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Open boundary molecular dynamics of sheared
star-polymer melts

Jurij Sablić,a Matej Praprotnik*ab and Rafael Delgado-Buscalioni*cd

Open boundary molecular dynamics (OBMD) simulations of a sheared star polymer melt under

isothermal conditions are performed to study the rheology and molecular structure of the melt under a

fixed normal load. Comparison is made with the standard molecular dynamics (MD) in periodic (closed)

boxes at a fixed shear rate (using the SLLOD dynamics). The OBMD system exchanges mass and

momentum with adjacent reservoirs (buffers) where the external pressure tensor is imposed. Insertion

of molecules in the buffers is made feasible by implementing there a low resolution model (blob-

molecules with soft effective interactions) and then using the adaptive resolution scheme (AdResS) to

connect with the bulk MD. Straining with increasing shear stress induces melt expansion and a

significantly different redistribution of pressure compared with the closed case. In the open sample, the

shear viscosity is also a bit lowered but more stable against the viscous heating. At a given Weissenberg

number, molecular deformations and material properties (recoverable shear strain and normal stress ratio)

are found to be similar in both setups. We also study the modelling effect of normal and tangential friction

between monomers implemented in a dissipative particle dynamics (DPD) thermostat. Interestingly, the

tangential friction substantially enhances the elastic response of the melt due to a reduction of the kinetic

stress viscous contribution.

1. Introduction

Die swelling1 is a well known phenomenon in polymer melts
and most viscoelastic liquids which consist of the sudden
expansion of the liquids after exiting a slit or orifice. The most
frequent explanation has a microscopic origin: molecules elon-
gate in the stream direction and compress perpendicularly
exerting extra elastic pressure in the normal planes. This leads
to the so-called normal stress differences which are the land-
mark of viscoelasticity. Despite this accepted view, the devil is
in the details and although considerable effort has been carried
out since the middle of the last century (see e.g. ref. 1 for
historic details), accurate modelling of polymer melts is a very
difficult task. Any of the many constitutive relationships1 for
continuum models cannot generally predict the rheology of
a new molecular polymer design. In turn, the huge span in
time scales in any standard polymer melt limits the scope of

molecular dynamics (MD) to simple rheological tests with
extremely small samples under simple (usually steady) flows.
However, a detailed account of bonded and non-bonded inter-
actions in atomistic (AT) simulations (see e.g. ref. 2–4) is able
to grasp relevant information, maybe then to feed continuum
(fluid dynamics) models. In between, coarse grained (CG)
molecular modelling is useful due to many reasons. We give
at least a couple of reasons: first, polymer science has some
degree of universality which benefits the use of simplified
models, quite often able to provide insight and valuable pre-
dictions.4,5 Second, the theory of coarse graining to extract
precise coarse potential interactions pertaining to the atomistic
model at hand is now advancing at a relatively fast rate.4,6,7

More recently, the community has started to recognize the
relevance of the dynamic aspects of coarse graining either
based on GENERIC8 or the Mori–Zwanzig formalism.9 The idea
is to perform short atomistic simulations8 to extract the quan-
tities determining the reversible and irreversible dynamics of
the slow variables, such as the friction kernels.9 These friction
kernels (between polymer ‘‘blobs’’) are naturally implemented
in the dissipative particle dynamics (DPD) method as, notably,
Español et al.9 showed (under the Markovian and pairwise
approximations) that DPD can be formally derived from the
Mori–Zwanzig coarse graining route. Another relatively newer
route is the use of hybrid models concurrently combining
continuum and molecular simulations. Yasuda et al.10 and
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other (mostly Japanese) groups have exploited a version of these
hybrids to model polymer melts. We have also worked in this
field using essentially the same technique used in this work for
simple fluids.11,12 Contrary to Yasuda et al.10 and other hybrid
schemes, the present method is designed to open up the
simulation box so as to consider melt expansions. Here, we
apply the idea to study the rheology of much larger, polymeric
molecules. At present, we restrict to the open boundary molecular
dynamics (OBMD) simulation,13 without connection to the
continuum side. However, the present method naturally con-
nects with continuum fluid dynamics via hybrid schemes.14–20

Another aspect of this work is the use of DPD as a tool
to check the effect of monomer friction on the rheological
behaviour of these CG models. In particular, the tangential
friction between blobs naturally arises while performing
dynamic coarse graining9 but is seldom included in these sort
of analyses (see for example the DPD study for melts by Fedosov
et al.21). To conclude our comments on methodological aspects,
we also note that the present simulations in open domains use
a useful trick which consists of using an even lower detailed
molecular model to feed the molecular reservoir close to the open
system boundaries. The idea is taken from the so-called ‘‘adaptive
resolution scheme’’ (AdResS)22–34 and permits to generalize
the use of AdResS in standard periodic (closed) boxes (see e.g.
ref. 11, 12 and 35–37).

The main physical question we pose here is what are the
rheological consequences of imposing a fixed pressure load to a
sheared sample of polymer melt, compared to the case of
shearing at a fixed volume. This question was also raised by a
bunch of groups spread over the last two decades38–43

with contradictory results. It is indeed a particularly relevant
question for molecular simulations because the vast majority of
numerical studies on melts have considered closed (usually
periodic) systems, while many rheological experiments are
carried out under a normal load: melts across slabs in ref. 44
(cited experiments therein) or a cone and plate rheometry
under a fixed load.1

From the fundamental side, this question connects with the
already mentioned die swelling phenomenon whose details are
still not completely understood. It also connects with another
interesting question which is, what consequences do boundary
constraints have on flowing (far-from-equilibrium) polymer
melts (see ref. 45 for a recent study). The OBMD is a flexible
tool for these questions on boundary constraints because it
can be tuned to permit different ensembles46 such as the grand
canonical, isoenthalpic, isothermal, constant stress (Neumann-
like) or constant shear (Dirichlet-like).14 In particular, it could
be useful to validate theories for non-equilibrium thermo-
dynamics (such as extended thermodynamics47,48), or the far
from trivial fate of fluctuations of mass (related to sound
modes) and momentum in sheared complex fluids, which often
lead to undesirable instabilities in sheared or extruded melts,
like the shark skin.1,49

Even in unentangled melts, the influence of boundary or
global constraints on the density expansion of sheared melts is
still poorly understood with the studies presenting contradicting

results. At least there is a consensus on the fact that for a given
shear, the shear viscosity Z is larger in the isochoric (NVT)
constraint than under either a constant pressure39,40 or a
constant load.43,44 A clear manifestation of this effect was
presented in a numerical study of Thompson et al.,44 in which
a slab of lubricating liquid (20-mers) flowing between two
solid walls presented a shear thinning exponent bZ C 2/3
under a constant normal load, while just 0.5 under a constant
volume (here Z B _g�bZ with _g the shear rate). This effect has
been ascribed to the shear dilatancy manifesting in a larger
hydrostatic pressure under a constant volume.39,40 Indeed, the
viscosity of polymer melts often increases with the pressure49 as
also observed in ref. 44. In Section 6, we offer a more precise
analysis showing that the spring stress is reduced in the
open system due to the smaller intermolecular friction in the
expanded melt.

There are several kinds of ‘‘isobaric’’ conditions: a constant
hydrostatic pressure (Piso) is usually termed isobaric, while a
constant normal load (here P22) is closer to industrial processes
like slit extrusion1 or lubricants.44 Both can show substantially
different rheological behaviours when compared with constant
volume studies (see e.g. ref. 44). Experimental studies of the
Couette flow under a constant load are also scarce and indicate
shear expansion and a measurable increase of the melt viscosity
with increasing external pressure.50,51

The most striking differences in the computational literature
are found in the density variation with shear. Dlugogorski38 (for
a FENE dumbbell) and Daivis and Evans (modelling decane)39

seem to be the first to perform a molecular simulation showing
the density decrease under shear (using isobaric conditions).
Daivis and Evans use the term ‘‘shear dilatancy’’, following the
term used by Reynolds on the same phenomenon (see the
quotation in ref. 39). Note that ‘‘shear dilatancy’’ has been later
often used instead of ‘‘shear thinning’’, but here it is not. By
contrast, Xu et al.40 (attractive linear chains up to 50-mers)
reported just the opposite result (compression under shear).
For (purely repulsive) branched chains (under NVT), they also
reported a reduction in the hydrostatic pressure with shear.
A subsequent study by Matin43 for linear chains at a constant
load (and chain lengths up to 50 monomers) found shear
dilatancy and also a non-monotonous trend for the hydrostatic
pressure (as Xu et al.40 and others2,3 did). Shear dilatancy was
later also found by Bosko et al.41 while analysing dendrimer
melts under isobaric conditions. Consistently, they found a
pressure increase under a constant volume. Shear dilatancy is
the trend we also observe but, under our imposed constant
normal load (which is closer to the experimental setup1,39,44) we
find that the density (and viscosity) is controlled by the load
and not by the hydrostatic pressure. However, there is a lack of
studies and the question remains about universality of shear
dilatancy of polymer melts under a Couette flow (consistent
with the die swelling phenomenon under a Poisson flow1).

To conclude the introduction some words should be said about
the technological relevance of star molecules (see discussion in
ref. 52–54) which certainly arises from their unique dynamic
features. Star molecules present a broad range of relaxation
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times associated with different molecules pulsations (rotation,
elastic deformation, and arm entanglements) analysed in
ref. 53. Each relaxation time triggers a change in the rheological
regime once the external perturbation (shear) exceeds the
corresponding threshold rate. The present results also illustrate this
phenomenon. Moreover, star molecules bridge the gap between
linear polymers and colloids54,55 and can present interesting
(colloidal-like) ordering effects, sometime enhanced due to their
softer character.53,56–59 In this context, a suggesting observation
in these simulations is the onset of some ordering in the neutral
direction at large shear rates whose origin (hydrodynamic or
entropic) remains to be established.

In Section 2, we briefly present the OBMD method which
was otherwise more thoroughly explained in ref. 13. The star
molecule melt model presented in Sections 3 and 4 shows that
the OBMD correctly reproduces thermodynamic equilibrium
according to the grand canonical ensemble. In Section 5, we
present the results for sheared melts in the absence of tangential
friction between monomers and analyze the results in Section 6
according to the pressure balance. This serves to enlighten the
discussion on the effect of tangential friction in Section 8.
Finally, Section 9 discusses some interesting results obtained
for melts presenting severe viscous heating that depends on the
characteristics of the DPD thermostats and their friction kernels.
Comparison with the previous results is made in Section 10,
while conclusions and future outlook are given in Section 11.

2 Open boundary molecular dynamics

We begin by briefly explaining the OBMD method which
combines features of the open MD46 and adaptive resolution.11

The reader is referred to a review on open MD14 and ref. 13 for a
more detailed presentation of the present OBMD implementa-
tion to star polymers. The OBMD simulation is carried out in an
open rectangular box which, in the present setup, permits the
MD domain to exchange mass and momentum through two of
its boundaries (along the x2 direction) with a reservoir (called
buffer) which is maintained at some desired thermo-mechanic
state. The two domains of finite extent of the buffer embed the
central part of the box (the MD domain). They allow for
molecular insertion or deletion so as to keep their average
molecular density fixed (typically to a fraction between 0.5 and
0.7 of the bulk density). The OBMD is therefore not periodic in
the coupling direction. Molecules are free to enter or leave the
buffer from or to the MD domain, but in doing so they cross
another layer where they gradually change their atomistic
resolution (73 monomers for the star molecule considered
hereby) to a reduced CG model, comprising one only spherical
‘‘blob’’ per molecule. Obviously the CG layer is placed inside the
buffer domain (which here also contains a smaller atomistic
part). This strategy permits to perform an otherwise impossible
task: the insertion of new polymeric molecules into the melt.
New molecules are inserted into the low resolution layer of the
buffer, where soft CG interactions govern the dynamics of
the blob-model polymers. Soft effective interactions can be

obtained from the Boltzmann iteration procedure,60,61 although
we shall see that in principle, the consistency of OBMD (in terms
of pressure balance across the layers) does not depend on the
CG potential chosen. The insertion of these blob molecules is
carried out by the USHER scheme62 and the change from CG
to monomer molecular resolution (usually termed atomistic
resolution, AT) is carried out by the AdResS.22–34

The dynamics of the monomers can be described by the
following equations of motion:

dri

dt
¼ vi; (1)

mi
dvi

dt
¼ Fad

i rf gð Þ þ Fth
i vf gð Þ þ Fext

i rið Þ: (2)

Here ri denotes the position of the i-th particle, vi its velocity,
and mi its mass. The total force acting on this particle has three
contributions: the external force Fext

i acting only on the particles
at the buffer (to impose the desired momentum flux); the adaptive
resolution force F ad

i , which accounts for all types of particle–
particle interactions, and the thermostat Fth

i contribution (here,
it is applied to the whole system).

The adaptive resolution force Fad
i is constructed to allow for

a momentum conserving ‘‘alchemic’’ transformation of the
molecules, which takes place gradually along the transition
layer (where 0 o w o 1, see below). The transition is achieved
by the following linear combination of the AT and CG forces
(FAT

ab and FCG
ab , respectively),22

Fad
ab = w(xa)w(xb)FAT

ab + (1 � w(xa)w(xb))FCG
ab . (3)

Both expressions are correspondingly weighted by a position
dependent function w(X), whose value equals 0 in the CG region
and 1 in the AT one and gradually changes in between (transition
layer). The adaptive resolution force provided by the AdResS is
not derived from a Hamiltonian and does not conserve the
energy.23 It is however constructed to obey Newton’s third law,
which ensures the conservation of total linear momentum of the
system and can thus be used to study fluid flows. This fact is
unimportant for the present study which targets isothermal
sheared systems (not-conserving energy anyhow). The OBMD
model might be generalized by using the recent Hamiltonian
AdResS (H-AdResS)63,64 which is based on a global Hamiltonian
(i.e. also allows Monte Carlo simulations). In such a hypothetical
case, extra care should be taken with the momentum conservation
because of the presence of drift-forces in H-AdResS coming from
the free energy difference between the AT and CG models.65

An essential function of the buffer region is the imposition
of boundary conditions to the open MD box. This is done by
adding an extra ‘‘external’’ force at the buffer regions, Fext,
calculated from eqn (4) (see e.g. ref. 66).

Fext ¼ Pout � Pinð Þ=dtþ AJ Pn (4)

Here, Pout and Pin represent the total linear momenta of the
particles that were removed and inserted into the simulation
in the last time step of integration dt. J P is the momentum flux
tensor, while n is the outward normal vector of an open-end
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plane of the box.11 In general, the pressure tensor contains
normal and tangential contributions, i.e. J P ¼ �pextnn nn� pextnt nt.
The external force is designed to exactly conserve the linear
momentum over the whole particle system (buffer + MD)
and it is distributed among the buffer particles according to
Fext

i = G(xi)F
ext. To allow a different distribution of the normal

and tangential forces, the distribution function G is chosen to
be a tensor defined by eqn (5),13

G xið Þ �
gjj xið ÞP

i2B
gjj xið Þ

nnþ g? xið ÞP
i2B

g? xið Þ
tt; (5)

with gJ determining the spatial distribution of the normal force
and g> the distribution of shear stress. Both functions are
depicted in Fig. 2.

Many OBMD applications (as those illustrated hereby)
involve transfer of momentum (the pressure tensor) from out-
side the MD domain. This requires a momentum conserving
thermostat. In production runs, we used the DPD thermostats
(while a strong damping Langevin for equilibration purposes).
Our choice for the DPD thermostat is not only to conserve
momentum (in principle one could use the Lowe-Andersen67)
but also because of modelling purposes. The Mori–Zwanzig
formalism, under Markovian conditions leads to coarse-graining
dynamics with DPD-like equations of motion.9 The solid theo-
retical results show that the friction kernels introduce an
important modelling aspect. The friction kernels in a CG model
of some real melt, should ideally be measured from force–force
correlations of the detailed all-atom model.9 Here, we adopt a
simpler but yet useful route, which is to study how friction
affects the rheology of the model melt. The generic form of the
DPD thermostat used is

Fth
i ¼ �

X
j

G rij
� �

vi � vj
� �

þ ~Rij ; (6)

where R̃ij is the fluctuating force constructed to satisfy the
fluctuation-dissipation under equilibrium conditions. We refer
the reader to ref. 68–70 for details on the DPD implementation.
As in ref. 9, 69 and 70 the friction kernel has normal and
tangential components,

G = gJnijnij + g>tijtij,

where nij is the vector joining two monomers i and j and tij

determines the directions in the perpendicular plane. The
kernels gJ and g> are distance dependent. Its shape (for a particular
all-atom model) can be obtained from dynamic CG,9 here we
will use Heaviside functions with a certain cutoff distance (see
Table 1 for details). Most thermostats require or introduce
some form of friction, albeit, the great majority of simulations
of polymer melts do not consider thermostating (and its added
friction) as part of the molecular model, but just a way to
remove the heat dissipated under shear. Also most DPD simu-
lations, such as the relatively recent work on sheared melts21 do
not introduce the tangential friction between blobs, but rather
take the form of the most standard DPD kernel (normal friction
alone). However, as also pointed out by Padding and Briels,5

friction should be considered as a part of the CG model. Indeed,
as shown by Hijon9 et al. (CG of a star molecule as the unit blob),
tangential and normal frictions can be quite different from each
other. Here, we start to explore how tangential and normal
frictions affect the rheology of a star molecule under far-from-
equilibrium conditions.

In the following sections, we present and analyse the results
obtained for the DPD thermostat with no tangential friction
between monomers (blobs). This analysis is then used to under-
stand the effect of the tangential friction, considered in Section 8.
In the case of the normal friction alone, the substantial heat
dissipated by the sheared melt requires from us to implement a
slight modification of the DPD thermostat to maintain a constant
(kinetic) temperature at the largest shear rates. Details of this
modified DPD thermostat (we call it ‘‘adaptive’’) and friction
kernels are given in Section 3.

Importantly, simulations in closed isothermal (periodic)
boxes (NTV) are used as a reference to investigate the effect of
open boundaries. Shear flow in the closed system has been
simulated using Lees–Edwards boundary conditions71 and the
SLLOD algorithm.72,73

3 Setup and melt models

The simulation setup is illustrated in Fig. 1 and 2. The polymer
melt is exposed to a Couette flow in the x1 direction being
sheared along the x2 direction (gradient direction). The vorticity
or neutral direction is x3. In the closed box, we use the
SLLOD72,73 dynamics to impose the desired shear rate _g in a
closed periodic box (with a constant particle number and
volume). In the open setup, the surfaces located at x2 = �L2/2
are subjected to equal normal pressures pext

22 and (opposite sign)
tangential stresses �pext

12 , in such a way that the rotational
part of the shear flow turns counter-clockwise in the flow–
gradient (x1 � x2) plane. No constraint is imposed to the
remaining component of the pressure tensor, resulting in
h p13i = 0 and a self determined hp33i. The box is periodic in
the other two directions x1 and x3 so this setup corresponds
to an slice of polymer melt with a fixed load at two of its
boundaries (at x2 = �L2/2).

The melt is made of the star polymer model already pre-
sented in ref. 9 and 74. Each polymer consists of 73 monomers,
i.e. 12 arms of 6 monomers attached to the central monomer. In
what follows, we use m0, s0 and e0 for mass, length and energy
units and we will arbitrarily set these units to m0 = 1, s0 = 1, and
e0 = 1, respectively. The resulting time unit is t0 = s0(m0/e0)1/2 = 1.

Table 1 Thermostats used in simulations. Standard means a standard
DPD thermostat and the adaptive DPD is explained in eqn (7). The
transverse DPD thermostat from ref. 70 is denoted as ‘‘tdpd’’

Label Kernel cutoff (RDPD
cut ) gJ g>

Sdpdshort 21/6s [1.0–20.0] 0
Sdpdlong 1.5 � 21/6s 1.0, 5.0 0
Adpd 21/6s 1.0, 5.0 0
Tdpd 1.5 � 21/6s 1.0 1.0
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Excluded volume interactions of monomers are modelled
by the repulsive Weeks–Chandler–Anderson interaction with
diameter parameter s = 2.415s0 and energy parameter e = 1.
The interactions between two adjacent bonded monomers are
harmonic with a linear spring of stiffness constant K = 20.0e/s0

2. The
equilibrium distance between non-central monomers is req

ij = 2.77s0,
while the equilibrium distance between the central monomer and
the first monomer of an arm is req

ij = 3.9s0. The size of the simulation
box is 390 � 117 � 117 (in units of s0).

Simulations were performed at a fixed constant (monomer’s
kinetic) temperature (T = 4.00 � 0.01). The results presented in
the following sections correspond to simulations obtained

using a modified DPD thermostat which we label as ‘‘adpd’’.
This adpd thermostat has no tangential friction g> = 0 while
gJ = 1 (some results also with gJ = 5). The cutoff of the Heaviside
friction kernel is Rdpd = 21/6s. We refer to Table 1 for thermostat
and kernel details. We recall that the effect of the tangential
friction is analysed in Section 8. In Section 9, we illustrate the
heat dissipation and temperature increase observed upon using
standard thermostats DPD with normal friction.

Thermostating sheared polymer melts is a delicate issue due
to the large amount of heat they dissipate. At a large enough
shear rate or large shear stress, the temperature of the melts
increases. The same phenomenon is also observed in experi-
ments and industrial processes (extrusion) at high shear rates
(typically above 500 Hz).47,75,76 Phenomenological temperature
‘‘corrections’’ for the melt viscosity are often used in industry
and experiments.77 Although this problem goes beyond the
present manuscript, the temperature of a system under a non-
equilibrium steady state is also a fundamental problem
because equipartition is lost and the different temperature
definitions present slight variations (kinetic versus configura-
tional temperature78). In the literature, few studies report on
the problem of viscous heating in molecular simulations (see the
exceptions in ref. 79–81) and many published materials elude
reporting on possible temperature variation in their sheared
thermostated systems. After the present experience, we believe
that some of the data presented in previous papers might be
somehow biased by temperature. We will show an indication
later in Section 9.

We considered four different thermostats: the ‘‘standard’’
(sdpd)69 and ‘‘transverse’’ (tdpd)70 DPD thermostats and also a
modified DPD thermostat. The latter is able to extract larger
amounts of heat by self-adapting its temperature parameter
TDPD which controls its random force term. This ‘‘adaptive DPD
thermostat’’ (adpd) as we call it, dynamically adjusts TDPD

according to a sort of coupled heat equation,

dTDPD

dt
¼ � 1

tDPD
TMD � Ttgt

� �
; (7)

where Ttgt = 4 is the temperature of the target system and TMD is
the kinetic temperature obtained from the variance of the
peculiar velocities of the monomer ri, ui = vi � vf(ri). Here, vf(ri)
is the flow velocity at the position of the monomer ri evaluated
on-the-fly from (time averaged) the binned x2 coordinate.
Eqn (7) resembles the characteristic equation of the Berendsen
thermostat,82 where the linear differential equation in time is
solved for the current temperature of the system. In our case,
on the other hand, TDPD is just the temperature incorporated in
the equations for the DPD thermostat and not the actual
temperature of the system. The basic idea is simple: if the
system under non-equilibrium sheared state is producing sub-
stantial heat due to the friction, the noise term (or in physical
terms, the hypothetical reservoir temperature TDPD) of the
thermostat should be made colder to rapidly extract heat. The
adpd thermostat does not alter the equilibrium state (indeed
we first checked this fact), but reduces the noise term under
substantial shear.

Fig. 1 Schematic representation of the open system at equilibrium along
the longitudinal direction. All monomers and polymers in the system are of
the same kind. Different colors are used for the sake of clarity of the
picture. In the region of interest polymers are represented in the highest,
i.e. atomistic (AT) resolution. Buffer regions (see text) are heterogeneous,
i.e. containing regions of different resolutions. The change of resolution
from AT (dots) to coarse-grained, i.e. CG, (spheres) occurs in the hybrid
region (HY) of each buffer, carried out by the AdResS. New molecules are
inserted into the CG part of buffers. The system is open at both ends of the
box. The upper part of the figure depicts schematic representations of a
molecule inside regions of different resolutions.

Fig. 2 Buffer distribution function. The force Fext, that acts on buffer
regions in order to impose the boundary conditions at open ends of the
box to the region of interest, is distributed among molecules inside buffers
via the depicted functions, forming the distribution function tensor G,
given by eqn (5). The force acting on each molecule equals Fext

i = G(xi)F
ext.
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The thermostat time tDPD (acting like a coefficient of heat
transfer to the ‘‘reservoir’’) was set to tDPD = 100dt. The thermostat
nominal temperature TDPD was updated using a simple explicit
Euler scheme for eqn (7) with a time step of 100dt. All the
thermostats used are applied to the relative velocities of mono-
mers. The friction kernels of the DPD thermostats (damping and
noise terms are constructed using the same kernel70) are chosen
to be Heaviside functions with a cutoff distance RDPD

cut , i.e. g(R) = 1
for R r RDPD

cut and zero otherwise.
All the results presented here correspond to a normal

friction kernel gJ = 1 (some results for the adpd thermostat
were also carried out for gJ = 5 to test sensitivity). To test
the effect of tangential friction we also run simulations with
gJ = g> = 1 in the tdpd thermostat. The thermostat details and
labels used are given in Table 1.

The integration step ranges from dt = 0.01t0 to dt = 0.005t0 for
the highest shear rates. Note that t0 = 1 is smaller than the
standard Lennard-Jones time (monomer–monomer interaction),
t = s(m/e)1/2 = 2.415t0 where m = 1 is the monomer mass.

The equilibration of the lump of melt in the OBMD simula-
tion is conducted by a modified version of the AdResS, whereby
the weighting function w in eqn (3) is gradually increased in
time starting from w = 0 (CG model).83 The weighting function is
therefore switched from a position-dependent to a time-dependent
one. The resolution is thus gradually sharpened from CG to AT.
The procedure is described in detail in ref. 13. After equilibration,
each simulation is run for 10 000t0.

4 Melt at equilibrium
4.1 Characteristic times

In view of the close relationship between the structure and dynamics
that takes place in sheared melts (and complex fluids in general), it
is interesting to present the range of physical times of the melts
before analysing their structural transformation with shear. In star
polymers, one can observe three types of relaxation phenomena.84

First is elastic deformation of the overall shape of polymers, second
relaxation occurs via the rotational diffusion, and the third one
regards disentanglement of arms of every star polymer. Each of
the relaxation processes can be estimated from the integral of the
corresponding normalized autocorrelation function (ACF), via

tA ¼
Ð1
0
CAðtÞdt, and these are given by eqn (8)–(10), respectively.

CelasðtÞ ¼

P
i

RiðtÞRið0Þ � Rih i2
� �
P
i

Ri
2h i � Rih i2

Center-end correlation (8)

CrotðtÞ ¼

P
i

RiðtÞ � Rið0Þh i
P
i

Ri
2h i Rotational diffusion (9)

CarmðtÞ ¼
1

f ðf � 1Þ
Xf
i;j¼1
iaj

Rið0Þ � Rjð0Þ
� �

RiðtÞ � RjðtÞ
� �� �

Arm entanglement

(10)

Ri represents the center-end vector of arm i, Ri its length, t time,
and f the number of arms of each polymer. And i and j are
indices of different arms within the same polymer. Each auto-
correlation function decays with its characteristic time of the
relaxation process84,85 and these are given in Table 2 for
the different DPD thermostat friction kernels considered. We
checked that under an equilibrium state all thermostats pro-
duce consistent results, in terms of pressure and density, while
the correlations and the characteristic times differ, as they
should. The adpd and the sdpdshort correspond to the same
friction kernel and produce similar relaxation times at equili-
brium (within statistical uncertainty) indicating that the adpd
modification does not essentially alter the dynamics. We
observe that the disentanglement of the arms occurs more
rapidly than rotational diffusion and that is due to the short
length of the arms, as each contains only 6 monomers. The
longest time is the diffusion time for the center of mass (CoM)
of molecules tdif = Rg

2/D, where Rg = 7.6s0 is the radius of
gyration of polymers and D the diffusion constant of CoM,
which are different for every friction kernel. The differences in
the relaxation times between the sdpdshort and sdpdlong
thermostats are due to the larger thermostat cutoff distance
RDPD

cut leading to a larger interparticle friction in the sdpdlong
case.70,86 Interestingly, the ratio between relaxation times and
viscosity is similar for all the thermostats in Table 1 (values
coincide within error bars), regardless of the kernel and RDPD

cut .87

This indicates that the translational and orientational dynamics
are affected in a similar way by the thermostats.

Using the adpd thermostat (normal friction alone) we get
telas = 3 � 1, tarm = 33 � 2, trot = 59 � 5 and tdif = 700 � 100,
which illustrates the wide range in time scales involved in these
sort of simulations. These times are similar in the open
and closed systems (in equilibrium) and are compared with
those obtained with other thermostats and kernels in Table 2.
However, as shown below the rheology of the melt is not
determined by the molecular diffusion, but rather by the
molecular relaxation times. For the star molecule under study
with f = 12 arms of length la = 6s (i.e. 6 monomers per arm),

Table 2 Polymer time scales obtained at equilibrium for different setups
and thermostats (see text). All times are in units of t0 = t/2.415, where
t = s(m/e)1/2 is the standard Lennard-Jones time scale for monomers. In all
standard and adaptive DPD cases, the thermostat damping constant is
gDPD = 1m0/t0, while for the tdpd thermostat g = 1m0/t0 and g> = 1m0/t0.
telas, trot, and tarm are defined as characteristic decay times of the ACF
given by eqn (8)–(10), respectively. Diffusion time is defined as tdif =Rg

2/D,
with Rg = 7.6s0 the average radius of gyration in equilibrium

Simulation tarm telas tdif trot

Open sdpdshort 33 � 2 6 � 1 800 � 100 55 � 5
Closed sdpdshort 33 � 2 6 � 1 800 � 100 55 � 5

Open sdpdlong 55 � 2 10 � 1 1200 � 100 100 � 5
Closed sdpdlong 55 � 2 10 � 1 1100 � 100 100 � 5

Open adpd 33 � 2 3 � 1 700 � 100 59 � 5
Closed adpd 33 � 2 3 � 1 800 � 100 59 � 5

Open tdpd 195 � 5 35 � 5 4800 � 400 332 � 5
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molecular rotation is slower than the elastic relaxation of arms,
the ratio being trot/tarm 4 10 in all the cases considered (see
Table 2). This ratio determines the type of rheological behaviour
of the melt according to a theoretical approach based on solving
the Fokker–Planck equation for the bond distribution.88,89 We
will come back to this issue in Section 5.3.

4.2 Equation of state

As explained in ref. 13, the OBMD simulations of the melt at
equilibrium provide the correct average thermodynamic vari-
ables. The pressure equation of state obtained in OBMD agrees
with that obtained from a standard NVT simulation for all the
volume fractions studied.13 More precisely, the average equili-
brium density hri ( pext

22 ) obtained with OBMD at a fixed normal
pressure pext

22 is consistent with the equilibrium pressure
p calculated in a closed MD simulation at a fixed density
r = hri ( pext

22 ). In passing, it should be highlighted that the same
CG potential was used for all the melt densities considered,
indicating that the pressure consistency at the MD domain is
independent of the coarse-grained potential used in the buffer.

In the following, we work with the polymer volume fraction,
defined as F = rNps

3/6, where rN = N/V is the number density
(N and V respectively represent the number of monomers and
the volume of the region of interest and the mass density is
r = mrN with monomer mass m = 1, thus r = 0.136F). For
the NVT ensemble, the study conducted here corresponds to
p = (0.093 � 0.001) and F = 0.20, fixed for any shear rate. In
the open box, we fix pext

22 = 0.093 and for zero shear rate
(equilibrium) we get hFi = (0.20 � 0.01). Fig. 3 shows the
normalised density profile of polymers (rslab

M /ravg
M ). Here rslab

M denotes
mass density of polymers in each slab, where it is measured,
and ravg

M its average value. The latter is constant in closed
simulations, i.e. ravg

M = 0.0271, while its calculated value in
open cases equals ravg

M = 0.0271 � 0.0001. We observe that the
obtained density profile is flat in the region of interest with

some minor artefacts, which are due to the lack of statistics.
Along the buffer zones the density gradually decreases as a
consequence of the application of the external pressure pext

22 .
As it has been explained in previous related studies on hybrid
atomistic-continuum schemes,14,66 this inhomogeneity does
not affect the transfer of pressure and stress from the exterior,
provided that the density profile is flat around the hybrid
interface. This is indeed the case, as it can be seen in Fig. 3
(see the interface between the ‘‘region of interest’’ and ‘‘buffer’’).
The radial distribution function (RDF) of CoMs of molecules is
in perfect agreement with NVT simulations.

4.3 Mass fluctuations

In the grand canonical ensemble, mass fluctuations are related
to the integral of the RDF,90 so the excellent agreement between
the RDFs obtained from NVT and open boxes suggest that the
fluctuations in the number of molecules inside the domain of
interest should be thermodynamically consistent with the
grand canonical prescription: namely, the relative fluctuation
in polymer mass M = rMV should be Std[M]/M = [kBT/(McT

2)]1/2,
where cT is the isothermal sound velocity cT

2 = (qp/qr)T. cT,
which is evaluated using the pressure equation of state from
ref. 13, is shown in Fig. 4. The agreement between OBMD and
the NVT ensemble is excellent. In the same figure, we plot the
results for the relative mass fluctuations at different pressures
(average densities) and compare with the grand canonical
prediction. We find that the agreement is very good, notably
because of the tiny relative mass fluctuations in the (not small
V = 3 504 384s0

3 = 248 805s3) volume considered for our open
box: which range between 3.6% and 0.26% at the largest
density considered (F = 0.2). In terms of mass density variance
sr

2 = rkBT/(VcT
2), for the state we considered hereafter under

shear ( p = 0.093e0/s0
3, F = 0.2 and r = 0.0271m0/s0

3) the OBMD
result is sr

2 = (5.0 � 0.3) � 10�9m0/s0
3 in excellent agreement

with the variance predicted for the mVT ensemble 4.79 � 10�9.
The conclusion of this study strongly supports our claim that
the OBMD equilibrium simulation samples the grand canoni-
cal ensemble without any (or negligible) bias. It has to be said
that the value of the external chemical potential mext = m( pext

22 ,T)
however cannot be imposed in OBMD, although it could be
reconstructed following the standard Gibbs–Duhem route
with varying external pressure. New implementations of the
AdResS29,65 might also be used to evaluate m.

A typical outcome for the time evolution of the total mass of
polymers in the MD domain is shown in Fig. 4. It presents
oscillations, suggesting that it might contain some information
about the sound velocity of the system.

Sound propagation can indeed be studied in our simulations
because we work with momentum preserving (DPD) dynamics
(by contrast, sound is damped in the standard Langevin
dynamics). It is noted that an ‘‘ideal’’ open system should be
transparent to all waves, meaning that all waves, either created
by inner mass fluctuations of any wavelength or by external
waves travelling across, should leave the system and do not
reflect back. This implies, in particular, that in the absence
of external longitudinal forces, fluctuations of the total mass

Fig. 3 Normalised density profile (NDP – top panel) and comparison of
RDFs (bottom). The NDP is depicted in the direction, in which the box
is open. It is normalised to the desired value of the density, which
corresponds to the occupational factor F = 0.2. RDFs are calculated
from molecules inside the region of interest in open simulation (red) and
closed systems (green).
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should have no memory, being a white noise (or at least a
broad-band signal).91 The presence of correlations in the total
mass of our ‘‘region of interest’’ is in fact due to partial
reflections of waves at the rarefied buffers, where density
fluctuations are reduced (recall we fix the average total mass
of these reservoirs, see e.g. ref. 66). In the autocorrelation (ACF)
of the total mass fluctuation, the dominant wavelength should
obviously be the largest possible one compatible with this condition
and the total simulation box length. A density mode with wave-
number k = 2p/l decays like hr(k,t)r(k,0)i = hdr2iexp[�nLk2t]cos[ot]
with nL being the sound attenuation coefficient92 and o = cTk
the oscillation frequency. Inspection of Fig. 3 indicates that the
density profile of the whole system (MD + buffer) roughly

conforms to Dirichlet boundary conditions with a fixed density
at the end of the buffer domains r(x2 = �L2/2)or0. In such a
case, the longest wavelength available to mass fluctuations of
the system would be leff C 2L2. We fitted the time autocorrela-
tion function of the MD mass to extract o and compare it with
the ansatz o = cTkeff using o = cTkeff with keff = 2p/leff. The
best fit to the simulation results corresponds to leff = 760s0,
while 2L2 = 780s0 and it is shown in Fig. 4 in terms of o/keff and
compared with the sound velocity of melt cT. The excellent
match confirms that the mass in the MD domain has memory
induced by reflections of sound waves against the low density
domains (buffers). Such reflections could be reduced by coupling
the MD with a continuum hydrodynamic field outside,66 or by
imposing a non-reflecting boundary condition91 (still to be general-
ized to MD, see also ref. 92). However, in the present scenario we
find that these results are quite interesting because they suggest the
possibility of measuring the sound velocity cT from the fluctuations
of the total MD mass. In particular, it might allow to measure
how the sound velocity is modified in a sheared melt, cT(Wi).
Although a detailed study would be certainly required, just
as an indication, we find that cT(Wi) (estimated in this way,
i.e. from mass fluctuations) decreases.

5 Sheared melt with normal friction

This section presents results for the star molecule model with zero
tangential friction between monomers. Kernel and thermostat
details (adpd) are given in Sections 3 and 4. We decided to first
focus on this model to avoid embarrassing the discussions with
details of different cases (open versus closed, normal versus
tangential friction) and also because this model presents a richer
dynamical behaviour, whose analysis will be useful to under-
stand the effect of tangential friction in Section 8.

5.1 Weissenberg number

The Weissenberg number Wi is a useful number to compare and
dissect different regimes in polymer rheology. It is defined as

Wi = trel _g, (11)

where trel is the longest molecular relaxation time and _g�1 is the
‘‘shear flow time’’ needed to affinely deform a square box of
sheared fluids into a parallelepiped with an angle of 451
between adjacent planes. As stated, in eqn (9) and Table 2,
the longest relaxation of our star polymer is related to the
molecular rotation so trel = trot in eqn (11). In fact, the diffusion
of the CoM of the molecules is much slower (see Table 2).
The CoM diffusion does not directly sample the structure
of molecules, whose modification under flow is related to the
non-Newtonian character of polymers. The Peclet number
determines the ratio between CoM diffusion and flow advection
Pe = tdif _g and for our setup it is about 10 times larger than Wi.
In colloidal suspensions, the shear thinning typically starts
for Pe 4 1 due to shear banding. Interestingly, star polymers
constitute a sort of bridge between the open structures of linear
polymers and the compactness of colloids. Thus, one might

Fig. 4 Top panel: The relative fluctuation of the polymer mass (standard
deviation over average polymer mass M) in the interest MD-domain of the
open setup (see Fig. 2). Comparison is made with the grand canonical
theoretical result (green dashed line) Std[M]/M = [kBT/(McT

2)]1/2 and, also
included, the ideal gas limit (red dashed) obtained with the isothermal
sound velocity cid

T = (kBT/Mm)1/2 with Mm = 73m0 the molecular mass. The
volume of the interest domain is V = 156 � 117 � 117s0

3. Recall that the
monomer LJ diameter is s = 2.415s0 and its mass is m0 = 1. The right
ordinate axis shows the values of the isothermal sound velocity cT = (qp/qr)T
(from the pressure equation of state) that is compared with o/keff obtained
from the oscillation frequency o of the total mass autocorrelation function
in the MD domain (see bottom panel). The effective wavenumber is
keff = (p/370)s0

�1 and the total open box is L2 = 390s0. Bottom panel:
the time autocorrelation function of the mass in the MD domain at
equilibrium with imposed external pressure pext

22 = 0.001e0/s0
3 (dashed

line is the fit to extract o, see text); the inset illustrates the evolution of the
total mass in the MD domain for this case.
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elucubrate that the onset of shear thinning in compact stars
could well be due to shear banding (collective molecular
ordering in lanes), rather than by (individual) polymer elonga-
tions. We shall see later on that both (collective and individual)
effects take place in our sheared system, although we advance
that the transition to the non-Newtonian regime takes place at
Wi = trot _g 4 1. Hence at least for the (not so compact) star
polymer studied here, shear thinning is not determined by
collective ordering at straining rates faster than the CoM
diffusion. The hybrid character of star molecules (between
colloids and polymers) is the subject of current research.56–58

5.2 Density and hydrostatic pressure

Denoting the symmetric pressure tensor (exerted by the melt) as
Pa,b, the hydrostatic pressure is defined as

Piso ¼
P11 þ P22 þ P33

3
: (12)

We find that our model for a star polymer melt expands when
sheared under the normal load (see Fig. 17 which collects
the results from different cases). This behaviour is consistent
with the die swelling phenomenon of polymer melts1 and the
increase in the normal pressure P22 observed in all cases. By
contrast, the hydrostatic pressure decreases with Wi in the open
domain, while in the NVT box presents a non-monotonous trend
(with not large variations). As explained in Section 6 Piso is
influenced by several molecular mechanisms, whose relevance
changes with _g along with the molecular structure. The density
(in the open domain) and pressures (P22 in NVT and also Piso in
both cases) are quite sensible to temperature changes, as shown
in Section 9.

5.3 Rheology

We start by determining the zero shear viscosity, Z0 = Z( _g = 0).
A standard way is the Green–Kubo equilibrium route (via
the integral of the time autocorrelation of shear stress).93 To
maintain consistency with the non-equilibrium route we follow
the experimental approach which fits the trend for Z(_g) for a
range of values of the shear rate with some suitable expression
such as the popular Carreau fit.50,94 We also checked that
Green–Kubo viscosities95 are similar to the Carreau-fitted ones
within statistical uncertainty (about 10%). The Carreau fit has
the following expression,

Z = Z0[1 + (tZ _g)2]�bZ/2, (13)

shown in Fig. 5 along with simulation data. Fig. 5 shows the
shear viscosity Z obtained under open and closed setups for
several models with different thermostats and friction kernels
(see Table 1). Z(_g) was calculated from the off-diagonal pressure
tensor component P12 = �Z _g, which was measured in simula-
tions. From eqn (13), the viscosity shear thinning exponent bZ,
is such that,

Z - _g�bZ for large _g

and for polymer melts bZ ranges between 0.4 and 1.1,88 This fit
of eqn (13) also provides an estimation of the zero-shear

viscosity Z0 and a characteristic time tZ related to the onset of
the shear thinning regime. Z0 differs for different friction
kernels of the DPD thermostat (see Table 1). The adpd and
sdpdshort thermostats (identical friction kernels) consistently
provide the same zero shear rate viscosity Z0 = 0.5 (that does not
increase largely for gJr 10). The sdpdlong model with an increased
kernel cutoff RDPD

cut = 1.5 � 21/6s presents Z0 = (0.60 � 0.1) + 0.29gJ
an increase consistent with the increasing relaxation time with
friction† as deduced in the analysis of Kindt and Briels.96

Tangential friction (tdpd) leads to Z0 = 2.6 (gJ = g> = 1). The
meaning of tZ becomes clear when it is compared with the
estimated star rotational relaxation time trot. Here are their
values for different thermostats: tZ = 61 and trot = 59 for adpd;
tZ = 58 and trot = 55 for sdpdshort; tZ = 125 and trot = 100
for sdpdlong; and tZ = 287, trot = 332 for tdpd. The error bar
of the given values is approximately � 5. We observe tZ C trot

indicating that the onset of shear thinning, which takes place
at _gtrot 4 1, coincides with the molecular deformation altering
the equilibrium rotational diffusion.

We now focus on the adpd model and defer the discussion
on the tangential friction to Section 8. The system temperature
is fixed to T = 4.0 � 0.01. In this case, we get a zero shear
viscosity Z0 = 0.50 � 0.05. At larger Wi, the shear thinning
exponents b obtained from Carreau fits (eqn (13)) are found to
be slightly steeper in the open domain bZ = 0.41(2) than in
the NVT box bZ = 0.35(4). Thus at a fixed shear rate, the open
system is slightly less viscous than the closed sample. This is
in agreement with previous studies for linear and branched
melts carried out at a constant and unconstrained density
(see Section 10).

The first and second normal stress coefficients C1 = N1/_g2 and
C2 = N2/_g2 (for the adpd model, discussed in this section) are shown
in Fig. 6. For Wi o 20 we find a decrease in C1 consistent with the
Carreau standard behaviour (eqn (13)), providing C1(_g = 0) = 21 � 1
and an exponent bC1

C 1.30 � 0.04 (i.e. N1 B _g0.7) quite similar

Fig. 5 Normalized shear viscosity obtained for several models under
open and closed conditions. Details of the model (varying in thermostats
and kernels) are given in Table 1 and 2. Lines are best Carreau fits.

† An interesting remark is that the recoverable shear compliance87 obtained from
Je = trot/Z0 results to be Je C 110 independent of the friction kernel.
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for both ensembles. The relaxation time for C1 obtained
from the fit is also consistent with tZ = trot within error bars.
At Wi 4 20, we find a measurable decrease of C1 with respect
the Carreau trend (see Fig. 6), which takes place at slightly
smaller Wi in the open case. This corresponds to a loss of the
elastic component of the melt at large shear rates. The second
normal stress coefficient C2 = N2/ _g2, shown in Fig. 6 is also
quite similar in both environments and at large _g scales like
C2 B � _g�1. The similar behaviour for N2 under open and
closed boxes might be due to the fact that we just fix the normal
load (in the x2 direction) and not the hydrostatic pressure as
in some other studies,39,40,42 presenting different trends for N2

in NVT and NPisoT constraints.
The normal stress ratio VR � �C2/C1 and the recoverable

shear strain87

SR � C1/(2Z _g) = (P22 � P11)/(2P12) (14)

are standard indicators of viscoelasticity87 (e.g. SR vanishes for
a Newtonian fluid). As shown in Fig. 7 in our melt model, SR
increases with the shear rate, as expected; however, both
indicators (SR and VR) clearly show that a change in the elastic
component of the model takes place at Wi 4 20. Notably, SR

decreases, so the melt becomes less compliant with shear strain
and stores less elastic energy across the flow–gradient plane,
with a jump in the VR. We advance that the amount of the
elastic energy loss at large Wi depends on friction forces
(notably on the presence of tangential friction as shown in
Section 8). This is a clear indication that calibration of friction
from detailed all-atom models9 is crucial to represent or
simulate some particular real melt.

5.4 Gyration tensor

The thermodynamic and rheological properties of any poly-
meric system are intimately related to the deformation of
the molecules induced by flow. It is therefore convenient to
start by presenting the results for the average gyration tensor
of our star polymer model under shear, whose components
are shown in Fig. 8. At Wi 4 1 the flow induces the alignment
of the star molecules in the flow direction and at the same time
a compression in the gradient direction. The width of the stars
in the neutral direction slightly increases up to Wi B 20
and AT larger shear rates, they also start to contract in this
direction. It is also instructive to observe the shape of mole-
cules in their principal deformation axes, obtained from the

Fig. 6 First and second normal stress coefficients of the star
polymer melt under open and closed conditions and the adpd thermostat
for gJ = 1 (blue) and gJ = 5 (purple). Dashed line for C1 is the Carreau fit
(see text).

Fig. 7 (top pannel) Normal stress ratio and (bottom pannel) recoverable
shear strain index for some model melts under open and closed environ-
ments. The results for the case with tangential friction (tdpd) are also
included.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
sa

us
io

 2
01

6.
 D

ow
nl

oa
de

d 
on

 2
02

5-
10

-1
6 

04
:3

3:
20

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5sm02604k


2426 | Soft Matter, 2016, 12, 2416--2439 This journal is©The Royal Society of Chemistry 2016

diagonalization of the gyration tensor. The molecular axes are
s1 = cos(yG)x1 � sin(yG)x2, s2 = �sin(yG)x1 + cos(yG)x2, and s3 = x3

(since G13 = G23 = 0). The ith eigenvalue is noted as G̃i. The
angle yG is the average molecular tilt over the flow direction
that satisfies:

tan 2yGð Þ ¼ 2G12

G11 � G22
: (15)

The results for the eigenvalues of gyration tensor are shown in
Fig. 8 and reveal the strong contraction of the molecules in the s2

direction. In particular, at Wi B 50 we observe that G̃2
1/2 B 1.12s

so the chain width in the contracted axis reaches the monomer (or
blob) diameter. In a real polymer at this shear rate, the flow starts
altering the structure of the chain ‘‘blobs’’ smaller than s. But this
is precisely our modelling unit length so we will take this as the
maximum Wi to be explored here (roughly Wi o 100). Above this
(size dependent) shear rate, one should also expect a shear rate
dependence of the blob–blob friction kernel (see ref. 97 for a
related study on this issue). It is also interesting to note that the
total volume of the molecules (evaluated from the product of the
eigenvalues of the gyration tensor) first increases (molecules
expand) up to Wi B 10 and due to contraction in the neutral
direction and then tends to contract (in the form of a highly
extended ellipsoid) at larger Wi. In this sense, the behaviour of the
arms in the neutral direction of the star have some similarities
with what is found in tethered polymers,98,99 which also present a
maximum volume at intermediate Wi.

6 Analysis of the stress–structure and
dynamics relationship

The present analysis provides the relationship between stress
components and the molecular structure and dynamics. It focuses
on the results presented in the previous section, which corre-
sponds to the adpd star model, with zero tangential friction. The
conclusions will be useful for the comparison done in Section 8.

6.1 Pressure balance in closed system

Pressure is the leading mechanical variable in rheology as it
directly connects the microscopic world with material proper-
ties. We now elaborate on the pressure balance in an attempt to
connect the molecular structure with the observed rheology.

The pressure exerted by the melt‡ is calculated using the
Irving-Kirkwood method and the method of planes,100 which is
particularly suitable for the open setup as it was designed for
non periodic boundaries. The pressure can be first decomposed
in virial and kinetic parts. The virial pressure includes con-
tributions from spring forces and intramolecular forces (both
acting amongst pairs of monomers of the same molecule) and
intermolecular forces (between monomers of different molecules).
The pressure balance allows to analyze the different molecular
contributions,

Pa,b = Pkin
a,b + Pspring

a,b + Pintra
a,b + Pinter

a,b . (16)

The pressure tensor is symmetric for the type of molecules
considered hereby (in fact for most polymers).1 The ‘‘average’’
pressure on the system is given by the hydrostatic pressure
which is just the third part of the trace of P (see eqn (12)).
The hydrostatic pressure is not involved in (although indirectly
affects) the main rheological quantities such as the shear
stress P12 and the first and second normal stress differences,
defined as

N1 = P22 � P11, (17)

N2 = P33 � P22. (18)

It is customary to introduce the traceless pressure tensor

P̂ � P � PisoI,

with I = da,b the unit second rank tensor. Indeed, the
hydrostatic pressure can be decomposed in different molecular
contributions Piso ¼

P
A

ð1=3ÞTr PA
� �

with A = kinetic, springs, etc.

Also, due to the linearity of the trace operator we can decom-
pose the traceless stress tensor P in a sum of contributions

of traceless tensors, i.e., P̂ ¼
P
A

P̂A with P̂A = P̂A � (1/3)Tr[PA]I.

This is useful to simplify the analysis. In fact, before discussing
the differences between open and closed ensembles, we
inspect some generalities of the pressure balance focusing on
the results obtained for the closed (NVT) ensemble. To that
end, we present in Fig. 9 the contributions to the pressure
components of the melt under shear to the hydrostatic pressure
and the different traceless stress tensors (component-wise:
gradient P̂22, flow P̂11, neutral P̂33 and shear P12 obviously
P13 = P23 = 0).

6.1.1 Spring stress. Bonded interactions are hereby modelled
by linear springs with a non zero equilibrium distance. The
contribution of the springs of star molecules to the traceless

Fig. 8 Eigenvalues of the gyration tensor scaled with the monomer
diameter s2. The results include cases with the adpd friction kernel
gJ = 1 (no tangential friction) and the tdpd model gJ = g> = 1 discussed
in Section 8. Estimated error bars of the data are approximately 5%.

‡ Traditionally, following the experiment standpoint, rheological magnitudes are
expressed in terms of the pressure on the system (here given by �P). For instance,
the normal stress difference is then N1 = �(P11 � P22) and this explains the
opposite sign used in our (and other) simulation studies.
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stress tensor is illustrated in Fig. 9 (again, for the case of closed
systems). As expected, as the shear rate is increased, molecules
tend to be stretched in the flow direction and compressed
in the gradient direction. Springs tend to restore the equili-
brium (spherical) shape of the molecules by producing a
negative stress (compressing) in the x1 direction and a positive
(expanding) in the gradient direction. As in any material with
elastic properties, both effects contribute to enlarge the first

normal stress difference N1 = P22 � P11. In turn, we find
that elastic contribution to the second normal stress difference
N2 = P33 � P22 is negative, as it happens in real polymeric fluids.1

Fig. 9 shows that the off-diagonal component of springs’ contribu-
tion to the pressure tensor Pspring

12 is the most important contribution
to the shear stress, although as discussed below, the kinetic pressure
becomes significant at large Wi (above Wi 4 20 for the adpd
model discussed in this section).

Fig. 9 Components of the different contributions to the traceless tensor (P̂ ¼
P
A

P̂A, with A= kinetic, springs, etc.) of the traceless stress tensors
P̂A = PA� (1/3)Tr[PA]. The results correspond to the closed setup using the adpd thermostat with gDPD = 5. P0 is the (isotropic) pressure at _g = 0, the rest of
terms are explained in the text. The error bars of the data are around 0.002–0.005e/s0

3.
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6.1.2 Kinetic pressure. The kinetic pressure tensor Pkin
a;b ¼

1

V

P
i

dvai dv
b
i

D E
was obtained from the peculiar velocities

dvi = vi � u(ri), where u(r) = u1(x2)e1 is the average velocity field
obtained by binning the velocity gradient direction x2. Indeed,
the ideal part of the hydrostatic pressure is one third of the
trace of the kinetic pressure tensor, (1/3)Tr[Pkin] = rT. However,
its traceless part, P̂kin � Pkin � rTI, contains relevant informa-
tion about the correlations in velocity fluctuations over differ-
ent axes. In particular, velocity fluctuations of monomers in the
x1 and x2 directions become correlated at _g 4 0 and contribute
to the shear stress and viscosity. In our setup, this correlation
becomes negative (owing to the imposed counter-clockwise
shear) and leads to a negative contribution to Pkin

12 with a non-
negligible viscous contribution to the shear viscosity Z = �P12/ _g
which tends to reduce the shear thinning exponent (see the
comparison with the case with tangential friction in Section 8).
Although seldom pointed out in the literature (see ref. 4), at
high enough shear rates the kinetic pressure of monomers
becomes significant in polymer melts. This is in fact what we
clearly observe in Fig. 9 for the star model with normal friction
(adpd). The anisotropy in the kinetic pressure observed in the
covariance of peculiar velocities of monomers is certainly much
larger than what would be observed in a simple fluid.47,78 It is

also of a different nature because in the melt, the monomer
motions are constrained and they fluctuate and rotate being
tethered to the center of their star molecule. This leads to
different monomer peculiar velocities in the flow, gradient, and
neutral directions which are reflected in the kinetic pressure.
In Fig. 9, we show P̂kin versus Wi (recall that Pkin = P̂kin + rTI
and diagonal components of Pkin are positive). At Wi 4 1, the
kinetic pressure contributes to the first and second normal
stress Nkin

1 and Nkin
2 . As soon as the molecules become stretched

in the flow direction (for Wi 4 1), velocity fluctuations in the
flow direction are enhanced with respect to those along the
gradient and neutral directions: P̂kin

11 4 0 and P̂kin
22 o 0, P̂kin

33 o 0.
We find that Nkin

2 o 0 (see Fig. 10 below), so the kinetic stress
acts in the same way as the elastic (springs) components.
However, the kinetic contribution to the first normal stress
differences is negative Nkin

1 o0 so it is just opposite of the elastic
contribution of the chain. Our conclusion is that the kinetic
pressure of monomers tends to reduce the elasticity of the melt
in the flow–gradient direction at large shear rates.

6.1.3 Intramolecular pressure. Intramolecular pressure
gives an indication of excluded volume effects and molecular
collisions within one molecule. For our moderate-size molecules,
it has a minor contribution to the total stress. Intramolecular
collisions induce a viscous (not-restoring) stress in the melt

Fig. 10 Contributions of different mechanisms to the summing up the total normal stress differences, shear stress, and hydrostatic pressure. The results
for the adpd thermostat under open and closed conditions. The error bars of the data in graphs are around 0.002–0.005e/s0

3.
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which slightly contributes to the shear stress and tends
to counterbalance the elastic first normal stress difference
Nintra

1 o 0 (just like the kinetic pressure – see Fig. 10). It has
the same effect in the gradient–neutral plane (Nintra

2 4 0) where
due to the molecule stretching, monomers tend to collide less
in the gradient direction. However, above Wi B 20 a shallow
maximum is observed in Pintra

33 (and a minimum for Pintra
22 – see

Fig. 9) suggesting that the reduction of the arm extension in the
neutral direction has the consequence of increasing monomer
collisions in the gradient direction (thus Nintra

2 diminishes – see
Fig. 10). Evidence of arm retraction in the neutral direction is
shown in Fig. 8 as a clear the reduction of G̃3 = G33 for Wi 4 20
(also observed in ‘‘sdpdshort’’ and ‘‘sdpdlong’’ thermostats).
A somewhat similar rebound in the intramolecular pressure
at a large shear rate has been observed in simulations of
entangled and disentangled linear polymer melts (see ref. 3
and reference therein). However, in these studies the mono-
mer–monomer interaction is attractive, and this fact modifies
(reverses) the intramolecular contributions (polymer compres-
sion then reduces the intramolecular pressure, unlike for our
purely repulsive potential).

6.1.4 Intermolecular pressure. According to Fig. 9, the
contribution of the intermolecular pressure to the melt is
minor. The seemingly irrelevant contribution of intermolecular
stress is assumed in many theoretical models87 to explain
viscoelasticity (stress-optic rule). However, this is a simplistic
view because intermolecular forces are responsible for spread-
ing the external momentum introduced through the system
boundaries (note that, in this respect, the open boundary setup
behaves like a real experiment). In fact, internal forces (between
monomers of the same molecule) sum up to zero so they cannot
modify the CoM velocity of the molecule. For the present star
molecule (with relatively short arms), momentum in the flow
direction is transferred and maintained across x2 by inter-
molecular collisions.9 These friction forces gradually build
up the elastic stress in the molecules, before finally collapsing
to a stationary value in the steady state. The central role of
intermolecular forces can be also seen by considering the
alternative molecular formulation of the pressure tensor101

(based on molecules (m) CoM Rm ¼ 1
�
Mm

� �P
i

miri;m and virial

pressure proportional to
P
m
RmFm). This ‘‘molecular pressure’’

formulation is however less informative because the effects of
all internal forces, like the springs, are hidden in the spatial
CoM distribution g({R}). Nevertheless, it serves to illustrate the
central role of intermolecular forces and shed some light on
the apparently striking similarity between the intermolecular
pressure and the total pressure dependence with Wi, which can
be seen by comparison between the corresponding (inter and
total) panels of Fig. 9 (note the difference in values). This
similarity between intermolecular (IM) and global magnitudes
(such as IM energy and hydrostatic pressure, see Fig. 9) has
also been reported as ‘‘striking’’ in previous sheared melt
simulations.2,3 It is interesting to note that the dominant
velocity gradient component of the IM force Pinter

22 reaches
a plateau around Wi B 20 and slightly decreases at larger Wi

(as the total P22 does – see Fig. 9). This is indicative of a change in
the dynamics of polymers, which according to the concomitant
increase observed in Pinter

11 , most probably start to rotate and
collide more often in the flow direction.

6.1.5 Hydrostatic pressure. The hydrostatic pressure is key
in shear induced polymeric phenomena, such as shear induced
crystallization87 or separation of blends.47 Its dependence
on the shear rate is not well understood. Piso depends on the
molecule size40,43 and their architecture3,40,42,88. However, there
have been reports of both increase and decrease in different
(sometimes contradicting) studies. Fig. 9 indicates that Piso can
present a non-monotonous trend with Wi due to changes in the
molecular structure under shear. Non-monotonous trends for
Piso(_g) have also been observed for different polymers in ref. 2, 3,
40 and 43. The present analysis (see Fig. 9) reveals in fact that
Piso depends on a competition of several mechanisms. Below
Wi C 10 the hydrostatic pressure varies little but presents a
slight descend, probably due to the chain expansion (revealed
by the analysis of the gyration tensor) which decreases the
intramolecular pressure. At larger shear rates Wi 4 10, two
opposite mechanisms enter into the play: First, an increase in
P11 due to the strong increase of kinetic pressure (and to a
lesser extent to intermolecular collisions). This is probably due
to molecular rotations similar to the tank-thread motion reported
for a star molecule solution102 and also pointed out in ref. 2 and 3.
And second, a decrease in P33 due to the contraction of the stars
in the neutral direction (see Fig. 8) and consequent reduction of
the kinetic pressure Pkin

33 . Both effects nearly counterbalance
each other (see Fig. 9) leaving small variations in Piso.
The relevance of these effects depends on the boundary condi-
tions (the open case is analysed in next section) and type of
friction (Section 8). More generally variations of Piso depend
on the presence of attractive monomer interactions and the
molecular structure.

It is interesting to note that the decrease of neutral kinetic
pressure in our adpd star model starts to take place around
Wi C 20, which is precisely the ratio trot/telas C 20. Above this
shear rate the flow strains faster than the elastic relaxation of
the molecules thus reducing the fluctuations of the arms in the
neutral direction. This effect finally induces a net decrease in
Piso above Wi 4 30. We shall see (Section 10) that this effect is
absent (or at least delayed) while introducing the tangential
friction, again indicating that friction should be an essential
part of any CG model.9

6.1.6 Intermolecular forces and the Hookean limit. To
summarize, at low shear rates the elastic energy stored by the
melt grows in response to intramolecular (non-bonded) inter-
actions (here mainly friction forces). At large enough shear
rates viscous (Newtonian) effects coming from the kinetic and
intra molecular pressures, tend to modify (normally reduce)
the elastic response of the melt (notably first normal stress
differences). Our findings are in agreement with the conclu-
sions of Kroger et al.4 clearly and succinctly summarized
in their book (page 144) in relationship with the breakdown
of the linear stress-optic-response (SOR) due to the Newtonian
viscous transport at large Wi. In our simulations we find a
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linear relationship between G22 � G11 and P22 � P11 (essentially
similar in open and closed setups), indicating the validity of the
linear SOR up to Wi C 10. In the approach by Kroger et al.
(applied to linear multibead FENE chains), both, kinetic and
intramolecular pressures, are collected in what they call the
‘‘simple fluid’’ stress contribution.4,89 We find here that both
contributions can have different roles, which more generally
should probably depend on the molecular shape (kinetic pressure)
and monomer (intramolecular) interactions (attraction/repulsion).

To highlight the relevancy of the intermolecular stress in the
linear SOR regime, we plot in Fig. 11 (top panel) the total and
elastic contributions (springs) to the normal and shear stress
against the intermolecular counterparts. At low shear rates,
about Wi o 10, the same linear relation is found for the first
normal stress difference and shear stress, N1 C 8Ninter

1 and
P12 C 8Pinter

12 , while we found N2 C 4Ninter
1 . Approximately the

same linear relation holds for the elastic stress and also for the
normal molecular strains evaluated with the gyration tensor
(G11 � G22 and G22 � G33, scaled in Fig. 11(top panel)). This
provides the Hookean limit of the melt N1 C C(G11 � G22) and
N2 C (C/2)(G33 � G22) with C = 62.5 (we find that P12 B CG12

holds only for smaller Wi o 5). In the open (adpd) setup, the
linear regime for N1 and P12 perfectly agrees with closed
simulations; however we found deviation from linearity in the
case of N2, an issue which deserves further investigation. The
bottom panel of Fig. 11 presents the results for stars with
the tangential friction, analysed in Section 10.

7 Effect of open environment
7.1 Density and hydrostatic pressure

In our open domain, we fix the load of the melt in the gradient
direction (Pext

22 = P22) and this produces a redistribution of the
pressure tensor, reducing its component in the flow and
neutral directions and also, indirectly, its shear stress. This is
deduced from Fig. 12 where we compare the traceless stress
tensor and the hydrostatic pressure in the open and closed
setups at the fixed T = 4 temperature. Note that Pext

22 = P22 =
P̂22 + (1/3)Piso is constant in the open setup (within statistical
uncertainties). In the open domain, the sheared melt expands
in the gradient direction; a phenomenon similar to the die
swelling observed in polymer extrusion at the pipe orifice and
related to other viscoelastic phenomena.103 In the open
domain, this corresponds to a decreasing melt density (at faster
shear rates) and brings about a smaller hydrostatic pressure
than in the closed environment at similar Wi (see Fig. 12).
However, the relative decrease of Piso is larger than the density
jump. This fact is due to several related effects we now analyze
from the inspection of Fig. 10. Indeed, at the fixed temperature,
a lower density leads to a lower kinetic pressure Pkin

iso = rT found
in the open domain (this trend also applies here to the
intramolecular pressure Pintra

iso because our model considers
purely repulsive nonbonded interactions, the opposite effect
could arise for attracting chains2,3). However, an even larger
reduction in Piso with respect to the closed box is observed due
to the smaller intermolecular pressure in the open box (see
Fig. 10 for Wi 4 10). Indeed, at a high shear, a less dense melt

Fig. 11 Total stress, elastic stress components, and molecular strain
differences in normal planes measured from the average gyration tensor
(G11 � G22 and G33 � G22) plotted against the intermolecular stress
component corresponding to each case (i.e., Nintra

1 , Nintra
2 , etc.). The results

for adpd (top panel) and tdpd models under open conditions (bottom
panel). Estimated error bars of the depicted quantities are approximately 5%.

Fig. 12 Hydrostatic pressure and components of the traceless stress
obtained in closed and open domains at fixed T = 4 and under the adpd
thermostat (normal friction). Error bars of the measured quantities are
approximately 0.005e/s0

3.
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presents less molecular collisions, less intermolecular friction
and thus less elastic load. As stated, at the fixed temperature,
the elastic strain is essentially activated by intermolecular
friction in the melt. Notably, at Wi B 20, these intertwined
effects induce a reduction of about 25% of hydrostatic pressure
of the open domain mainly arising from the decrease of elastic
stress. At this Wi, density has only decreased about 10% (see
Fig. 17). In agreement with this comment, we note that this
depressurizing effect is doubled when the tangential friction is
added as commented in Section 10.

7.2 Normal stress differences and shear stress

Fig. 10 compares the different contributions to the normal stress
differences and the shear rate in the open and closed systems.
Much of what has been already said in the previous section
applies here. The results for the shear stress nicely corroborate
what we pointed out before about the close relationship between
intermolecular and elastic stresses. Fig. 10 (right bottom) clearly
shows that the kinetic and intra molecular shear stresses are
essentially equal in the open and closed domains. The decrease
in elastic shear stress found in the open case is due to the
reduction in the intermolecular friction at a lower density
(although seemingly paradoxical, the ‘‘nominal’’ contribution
to Pintra

12 in the monomer pressure balance is minor). In all
instances, at low enough shear (Wi o 10) the elastic stress is
close to the total stress (and proportional to the intramolecular
stress). This is the regime of validity of the stress optic rule
which is broken at larger shear due to viscous (and compres-
sible) effects related to the ‘‘simple fluid’’ of monomers.
Remarkably, for the present model of the star polymer melt,
the kinetic normal stress becomes the dominant ‘‘viscous’’
contribution and at large Wi 4 20 it even induces a decrease
in the first normal stress difference N1.

7.3 Molecular ordering under shear

Fig. 13 presents the angle of the largest eigenvector of different
contributions to the pressure tensor with the flow direction
(measured according to eqn (15)). We also include the mole-
cular orientation, measured from the angle associated with the
gyration tensor (eqn (15)). This plot condenses what has been
already mentioned in previous sections. Recall that a spherical
molecular structure provides yG = 451 and similarly from
eqn (15) a Newtonian fluid without elastic component, neces-
sarily presents y = 451. This is what is observed for the total
pressure tensor angle yP and the molecular orientation yG at
Wi - 0 in Fig. 13. As the straining rate is made faster both
angles decrease in a similar fashion, however, at Wi 4 10, the
pressure tensor angle yP presents a minimum and starts
increasing towards 451. By contrast, the molecular orientation
yG keeps aligning with the flow direction. This in an indication
of the loss of the Hookean behaviour of the melt which here is
mainly due to the kinetic pressure (see its principal direction in
Fig. 13). The stress direction of springs also aligns with the
flow, although their angle is larger than the molecular orienta-
tion (a similar outcome was observed in ref. 3). Finally, note the
close match between the direction of intermolecular forces and

the total pressure tensor. As stated, intermolecular forces are the
driving mechanism of transformation between the viscous flow
and elastic energy. Lastly, as observed by other authors,39,42,43

the open boundary does not modify the molecular structure or
orientation with Wi, when compared with the closed case.
Here, Fig. 13 shows another remarkable result: the significant
redistribution of pressure in the open case (see Fig. 12) does not
alter the orientation of the different contributions of the
pressure tensor at the increasing shear rate. The orientation
of pressure eigenvectors is a function of their eigenvalues
which in turn determine the material properties of the polymer
(its viscoelasticity87). A relevant example is the recoverable
shear strain (SR) given by eqn (14). Material properties should
not depend on the constraints used to perturb the polymer and
this is precisely what our analyses provide.

To observe the collective order of the star molecular, we
calculated the CoM pair distribution function g(Rij). Fig. 14
illustrates the marginal distributions g2D Xa;Xb

� �
¼
Ð
gðRÞdXg

for different planes and at increasing shear rates. It is illustrative
to draw the directions of the principal components of the
pressure and the gyration tensor to observe the departure from
the Hookean (linear SOR) regime. Above Wi 4 20 molecules
start to orient in lanes in the flow–gradient plane, as indicated

Fig. 13 Top panel: angle between the principal eigenvectors of the con-
tributions to the stress tensor and the principal eigenvector of the average
gyration tensor. Bottom panel: comparison with the model including
transversal friction (tdpd model). Angles are with the same color coding.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
sa

us
io

 2
01

6.
 D

ow
nl

oa
de

d 
on

 2
02

5-
10

-1
6 

04
:3

3:
20

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5sm02604k


2432 | Soft Matter, 2016, 12, 2416--2439 This journal is©The Royal Society of Chemistry 2016

by the elongated shape of the CoM distribution in Fig. 14. In
linear polymers at large shear rates, this effect creates order and
even crystallization (ref. 87). This collective order is also clearly
visible in one snapshot of the system, in Fig. 15. Molecules with
different relative velocities (closeby in the gradient direction)
slide over creating a stress which is larger along a direction
differing from the orientation of individual molecules. This
direction of maximal stress is correlated with the CoM distribu-
tion (see Fig. 14) which shows bright spots where molecules
slide over and depleted regions in the ‘‘wake’’ of each molecule.
At the largest shear rates considered, we also observe some
collective ordering in the neutral (vorticity) direction. In sheared
colloids, lanes of particles in the neutral direction appear due

to hydrodynamic interactions.104 This could be a plausible
hypothesis, in view of the hybrid colloid–polymer nature of
the star molecule direction.

8 Effect of tangential friction

To investigate how the tangential friction between monomer
blobs alters the rheology of the melt model, we use a standard
(i.e. not adaptive) DPD thermostat70 with gJ = 1 and g> = 1 (see
Section 3, 4, and 5.3 for details). As stated the friction kernels
are Heaviside functions, in this case with a cutoff distance
Rdpd = 1.5 � 21/6s. In the following, we label this tangential

Fig. 14 The pair distribution of molecules, g(R) providing the probability of finding the CoM of a molecule at a distance (vector) R from the target
molecule CoM. Left: Marginal probability g12ðX1;X2Þ ¼

Ð
dX3gðRÞ in the flow–gradient and (right) gradient–neutral planes. The results for increasing Wi in

a closed domain (open simulations at similar Wi are visually indistinguishable). Green line denotes the direction of the deviatoric stress and the blue line
the molecular orientation obtained from the gyration tensor eqn (15).
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friction thermostat as ‘‘tdpd’’. This tdpd thermostat was
found to be strong enough to keep the relative increase of the
system temperature smaller than 5% at the largest shear rates
considered.

In a real system friction acts by reducing the relative
velocities of interacting monomers, generally in the normal
and also in the tangential directions. Under Markovian and
pairwise interaction assumptions, this form of friction leads to
the DPD equations as shown by the Mori–Zwanzing dynamic
coarse graining applied to the microscopic Liovillian dynamics.9

The same effect is properly captured by the tdpd thermostat,
although here at a qualitatively level. Reducing the monomer
relative velocities immediately leads to a reduction in kinetic
pressure which has large consequences on the system rheology.
In particular, the behaviour of the melt is essentially ruled by its
elastic component, activated by the more effective intermole-
cular friction. Just to illustrate this point, we plot in Fig. 16 the
contributions of the first normal stress difference (a direct
measure of viscoelasticity) for the tdpd case. Compared with
Fig. 10 (for the g> = 0 adpd case) the tdpd model has a much
smaller kinetic pressure and N1 is essentially determined by
the elastic stress (particularly as Wi increases). The same
conclusion applies to P12 in Fig. 16.

An interesting difference related to the presence of tangen-
tial friction concerns shear dilatancy. Fig. 17(a) presents the
relative density expansion dr/r0 = 1 � r/r0 for different models.
Let us now focus on the adpd and tdpd models which are kept
isothermal (non-isothermal cases are discussed in Section 9).
The density expansion of the adpd model (without tangential
friction) scales like dr/r0 B Wi, while tangential friction (tdpd)
leads to a much softer trend dr/r0 B Wi0.5 (although it expands
relatively more at moderate shear rates). Under a constant
normal load, shear dilatancy is a consequence of the growth
of pressure in the velocity–gradient direction. In the case of
small kinetic effects (tdpd) this growth is controlled by the
expansion force arising from the compressed springs. This
elastic pressure appears as soon as molecules start to align
with the flow and compress in the gradient direction. Under
enough tangential friction, the elastic stress is dominant and

also controls the hydrostatic pressure, which in the absence of
kinetic pressure effects, presents a faster decrease at large Wi
compared to the adpd case (see Fig. 18). Of course, this
decrease is also related to the fact that the tpdp simulations
were done in the open system; notably for tdpd we get about
50% reduction in hydrostatic pressure for less than 10%
reduction in density (see Fig. 17).

The eigenvalues of the gyration tensor shown in Fig. 8 also
indicate that adding tangential friction makes star molecules
‘‘stiffer’’, in the sense that one needs larger values of the
Weissemberg number to deform them. This observation is
however somewhat misleading because for a fixed Wi, the real
(physical) shear rate _g = Wi/trot is now smaller due to the
increase in trot with the friction. In any case, the tangential
friction is expected to alter the stress–strain relations in the
Hookean regime (related to the linear stress-optic rule coefficient).
This is (indirectly) seen in Fig. 11 where we plot the normal strain
differences G11 � G22 and G22 � G33 (also G12) against the
corresponding intermolecular stress differences (against Pintra

12 ).
We choose this plot to illustrate two facts: first, if the kinetic
pressure is minor, the intermolecular friction is the leading
mechanism driving the molecular deformation (and its elastic
response). Second, molecular strains (and elastic stresses, not

Fig. 15 Snapshot of a closed box simulation under shear rate (Wi = 42).
For the sake clarity only 10% of randomly chosen molecules are shown.
Colors indicate the position in the neutral direction. The snapshot clearly
shows the formation of lanes tilted in the flow–gradient plane created due
to sliding over rows of oriented molecules. Compared to Fig. 14, the
snapshot is rotated for 1801 with respect to the gradient axis.

Fig. 16 Balances for the first normal stress difference and the shear stress
for the tdpd model including tangential friction. Comparison with Fig. 10
for the zero tangential friction case. Error bars of the measured quantities
are approximately 0.002–0.005e/s0
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shown in the figure) in the flow–gradient and gradient–neutral
planes (corresponding to the first and second normal stress
differences) present a quite similar linear scaling (the shear
deformation as well) with the intermolecular stress. This is to
be contrasted with the top pannel of Fig. 11 (model in the
absence of tangential friction), where the second normal stress
(and G22� G33) is half of the first N1 counterpart (also G22� G11). A
perfect alignment between intermolecular forces, elastic stress and
molecular strain was also found by Kroger et al.89 in linear FENE
chains. It thus seems that tangential friction (tdpd) helps to reduce
the second normal stress in such a way that N1 and N2 present
similar scaling laws N1 B _g0.68�0.02 with N2 B�0.3N1. This is to be
compared with the adpd case in Fig. 6 (N1 B _g0.70 and N2 B _g1.0).
As shown in Fig. 7 the tdpd model yields �N2/N1 C 0.3 at any
Wi o 100. This value is characteristic of disentangled melts (being
�N2/N1 = 2/7 the theoretical prediction for small shear rates1,88).

The monotonous increase of elastic storage with _g found in
the tdpd model is reflected in the recoverable shear strain (SR)

shown in Fig. 7. Somewhat paradoxically, adding tangential
friction increases the melt elasticity. Albeit, this reinforces the
conclusions in Section 6: the intermolecular friction is the
principal mechanism loading elastic stress into an disentangled
melt. In passing, we note that in the tpdp model the orientational
resistance parameter mG = Wi tan(2yG) grows like mG = 3.7Wi0.65

(at least for Wi o 100), a scaling which agrees with that reported
for stars in solution105 (the prefactor being however about twice
larger in our melt).

Not unexpectedly, the zero shear viscosity for the tdpd star
model is larger Z0 = 2.6 than the adpd case Z0 = 0.5. The
relaxation time is also larger tZ = 287 (compared with 60).
However, the tdpd shear viscosity thinning is faster; we find
bZ C 0.5 compared with 0.4 for the adpd case (recall Z B _g�bZ).
Again, this is also a consequence of a much smaller contribution
of the viscous stress coming from kinetic effects. If the tangential
friction is absent, the kinetic (and intramolecular) contribution
increases the shear stress and the viscosity at any Wi leading
to a softer shear thinning exponent.

9 Thermostats and heat dissipation
9.1 Density and temperature

We now briefly analyze the effect of the temperature increase due
to heat dissipation in the sample. In all cases, the temperature
reaches a steady state, but as shown in Fig. 17 (bottom panel)
plotting dT/T0 = T/T0 � 1, we face severe viscous heating while
performing the first row of simulations with the sdpdshort
and (stronger) sdpdlong thermostats (see Table 1). Heating is
observed at Wi 4 10 and irrespective of the damping parameter
(we tried up to gDPD = 50m0t0

�1). Tangential friction drastically
reduces heating (dT/T0 o 0.045 for Wi o 70) however the adpd
thermostat enabled us to simulate zero tangential friction at a
fixed temperature, providing dT/T0 o 0.01.

Let us focus on the ‘‘heated’’ runs at the increasing shear
rate to illustrate the effect of uncontrolled temperature. Fig. 17
shows that heating introduces further melt expansion under

Fig. 17 Top panel: Relative density variation for the different cases studied
(open and closed, and different models and thermostats, see Table 1).
Bottom panel: relative temperature increase observed in simulations with
standard DPD thermostats with vanishing tangential friction. The relative
variation of T for the adpd thermostat is smaller than 0.01 and less than
0.045 for the tdpd case (both of them not shown in the graph). Details of the
thermostats are given in Table 1. The lines correspond to eqn (21), with the
characteristic constant A defined there. Error bar estimations of the data are
approximately 0.005 and 0.01 for the upper and lower graph, respectively.

Fig. 18 Hydrostatic pressure and components of the traceless stress for
the adpd model (normal friction between blobs) compared with the tdpd
model (including tangential friction). Both cases in open boxes at fixed T = 4.
Error bars of the measured quantities are approximately 0.002–0.005e/s0
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shear and this kinetic energy induces larger hydrostatic pres-
sure (which it is seen to increase with shear in the sdpdshort
case). Pressurization due to viscous heating can also alter the
rheology response. This is seen in Fig. 5 where the sdpdshort
case presents shear thickening at Wi 4 10, but only under
closed conditions. The shear thickening reported in some of
the published studies on polymer melts (closed box simula-
tions) might be due to viscous heating (see e.g. ref. 39). More
interesting than this elucubration is the results of Fig. 5 for the
sdpdshort-open. The viscosity obtained for the same thermo-
stat in an open environment is not affected by the temperature
increase with _g. In fact it presents the very same trend as the
adpd case. This observation indicates that shear viscosity is
dominated by the normal load. In fact, the same outcome
was also observed for the sdpdlong model (with shear exponent
bZ = 0.39) and for all gJ r 10 considered. Thus, this insensitivity
of viscosity to temperature found only under normal load is not
probably due to a cancellation of effects sometimes observed
in experiments50 (viscosity decreasing with T and increasing
with P22). Rather it should be due to the viscosity dominated
by pressure as happens in highly pressurized melts.50 Here,
monomers interact via purely repulsive forces (WCA) which
might map a sample under large pressure, in fact, adding
attractive interactions would probably trigger temperature
effects on viscosity.

9.2 Viscous heating

The rate of heat production per unit volume due to viscous
dissipation is

:
QZ = Z _g2 leading to a larger steady temperature

whose value depends on the heat extraction rate. The onset
of temperature increase is usually determined by a non-
dimensional parameter which depends on Wi and on the rate
of cooling

:
Qc (see the recent computational study in ref. 10).

Although in this work we shall not focus on heat and entropy
production, we believe it is interesting to share our observa-
tions on this phenomenon, partly because of the relatively
small simulation literature accurately reporting heating
effects in sheared, thermostatted melts. A simple equation for
the heat produced in the sheared melt includes frictional gain
and cooling,

_Q ¼ _QZ þ _Qc ¼
ZWi2

trot2
� cXa T � T0ð Þ; (19)

where cX is the specific heat capacity (molar) at a constant
pressure (X = p) or volume (X = V) and dQc = rncXdT (here rn is
the monomer number density). The DPD thermostat extracts
(kinetic) energy upon pair collisions, at a rate which is propor-
tional to the temperature difference T � T0, where T is
the temperature of the system (kinetic) and T0 the nominal
temperature of the thermostat.§ The value of cooling rate a

(which has units of the number of colliding pairs divided by
volume and time) should scale as

a / 1

2
rn

2

ð
4pr2gðrÞwðrÞgDPDdr; (20)

where we note that w(r) is the DPD kernel, which is simply a
Heaviside function in our thermostat. The heat cooling rate of
the thermostat increases with its damping coefficient gDPD, the
kernel cutoff RDPD

cut , and with the square of the monomer local
density, which determines the number of thermalizing monomer
collisions. In the steady state

:
Q = 0 we thus have,

T � T0

T0
¼ Z

acXT0trot2
Wi2: (21)

Using the viscosity trend Z = Z(Wi) obtained from simulations
(see Section 5.3 above), we plot prediction eqn (21) in Fig. 17
(lines) for different cases considered. The agreement is quite
reasonable, indicating that the temperature increase in the
melt can be forecast using a simple thermodynamic argument.
Best fits to eqn (21) provide A � acP = 0.011 in the open-
sdpdshort thermostat, while somewhat larger A = 0.017 for the
closed-sdpdshort thermostat. For the closed sdpdlong thermo-
stat, which has about twice as much colliding partners within
the dpd kernel, we consistently get A = 0.03. A preliminary
calculation of cX from the variance of the system energy in a
closed (NVT) equilibrium simulation cV = hdU2iNVT/(NT2) provides
cV C 1.7. From eqn (21) we get the same order of magnitude
(A C 0.05 for sdpdshort and A = 0.09 for sdpdlong). A better
agreement is found while comparing with the tdpd (sdpdlong)
thermostat whose best fit provides A = 0.06(5) against the
prediction 0.09. This indicates that eqn (20) should also depend
on the number of degrees of freedom the thermostat acts upon
(3 in the case of tdpd, 1 otherwise). A more refined calculation
would also require including the dependence of cX and g(r) on
the shear rate.

10 Comparison with previous studies

It is interesting to compare our results with previous rheological
studies, some of them were carried out at isobaric (constant Piso)
or constant load (P22) constraints. As stated in the Introduction,
the number of studies of flowing melts under a constant pressure
(either hydrostatic pressure or normal load) is not large. However,
they present significant discrepancies in the density and pressure
variations with shear. For instance, ref. 42 presents the results
for dendrimer melts under the isobaric conditions (constant
hydrostatic pressure) revealing a decrease in the melt density
under shear. For linear chains, ref. 40 presents just the opposite
effect (contraction under shear), while ref. 43 (constant load)
reports shear expansion (density increase).

The shear thinning exponents found here for a star polymer
melt are consistent with those found in other simulations
for somewhat similar systems such as hyperbranched and
dendrimer polymers.41,42 Recall that the shear thinning exponent
of any quantity F is bF with F B _g�bF at large _g. For viscosity
we find bZ C 0.4 (adpd) and bZ C 0.5 (tdpd), for the first normal

§ This can be proved from the equation for the time dependence of the
covariance hdvi/dt(t)dvi/dt(t0)i of the DPD Langevin’s equation and can be
easily checked (and the cooling rate a measured) upon observation of an
exponential convergence of T towards T0 after an instantaneous change (increase
or decrease) of T0.
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stress coefficient bC1
B 1.30 (adpd) and 1.31 (tdpd), while for

the second one the values are bC2
B 1.0 (adpd) and 1.31 (tdpd).

For dendrimers, Bosko et al.41 reported shear thinning expo-
nents increasing with M under NVT (bZ A [0.28–0.36]) while, for
NPisoT the were roughly independent of M (bZ A [0.37–0.39]).
The same work reported bC1

C 1.27 and bC2
C 1.23 under

NPisoT, while bC1
C 1.1 bC2

C 1.0 under NVT. Closed simula-
tions for hyperbranched polymer melts42 predicted bZ C 0.3
(slightly increasing with molecular mass M), while bC2

C 0.95
and bC1

C 1 (both roughly independent on M). The scaling of
(first and second) normal coefficients are probably sensitive to
the type of external constraint (either isobaric Piso or constant
load P22). As an indication, a numerical study at constant load
for linear chains43 reported the same exponents found in this
work (bC1

= 1.35 and bC2
C 1 respectively). Concerning shear

viscosity, if the density is allowed to relax (under isobaric or
constant load conditions) the shear thinning exponents
reported in the literature show much less variation with the
molecular weight than under a fixed density. This has been
shown for linear chains under a constant load43 and also for
dendrimers.42 In both cases, the shear thinning exponent in the
variable density case was found to be close to 0.4, while it
ranged from 0.25 to 0.4 in the closed system (increasing with
the molecular weight in both cases). This larger insensitivity of
shear thinning exponents under fixed load conditions agrees
with our observations in simulations presenting viscous heat-
ing mentioned in Section 9.

More recently, very similar papers106,107 studied the rheology
and dynamics108 of star polymers with different functionalities
in solution. They reported that the contribution of the stars to
the sheared solution viscosity scales like Wi�0.4 which is quite
close to the shear thinning exponents we find here for the melt.
According to these simulations,106,107 the first normal stress
coefficient scales like C1 B Wi�1 in solution, although the
authors claim an exponent of �4/3 at very high shear rates
Wi 4 100. In the melt, we observe the �4/3 power law at
smaller shear rates. The second normal coefficient seems also
to scale slightly differently in solution C2 B Wi�4/3 than in the
melt C2 B Wi�1. The strong similarities in solution and
melt indicate that rheological properties are mainly ruled by
conformational changes of the chains and maybe also that
the hydrodynamic effects in the melt are somewhat similar to
those in a liquid solvent. Finally, it is interesting to note that
the range of values for bZ and bC1

for stars, dendrimers and
hyperbranched molecules are consistent with the theoretical
calculation of Kroger et al.88 based on the Fokker–Planck
equation for the bond vector distribution of multibead linear
chains having slow rotational diffusion (compared with the
entanglement relaxation) and a finite deformation energy.88

These two features are indeed consistent with the nature of
short-armed stars, dendrimers and hyperbranched molecules
with internal excluded volume interactions.

The number of experimental studies on rheology of sheared
star polymers is not abundant either, but it is growing fast due
to the foreseen technological applications.52,53 Most of these
studies consider long armed stars which present entanglements.

However, the shear thinning exponent we found for the
tangential friction case bZ = 0.5 is quite close to the star
case of the experiments by Tezel et al.109 (4 arms stars with
Ma = 140 kg mol�1; the lowest molecular weight considered in
these experiments). Although entanglements in star polymers
are not yet fully understood in the non-Newtonian regime,52

they should be responsible for the substantially increase in
shear thinning (exponents close to 0.8) observed in the recent
experiments with star molecule melts of Snijkers et al.52 Shear
thinning exponents found in melts of linear chains are around
bZ = 1 (predicted by reptation theory). An open question is why
star molecules significantly reduce the shear thinning.52

The analyses presented in Section 6 based on the (exact)
balance of the pressure coming from the different contributions
(kinetic, intramolecular, intermolecular and bonds) provide
some clues which can be useful in a broader study. These types
of analysis were performed by Baig et al.,2,3 Matin43 and
Tschopp.45 However these balances were based on the energy
budget which has less direct rheological consequences than the
stress. Also, surprisingly, the kinetic contribution was not
considered (leading to unbalanced analyses). The sole excep-
tion we found is the work of Kroger et al.89 for linear FENE
chains which, like ours, is based on the exact stress budget. In
elongational flow of linear chain melts, Kroger et al.89 found
that viscous effects came mainly from intramolecular collisions
(they called it ‘‘simple fluid’’ stress offset). Here, we find that in
star molecules the kinetic pressure can be the dominant
viscous contribution to the melt rheology at large shear rates
(a possibility in fact recognized by Kroger et al. in their book4).
The kinetic pressure is however reduced with the tangential
friction and this warns about the need of dynamic coarse-
graining9 to represent a realistic model. While linear chains
tumble in shear flow,110 star molecules perform a quite differ-
ent motion called tank-threading102,105 (whereby arms rotate
around the molecule center). One can speculate that the
reduction of shear thinning observed in star melts is due to
an enhanced kinetic pressure related to the tank-threading.
Above Wi 4 10 we observe the tank-threading motion in our
melt with monomer angular momentum growing much faster
(o B _g0.6 from the preliminary results) than it does in stars
in solution (where o is constant102,111). Concerning intermole-
cular interactions, quite often neglected in the literature (see e.g.
ref. 87), we find that these are the key to transfer the externally
imposed stress into molecular strain and elastic stress. This
observation agrees with that of Kroger et al.89 Intermolecular
friction is the sole possible mechanism if entanglements are not
relevant (like in our short arm star molecules).

11 Conclusions

We have conducted OBMD simulations of the melt of star
polymers (73 monomers, 12 arms of 6 monomers per arm)
using a relatively new modelling technique which combines
the adaptive resolution and open-MD (respectively, introduced
in ref. 22 and 46 and used in many other studies). From a
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technical point of view, this work substantially enlarges the
size of molecules exchanged between the open system and the
reservoir.13 In this work, we however focus on what happens if
a melt is sheared under a constant normal load instead of a
constant volume. The constant load is in fact the condition in
many experiments (see ref. 40 and 44) although the simulation
literature on the subject is not abundant. We have also presented
some conclusions on how the tangential and normal monomer–
monomer frictions affect these CG molecular models.

The OBMD permits to perform several new features in a mole-
cular simulation. At equilibrium, the OBMD correctly represents the
mass fluctuations of the grand canonical ensemble and interest-
ingly, it could permit to study how fluctuations and sound velocity
are altered under non-equilibrium (e.g. sheared) states. OBMD also
allows to impose the external shear stress Pext

12 as required for (flux
based) hybrid continuum-MD simulations.15,66 It could also enable
the validation of theories like extended thermodynamics47 predict-
ing different outcomes for the ‘‘conjugate’’ constant stress and
constant shear rate _g non-equilibrium ensembles.

Concerning the present study, we observe that under a
constant normal pressure, the melt expands when sheared
(shear dilatancy) leading to substantial depressurization and
slightly decreasing the shear viscosity. This behaviour was
observed in most previous simulations on sheared melts, but
surprisingly it is still unclear if it is the general (universal) trend
(e.g. see ref. 40). This study provides new information on the
rheology of sheared melts: notably, we see that the type of
monomer friction is a key aspect for the system rheology. From a
theoretical standpoint,9 friction between monomers (or rather
‘‘polymer blobs’’) arises as soon as one consider a CG view of the
complex molecule (which is the standard case in polymer science).
The pressure balance analysis reveals that in the absence of
tangential friction, the monomer kinetic stress becomes signifi-
cant at large shear rates, increasing the system viscosity (reducing
the shear thinning exponent) and diminishing its elastic response
(e.g. normal stress difference and stress recovery). We also
observed viscous heating in some simulations (e.g. using the
sdpdshort and sdpdlong thermostats) revealing a viscosity jump
(shear thickening) in closed systems. By contrast, the viscosity of
the heated (and less dense) open samples did not change in trend
(shear thinning) under a constant load. This indicates that the
melt viscosity is controlled by the normal pressure, at least for the
present type of molecules with purely repulsive interactions and
no significant entanglements. We expect the OBMD to become
useful in other studies, such as adding the energy transfer63 or
extending the incompressible coupling in ref. 10 to perform
hybrid simulations of compressible melts including the transfer
of dissipated heat through/across system boundaries. Thus, the
properties related to heat conduction could be investigated.112
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