated with a slightly distorted tricapped trigonal prism geometry, which is different from the Ca1 and Sr1 atoms. The distances between the Ba1 atom and the four phenoxy oxygen atoms (O8, O9, O13 and O20) and the  $\mu_2$ acetate oxygen atom (O23) are ranged from 2.683(3) to 2.761(3) Å, which are evidently shorter than the distances between the Ba1 atom and the two methoxy oxygen atoms (O17 and O19) (Ba1-O17 2.897(3) Å and Ba1–O19 2.858(3) Å) and the two  $\mu_2$ -acetate oxygen atoms (O11 and O15#2) (Ba1-O11 2.788(3) Å and Ba1-O15#2 3.128(3) Å).

As a result, when the two N2O2 salamo moieties are metalated with d-block transition metals, the conformation of the



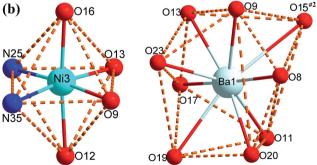



Fig. 6 (a) View of the molecular structure of complex 3 (hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level). (b) Coordination polyhedra for Ni(II) and Ba(II) atoms of complex 3

molecules is restricted so that the phenoxo oxygen atoms are directed inward to form an O<sub>6</sub> cavity. Since the O<sub>6</sub> cavity is large, the Ca(II), Sr(II) or Ba(II) atoms are suitable for this size, and will coordinate to form the C-shaped complexes.

The resulting geometries of Ni1 and Ni2 are both distorted octahedral geometries with hexa-coordinated, Ca1 and Sr1 are octa-coordinated with geometries of square antiprisms respectively. However, Ba1 has bigger size than the cavity, so the coordination of metal atoms with the methanol molecules and H<sub>2</sub>O makes the structure more stable. The resulting geometry of Ba1 is rarely tricapped trigonal prismatic geometry. As the cation radius increases, the coordination bond lengths of the central cation are distinctly becoming larger and larger. This fact suggests that the radius size of central cation is a significant factor which affects binding ability of the central O<sub>6</sub> site. As a result, the coordinating capability in the central O6 site is in the order of Ca(II) > Sr(II) > Ba(II), which obtained the same conclusion with fluorescent titration.

# Conclusion

Three heterometallic Ni(II)-M(II) (M = Ca, Sr and Ba) complexes 1-3 have been designed and synthesized. X-ray crystal structures reveal that the different nature of the N2O2 and O6 sites of the ligand H<sub>4</sub>L leads to the site-selective introduction of two different kinds of metal(II) atoms. The coordination number of Ca(II) Sr(II) and Ba(II) atoms in the O<sub>6</sub> environment are 8, 8 and 9, respectively, and have slightly square antiprism and square tricapped trigonal prism gemtries. As a result, the coordinating capability in the central  $O_6$  site is in the order of Ca(II) > Sr(II) >Ba(II). Fluorescence titration experiments show that Ni<sup>2+</sup> led to the fluorescence quenching of H<sub>4</sub>L. Owing to their electrostatic interaction and their size-fit principle, rare-earth(III) atoms would easier to occupy the center of the O6 position successfully, which could be used for the recognition of rare-earth(III) atoms. The related research is underway.

# Conflicts of interest

There are no conflicts to declare.

# Acknowledgements

This work was supported by the National Natural Science Foundation of China (21361015 and 21761018) and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), which are gratefully acknowledged.

# References

- 1 S. Akine, T. Taniguchi and T. Nabeshima, Inorg. Chem., 2008, 47, 3255-3264.
- 2 (a) G. Murugavel, P. Sadhu and T. Punniyamurthy, Chem. Rec., 2016, 16, 1906-1917; (b) Y. Xu, D. Yuan, Y. Wang and Y. Yao, Dalton Trans., 2017, 46, 5848-5855; (c) H. L. Wu, Y. C. Bai, Y. H. Zhang, G. L. Pan, J. Kong, F. R. Shi and X. L. Wang, Z. Anorg. Allg. Chem., 2014, 640, 2062-2071; (d)

- X. Q. Song, P. P. Liu, Z. R. Xiao, X. Li and Y. A. Liu, *Inorg. Chim. Acta*, 2015, 438, 232–244; (e) L. Chen, W. K. Dong, H. Zhang, Y. Zhang and Y. X. Sun, *Cryst. Growth Des.*, 2017, 17, 3636–3648; (f) X. Y. Li, L. Chen, L. Gao, Y. Zhang, S. F. Akogun and W. K. Dong, *RSC Adv.*, 2017, 7, 35905–35916; (g) E. V. Alekseeva, I. A. Chepurnaya, V. V. Malev, A. M. Timonovb and O. V. Levina, *Electrochim. Acta*, 2017, 225, 378–391; (h) R. Irie and T. Katsuki, *Chem. Rec.*, 2004, 4, 96–109; (i) T. Nabeshima and S. Akine, *Chem. Rec.*, 2008, 8, 240–251.
- 3 (a) P. P. Liu, L. Sheng, X. Q. Song, W. Y. Xu and Y. A. Liu, *Inorg. Chim. Acta*, 2015, 434, 252–257; (b) X. Q. Song, Y. Q. Peng, G. Q. Cheng, X. R. Wang, P. P. Liu and W. Y. Xu, *Inorg. Chim. Acta*, 2015, 427, 13–21.
- 4 (a) X. Y. Dong, Y. X. Sun, L. Wang and L. Li, J. Chem. Res., 2012, 36, 387–390; (b) P. Wang and L. Zhao, Spectrochim. Acta, Part A, 2015, 135, 342–350; (c) C. Y. Chen, J. W. Zhang, Y. H. Zhang, Z. H. Yang, H. L. Wu, G. L. Pan and Y. C. Bai, J. Coord. Chem., 2015, 68, 1054–1071.
- 5 (a) L. H. Li, W. K. Dong, Y. Zhang, S. F. Akogun and L. Xu, Appl. Organomet. Chem., 2017, DOI: 10.1002/aoc.3818; (b)
   T. K. Chin, S. Endud, S. Jamil, S. Budagumpi and H. O. Lintang, Catal. Lett., 2013, 143, 282–288.
- 6 (a) W. K. Dong, X. L. Li, L. Wang, Y. Zhang and Y. J. Dong, Spectrochim. Acta, Part B, 2016, 229, 370–378; (b)
  W. K. Dong, S. F. Akogun, Y. Zhang, Y. X. Sun and X. Y. Dong, Spectrochim. Acta, Part B, 2017, 238, 723–734; (c) B. J. Wang, W. K. Dong, Y. Zhang and S. F. Akogun, Spectrochim. Acta, Part B, 2017, 247, 254–264.
- 7 (*a*) W. K. Dong, J. C. Ma, L. C. Zhu, Y. Zhang and X. L. Li, *Inorg. Chim. Acta*, 2016, 445, 140–148; (*b*) Ş. Ömer, Ö. Ö. Ümmühan, S. Nurgul, A. Burcu, S. Musa, T. Tuncay and S. Zeynel, *Tetrahedron*, 2016, 72, 5843–5852.
- 8 (a) T. Z. Yu, K. Zhang, Y. L. Zhao, C. H. Yang, H. Zhang, L. Qian, D. W. Fan, W. K. Dong, L. L. Chen and Y. Q. Qiu, Inorg. Chim. Acta, 2008, 361, 233-240; (b) Y. J. Dong, X. Y. Dong, W. K. Dong, Y. Zhang and L. S. Zhang, Polyhedron, 2017, 123, 305-315; (c) W. K. Dong, J. C. Ma, Y. J. Dong, L. Zhao, L. C. Zhu, Y. X. Sun and Y. Zhang, J. Coord. Chem., 2016, 69, 3231-3241; (d) H. L. Wu, C. P. Wang, F. Wang, H. P. Peng, H. Zhang and Y. C. Bai, J. Chin. Chem. Soc., 2015, 62, 1028-1034; (e) W. K. Dong, J. C. Ma, L. C. Zhu, Y. X. Sun, S. F. Akogun and Y. Zhang, Cryst. Growth Des., 2016, 16, 6903-6914; (f) L. Liu, W. Feng, X. Lu and W. K. Wong, Inorg. Chem. Commun., 2017, 75, 29–32; (g) X. Yang and R. A. Jones, J. Am. Chem. Soc., 2005, 127, 7686-7687; (h) F. Wang, L. Gao, Q. Zhao, Y. Zhang, W. K. Dong and Y. J. Ding, Spectrochim. Acta, Part A, 2018, 190, 111-115.
- (a) W. K. Dong, J. C. Ma, Y. J. Dong, L. C. Zhu and Y. Zhang, Polyhedron, 2016, 115, 228–235; (b) S. S. Zheng, W. K. Dong, Y. Zhang, L. Chen and Y. J. Ding, New J. Chem., 2017, 41, 4966–4973; (c) H. Zhang, W. K. Dong, Y. Zhang and S. F. Akogun, Polyhedron, 2017, 133, 279–293; (d) P. Seth, S. Ghosh, A. Figuerola and A. Ghosh, Dalton Trans., 2014, 43, 990–998; (e) A. B. Canaj, M. Siczek, M. Otręba, T. Lis,

- G. Lorusso, M. Evangelisti and C. J. Milioset, *Dalton Trans.*, 2016, 45, 18591–18602.
- 10 (a) X. Y. Dong, S. F. Akogun, W. M. Zhou and W. K. Dong, J. Chin. Chem. Soc., 2017, 64, 412-419; (b) Y. J. Dong, X. L. Li, Y. Zhang and W. K. Dong, Supramol. Chem., 2017, 29, 518-527; (c) W. K. Dong, J. Zhang, Y. Zhang and N. Li, Inorg. Chim. Acta, 2016, 444, 95-102; (d) W. K. Dong, F. Zhang, N. Li, L. Xu, Y. Zhang, J. Zhang and L. C. Zhu, Z. Anorg. Allg. Chem., 2016, 642, 532-538; (e) W. K. Dong, G. Li, Z. K. Wang and D. X. Yong, Spectrochim. Acta, Part A, 2014, 133, 340-347.
- (a) S. Akine, T. Tadokoro and T. Nabeshima, *Inorg. Chem.*,
   2012, 51, 11478–11486; (b) S. Akine and T. Nabeshima,
   *Dalton Trans.*, 2009, 47, 10395–10408; (c) J. Hao, L. L. Li,
   J. T. Zhang, S. F. Akogun, L. Wang and W. K. Dong,
   *Polyhedron*, 2017, 134, 1–10.
- 12 (a) L. Wang, J. C. Ma, W. K. Dong, L. C. Zhu and Y. Zhang, Z. Anorg. Allg. Chem., 2016, 642, 834–839; (b) H. L. Wu, G. L. Pan, H. Wang, X. L. Wang, Y. C. Bai and Y. H. Zhang, J. Photochem. Photobiol., B, 2014, 135, 33–43; (c) Y. A. Liu, C. Y. Wang, M. Zhang and X. Q. Song, Polyhedron, 2017, 127, 278–286; (d) H. L. Wu, G. L. Pan, Y. C. Bai, H. Wang, J. Kong, F. Shi, Y. H. Zhang and X. L. Wang, J. Chem. Res., 2014, 38, 211–217; (e) H. L. Wu, Y. C. Bai, Y. H. Zhang, Z. Li, M. C. Wu, C. Y. Chen and J. W. Zhang, J. Coord. Chem., 2014, 67, 3054–3066.
- 13 H. A. Tran, J. Collins and P. E. Georghiou, *New J. Chem.*, 2008, 32, 1175–1182.
- 14 D. W. Dixon and R. H. Weiss, J. Org. Chem., 1984, 49, 4487–4494.
- S. Akine, T. Taniguchi, W. K. Dong, S. Masubuchi and T. Nabeshima, *J. Org. Chem.*, 2005, 70, 1704–1711.
- 16 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 17 P. P. Liu, C. Y. Wang, M. Zhang and X. Q. Song, *Polyhedron*, 2017, **129**, 133–140.
- 18 (a) W. K. Dong, P. F. Lan, W. M. Zhou and Y. Zhang, J. Coord. Chem., 2016, 69, 1272–1283; (b) W. K. Dong, S. S. Zheng, J. T. Zhang, Y. Zhang and Y. X. Sun, Spectrochim. Acta, Part A, 2017, 184, 141–150.
- 19 (a) X. Y. Dong, Q. P. Kang, B. X. Jin and W. K. Dong, Z. Naturforsch., 2017, 72, 415–420; (b) L. M. Pu, H. T. Long, Y. Zhang, Y. Bai and W. K. Dong, Polyhedron, 2017, 128, 57–67.
- 20 W. K. Dong, L. C. Zhu, J. C. Ma, Y. X. Sun and Y. Zhang, *Inorg. Chim. Acta*, 2016, 453, 402–408.
- 21 S. Akine, T. Taniguchi and T. Nabeshima, *Chem. Lett.*, 2001, **30**, 682–683.
- 22 W. K. Dong, L. C. Zhu, Y. J. Dong, J. C. Ma and Y. Zhang, Polyhedron, 2016, 117, 148–154.
- 23 M. Tümer, H. Köksal, M. K. Sener and S. Serin, *Transition Met. Chem.*, 1999, 24, 414–420.
- 24 (a) L. Q. Chai, G. Wang, Y. X. Sun, W. K. Dong, L. Zhao and X. H. Gao, J. Coord. Chem., 2012, 65, 1621–1631; (b)
  L. Q. Chai, K. Y. Zhang, L. J. Tang, J. Y. Zhang and H. S. Zhang, Polyhedron, 2017, 130, 100–107; (c) L. Q. Chai, L. J. Tang, L. C. Chen and J. J. Huang, Polyhedron, 2017,

122, 228–240; (*d*) L. Xu, L. C. Zhu, J. C. Ma, Y. Zhang, J. Zhang and W. K. Dong, *Z. Anorg. Allg. Chem.*, 2015, **641**, 2520–2524; (*e*) L. Q. Chai, J. J. Huang, J. Y. Zhang and Y. X. Li, *J. Coord. Chem.*, 2015, **68**, 1224–1237; (*f*) X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou and X. L. Wang, *Dalton Trans.*, 2016, **45**, 8154–8163.

- 25 H. A. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.*, 1949, 71, 2703–2707.
- 26 (a) W. K. Dong, J. C. Ma, L. C. Zhu and Y. Zhang, New J. Chem., 2016, 40, 6998–7010; (b) W. K. Dong, L. S. Zhang, Y. X. Sun, M. M. Zhao, G. Li and X. Y. Dong, Spectrochim. Acta, Part A, 2014, 121, 324–329.