Issue 43, 2017

Partially planar BP3 with high electron mobility as a phosphorene analog

Abstract

Based on first-principles calculations, we propose a two-dimensional α BP3 crystal in which one quarter of the phosphorus atoms in phosphorene are substituted by boron atoms. Its geometrical structure resembles that of graphene more than that of phosphorene, although phosphorus is present as a major component. It is dynamically stable and energetically much more stable than another allotrope analogous to blue (β) phosphorene. The α BP3 monolayer is a semiconductor with an indirect band gap (=0.77 eV) within the HSE06 calculation. For the BP3 bilayer, three stacking patterns are equally stable within 3 meV per atom. The monolayer exhibits a high electron mobility (∼4.6 × 104 cm2 V−1 s−1) along the zigzag direction. In the bilayer, the mobility is ∼200 times higher than that of the α phosphorene bilayer. Specifically, it is even higher (∼3.7 × 105 cm2 V−1 s−1) and amounts to ∼2500 times in one of the patterns. Therefore, the BP3 monolayer or bilayer will be useful as an n-type material in nanoelectronics through appropriate doping.

Graphical abstract: Partially planar BP3 with high electron mobility as a phosphorene analog

  • This article is part of the themed collection: 2D Materials

Supplementary files

Article information

Article type
Paper
Submitted
29 geg. 2017
Accepted
07 liep. 2017
First published
10 liep. 2017

J. Mater. Chem. C, 2017,5, 11267-11274

Partially planar BP3 with high electron mobility as a phosphorene analog

F. Shojaei and H. S. Kang, J. Mater. Chem. C, 2017, 5, 11267 DOI: 10.1039/C7TC02346D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements