Issue 31, 2019

The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy

Abstract

Currently, cancer continues to afflict humanity. The direct destruction and killing of tumor cells by surgery, radiation and chemotherapy gives rise to many side effects and compromised efficacy. Encouragingly, the rapid development of nanotechnology offers attractive opportunities to revolutionize the current situation of cancer therapy. Metallofullerenol Gd@C82(OH)22, in contrast to chemotherapeutics that directly kill tumor cells, demonstrates anti-tumor behavior with high efficiency and low toxicity by modulating the tumor microenvironment. Furthermore, Gd@C82(OH)22 has been recently reported to specifically target cancer stem cells. In this review, we give a concise introduction to the development of the fullerene family and then report the anti-tumor activity of Gd@C82(OH)22 based on its unique physicochemical characteristics, followed by a comprehensive summary of the anti-tumor biological mechanisms which target different components of the tumor microenvironment as well as the biodistribution and toxicity of Gd@C82(OH)22. Finally, we describe Gd@C82(OH)22 as a “particulate medicine” to highlight its distinctions from conventional “molecular medicine”, with considerable emphasis on the advantages of nanomedicine. The in-depth investigation of Gd@C82(OH)22 undoubtedly provides a constructive reference for the development of other nanomedicines, especially in the fullerene family. The application of nanotechnology in the medical field definitely provides a promising and favorable future for improving the current status of cancer therapy.

Graphical abstract: The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy

Article information

Article type
Review Article
Submitted
15 geg. 2019
Accepted
19 liep. 2019
First published
20 liep. 2019

Nanoscale, 2019,11, 14528-14539

The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy

J. Li, L. Chen, H. Su, L. Yan, Z. Gu, Z. Chen, A. Zhang, F. Zhao and Y. Zhao, Nanoscale, 2019, 11, 14528 DOI: 10.1039/C9NR04129J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements