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Environmental Significance Statement:

Industrial activities such as open pit mining are thought to affect the environment due to the
presence of trace elements (TEs) in the dusts they emit. Beyond determining TE
concentrations, it could be useful to also assess their association to colloids and ionic species.
We studied the total, particulate, “filterable”, and “truly dissolved” concentrations of TEs in
the particulate matter occurring in snow deposited along a boreal river which bisects the
Athabasca Bituminous Sands (ABS) region in Canada. The 11 TEs studied were
predominantly found in the particulate fraction. The “filterable” fraction was dominated by
ionic and small species (below 300 Da). However, the concentrations of TEs in this fraction

were extremely low, suggesting limited bioaccessibility to aquatic organisms.
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Size-resolved analyses of trace elements in snow
from an open-pit bitumen mining and upgrading
region
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ABSTRACT

Dust containing potentially toxic trace elements (TEs) from open pit mining, smelting of metallic
ores, aggregate extraction, and road dust is a major concern worldwide. The potential ecological
significance of TEs in these dusts, however, depends not only upon their concentrations, but also
their physical and chemical forms. Here, dusty snow from the Athabasca River (AR) which bisects
an open-pit bitumen mining and upgrading area in Canada was collected to perform size-resolved
analysis of selected TEs. Conservative, lithophile (Al, Th, Y), bitumen-enriched (Mo, Ni, V), and
chalcophile (As, Cd, Pb, Sb, Tl) elements were overwhelmingly found in the particulate fraction
(> 0.45 pm), with concentrations increasing toward industry. The mineralogical composition of
this fraction was similar to dusts from natural and anthropogenic sources in the area. In the
“filterable” fraction (< 0.45 um), Al, Mo, and V in snow were elevated near industry. Within the
filterable fraction, TEs occur predominantly in the “truly dissolved” fraction (< 300 Da): these are
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assumed to be ionic species and small molecules, and represent potentially bioavailable species.
However, the concentrations of TEs in this fraction were extremely low: for perspective, Cd and
Pb are similar to values reported for ancient Arctic ice. Within the filterable fraction at midstream
sites, up to 30% of Ni and 37% of Y were associated with organic colloids (=1 kDa) which may
be from bitumen and soil-borne sources, respectively. Except for V, TE concentrations in the
filterable fraction of snow were below the average values for the AR and the global average for
uncontaminated river water. Consequently, the threat to aquatic life in the river by TEs in snowmelt

may be limited.

KEYWORDS: trace elements, AF4-ICPMS, ionic species, bioavailability, dust, oil sands
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1. INTRODUCTION

Atmospheric dust is increasing considerably from industrial development, changing land-use
activity and climate change-induced drought.'= Anthropogenic dust from wind erosion of land-
disturbed areas accounts for approximately 30 to 70% of the total global dust flux.> Significant
portions of these dusts are from open pit mining of coal,* iron and base metal mining and
smelting,>>~7 aggregate extraction,>® and road dust.® Natural sources include wind erosion of
soils, especially deserts in arid and semi-arid regions,>!? sea salt spray,!%!! volcanic emissions,!%!!
and wildfires.310

Mechanical processes generate coarse dust particles with most of their mass present in the 2.5
to 10 um diameter size range'>!3. Fine particles (< 2.5 um) on the other hand, are generated by
combustion processes at high temperatures.!®!3 Fine particles and nanoparticles (1,000 nm) tend
to be more toxic than the larger ones due to their smaller size and larger surface area,*!! posing
environmental risks to living organisms.!'%!% The chemical composition of these dusts also plays a
critical role given that they may contain potentially toxic contaminants such as Cd, Pb, and other
trace elements (TEs).2> 1014

In the northern hemisphere, up to one-third of the land is covered with snow for a minimum of
three months per year.'>'® When wet deposition occurs, light absorbing dust particles can darken
snow and ice packs'>!” reducing albedo, accelerating snowmelt and reducing snow cover.!-!”
Snowmelt water is a critical source of freshwater, accounting for 50 to 80% of total runoff.!¢ In
spring, the concentrations and bioaccessibility of TEs in rivers and lakes receiving snowmelt can
fluctuate markedly, presenting challenges for the protection of aquatic organisms!”'® particularly

during the spawning season.
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1
2
2 61 Previous research has examined the size distribution of particles containing TEs in order to
Z 62  better understand their bioaccessibility and their potential bioavailability to living organisms. '3
273 63  These studies include surface waters of large boreal rivers,!*2° permafrost peatlands,?’ rainfall and
9
:(1)% 64  snowmelt runoff,?® and snow?*. Other studies focused on the analytical challenges posed by
gg";z 65 available methodologies for size-resolved analysis of TEs such as asymmetric flow field-flow
245% 66  fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS).2-31

67
%é; 67 In the Athabasca Bituminous Sands (ABS) region of northern Alberta, Canada, open pit
g% 68  bitumen mining and upgrading generate considerable amounts of dust.3>-3> Research conducted in
%125 69 the area include studies of total, particulate (> 0.45 pum), and dissolved (< 0.45 um) TEs

s

%zlg 70  concentration in surface waters,!?203637 moss,3% 40 peat bog porewaters,*! peat cores,*>*
g% 71 lichens,** berries,*647 and snow.!%37:4852 More precisely, our previous studies in river waters and
%gﬁ 72 snow focused on the spatial?%-36->0 or spatiotemporal variation of TEs,?%*° the reactivity of TEs in
g?% 73 dust deposited on snow,*®4? the size-resolved analysis of Pb in river waters and snow from peat
22
% 74 bogs! and the distribution of TEs among colloidal and ionic forms in river waters.?%>> These
g 75  publications highlighted the abundance and predominance of TEs in the particulate form, low
2@ 76  concentrations of elements of concern in the dissolved fraction (below water quality guidelines),
39
2(1) 77  and limited solubility of the dusts containing TEs.
fé 78 Snowmelt, rainfall, peatland runoff as well as groundwater and inputs from tributary rivers all
fé 79  contribute water to the lower Athabasca River (AR), which bisects the ABS region.>33* Given that
%Z 80 the AR drains into Lake Athabasca by forming the Peace-Athabasca-Delta (PAD), a UNESCO
:g 81  world heritage site, it is vital to understand how the size and speciation of TEs in dust deposited
g; 82  within the ABS region may affect their bioavailability in the river and its delta. Snow deposited
gi 83  here during the winter months provides a convenient opportunity to address these questions.
s
57
58 4
59
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The aim of this research was to determine the significance of dust for TEs in snow.
Specifically, to determine the concentrations of TEs that: 1) are potentially bioavailable (i.e. ionic
species and molecules smaller than 300 Da), ii) occur as colloidal materials within the fraction
smaller than 0.45 um (i.e. "filterable" fraction), and iii) are present in particulate form (i.e. larger
than 0.45 um). For consistency, and to help guide the reader, “dissolved” refers to the < 0.45 um
fraction of a water sample, and “filterable” to the same size fraction in snow; “truly dissolved”
refers to the fraction smaller than 300 Da in both sample types. This latter size fraction is assumed
to consist of ionic species and small molecules The species in this size range are also assumed to
be directly bioavailable to living organisms, as they are capable of passing through cell
membranes.>¢

The elements of interest are conservative lithophile elements (Al, Th, Y)3” which are indicators
of mineral dusts, elements enriched in bitumen (Mo, Ni, V),3”8 and chalcophile TEs (As, Cd, Pb,
Sb, T1)*7 which are of greatest concern. Given that snowmelt provides direct access of TEs to
surface waters, the results are also discussed within the context of water quality guideline values

for the protection of aquatic life.

2. MATERIALS AND METHODS

2.1 Study area, sample collection, and sample processing

Bulk snow samples representing complete snow profiles were collected between February 24
and March 5, 2016 from 20 sites along the Athabasca River (AR), 5 of its tributaries, and at a
reference site, Utikuma (UTK) located 264 km SE of the ABS region (Figure 1). Sites were

classified as upstream, midstream, and downstream with respect to their distance to the mid-point
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1

2

2 107  between the two central bitumen upgraders (Table S1, Supporting Information) as presented in

5 . .

6 108  previous studies.385!

7

8 109 Sampling was conducted using ultra-clean procedures, including acid-cleaned consumables

9

:(1)8 110  (bottles, syringes and filters) as described elsewhere.’® Details of the collection and photographs
@

g% 111 of the study area, and some of the samples are provided in Section S1 and Figure S2 respectively.

4

8% 112 Prior to processing, the bulk samples were thawed overnight in a class-1000 clean room, located

g6z

gé 113  in the metal-free, ultraclean SWAMP laboratory (https://swamp.ualberta.ca/). Once the samples

gé 114  had melted, they were placed inside a metal-free class-100 air clean cabinet. Four fractions were

215

322 115  obtained from the melted snow: (i) total (unfiltered, acidified); (ii) filterable (filtered, acidified);

§ >

g?@ 116  (iii) colloidal and truly-dissolved (filtered, unacidified) and (iv) particulate (collected on filter

25°

2o}

%% 117  membranes). Potential loss of TEs due to adsorption of dust particles to the polyethylene (PE)

%ﬁ 118  plastic bags was assessed as described in Section S2. The percentage of these losses is summarized

20

815 119  inTable S3.

322

% 120 For total TE concentrations, a 2 mL aliquot was digested in 3 mL of concentrated HNO; (sub-

g 121  boiled twice) using high-pressure microwave-assisted digestion (Ultraclave MLS, Milestone).3830

3=

3(&| 122  The use of HNO;3 alone may be insufficient to achieve complete sample decomposition, as TEs

39

40 123 contained within refractory mineral phases (e.g. quartz, monazite, rutile, titanite, and zircon) are

41

jé 124  unlikely to be released (see recoveries in Table S2). On the other hand, the addition of other

44

45 125 reagents such as HBF, to dissolve refractory minerals could contribute to higher blank

46

47 126  concentrations®® and inadequate detection limits for some TEs. Even though the term “quasi-total

48

gg 127  concentration” is more accurate in this context, “total concentration” is employed here given that

51

55 128  this procedure provides good recoveries for most of the TEs of environmental concern.® Four

53

54 129  certified reference materials (NIST 1643f “Trace Elements in Water”, SPS-SW2 “Elements in

55

56

57

58 6

59

(o))
o
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Surface Water”, NIST 2709a “San Joaquin Soil”, and IAEA-Soil 7; see Table S2), laboratory
blanks, and replicates selected randomly were also digested. As noted earlier, the digestion method
employed resulted in lower recoveries of some elements (Table S2). For the filterable TE
concentrations, approximately 120 ml of sample was filtered through acid-cleaned 0.45 pm
polytetrafluoroethylene (PTFE) filter membranes. Half of this volume was collected inside a
polypropylene (PP) bottle and acidified with HNOj to reach a final concentration of 2%, whereas
the other half was collected inside a fluorinated ethylene propylene (FEP) bottle and maintained

unacidified.

2.2 Determination of TEs

Selected TEs such as indicators of dust (Al, Th, and Y), those enriched in bitumen (Mo, Ni, V)
as well as chalcophile elements (As, Cd, Pb, Sb, and TI) were determined using an ICP-MS (iCAP
RQ, Thermo Fisher Scientific). The limits of detection (LOD), quantification (LOQ), method
detection limit (MDL; for total concentrations), as well as the precision (RSD), accuracy (%) and
recoveries (%) of the certified reference materials are listed in Table S2. As mentioned in Section
2.1, the digestion method used in this study resulted in low recoveries of some elements. Therefore,
the concentration of some TEs may have been underestimated.

To determine the TE concentrations in the particulate fraction (> 0.45 um), the dissolved

fraction was subtracted from the totals.>°
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Figure 1. Sampling locations along the Athabasca River (SAR) near the east and west banks, its tributaries, and at the reference

(UTK), winter 2016.
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2.3 Size-resolved analysis of TEs in the filterable fraction of snow

The samples that were filtered (< 0.45 um) and kept unacidified were analyzed within 24-48
hours after being processed using asymmetrical flow field-flow fractionation (AF4) equipped with
an auto injector (AF2000 MF and PN5300, respectively, Postnova Analytics), coupled to a UV-
visible absorbance detector (G4212 DAD, Agilent Technologies), and ICP-MS. The UV detector
measured the absorbance at a wavelength of 254 nm (A254), which served as a proxy for organic
matter (OM) concentrations.

Analytical conditions and settings are described in previous publications,!*2>% however a
summary is presented in Section S3 and the QA/QC parameters in Table S4. Of the 11 TEs
presented here, Sb and T1 were not analyzed because integrable peaks were either absent or small
and similar to levels in the blanks as reported in previous study about TEs in the surface waters of
the AR.»

Four subfractions can be obtained from the filterable snow using this method, each of them
associated with a specific retention time (t,) and corresponding molecular mass (Mp): 1) unretained
materials and part of the primarily ionic and small molecular species eluted in the void peak (t,~
445 s, Mp = 300 Da ), 2) OM-associated species, co-eluting with organic matter (t,~ 550 s, Mp =
1 kDa), 3) small inorganic species eluted before the crossflow pump was turned off, with minimal
overlap with the organic matter peak (t;= 900 s, Mp = 15 kDa), and 4) large inorganic species

eluted after the crossflow was shut off (t, > 1800s, Mp > 20.7 kDa). 2025

2.4 Scanning electron microscopy (SEM) and X-Ray diffraction (XRD)
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1

2

2 183 Prior to these analyses, dust particles (> 0.45 um) from selected locations (Firebag River, SAR-

5

6 184 1.5, SAR-5, SAR-10, Muskeg River, SAR-15, SAR-15.5, SAR-16, Steepbank River, SAR-18,

7

8 185  SAR-19, SAR-20, SAR-21, Clearwater River, SAR-UP2, and UTK; see Figure 1) were examined.

9

:(1)% 186  The housing of the filters containing dust particles was cut and opened to remove the filter
ya

gag 187  membranes.!'%*

348

g% 188 The major element composition, morphology, and size of the particulate fraction was

g6z

gé 189  determined using an SEM equipped with an energy dispersive X-ray spectroscopy (EDS) system

gé 190  as described in our previous studies.*® To identify the mineralogical composition of these particles,

215

322 191  XRD analyses were performed directly on the filters using a Rigaku Ultima IV X-ray

5

%42 192  diffractometer in the Earth and Atmospheric Sciences XRD laboratory, at the University of Alberta

25

2o}

%% 193  (https://cms.eas.ualberta.ca/xrd/). Filter blanks were also analyzed to assess the contribution from
85

%9% 194  the PTFE membrane to the diffraction pattern.

20

875 195

322

% 196 2.5 Statistical analysis

g 197 The software used for statistical analysis were R 4.2.0 and MATLAB. Linear regressions were

3=

32| 198  conducted using the /m function to explore the relationship between selected conservative

39

2(1) 199 lithophile elements (Al and Th), elements enriched in bitumen, and potentially toxic TEs. Besides,

fé 200 Spearman correlations were calculated at a p-value of 0.05 for particulate and dissolved TE

44

45 201  concentrations, and visualized using the corrplot package. An ANOVA test was also performed in

46

47 202  order to determine statistical differences of dissolved TE concentrations up, mid, and downstream

48

gg 203  the ABS region and UTK, the reference site. Finally, statistical fractogram deconvolution of the

51

52 204  AF4-UV-ICPMS data was employed to decompose the overlapping peaks into each fraction using

53

54 205 MATLAB 2021a.61.62

55

56

57

58 10

59
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3. RESULTS AND DISCUSSION

3.1 Distribution of total, particulate, and filterable TEs in snow
3.1.1 General trends

All TEs were predominantly found in the particulate fraction (Figure 2 and 3, Table 1, Table
S5 and S7). These results are similar to previous studies in the ABS region37-3%52 with the exception
of Pb and T1, and Ni and Sb, which were previously reported to be more abundant in the filterable
fraction.3”>2 It is also evident that TEs were more abundant in sites located midstream of the
industrial area (from Muskeg R. to SAR-18) than at upstream (SAR-18.5 to SAR-UP2) and
downstream locations (Firebag River to McK River). These spatial trends have already been
observed and are well documented not only in snow 374830-52 but also in vegetation growing in the
area.’846.93 Trace elements were also more abundant at sites located within the ABS region than at
UTK, the reference site, except for Sb (Figure 2 and 3). The pH of the snow samples was slightly
acidic to slightly basic, with average values of 6.9 & 0.6 (upstream), 7.3 + 0.5 (midstream), and 6.6
+ (.7 (downstream) (Table S1), similar to snow samples collect in 2017, except at SAR-5 and McK

River.48

3.1.2 Conservative lithophile elements
a. Snow
The concentrations of total and particulate Al, Th, and Y increased 5 to 6x from downstream
to midstream of industry, and 3 to 4x from upstream to midstream (Figure 2). The filterable fraction
of these elements represents less than 1% of the total (Table 1). The concentrations of filterable Al

increased approximately 8x from downstream to midstream. In addition, filterable Al, Th, and Y
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1

2

2 229  increased 3 to 4x from upstream to midstream. (Figure 2). The concentrations of Al, Th, and Y in

6 230 the filterable fraction at upstream and midstream locations in the ABS region were either similar

7

8 231 or higher (2 to 5x) that at the reference site, UTK (Figure 2, Table S6). However, significant

9

:(1)8 232 differences in the concentrations of filterable Al between the ABS area and UTK were only
@

g% 233 observed at midstream locations (Table S6).

348

S 234

[

97 235 b. Snow vs river water

e

gé 236 The filterable concentrations of Al, Th, and Y in snow were 3, 4, and 14x respectively lower

215

322 237  than their average dissolved concentrations in the main stem of the AR in autumn of 20143¢ (Figure

e

g?@ 238 2, black dotted line). In addition, the concentrations in snow samples were 5x (Th), 6x (Al), and

25°

2o}

%% 239  9x (Y) lower than the global average dissolved concentrations in river waters (Figure 2, green

%ﬁ 240  dotted line).%* For perspective, Al in the dissolved fraction of the AR (< 0.45 um) was 2x lower

20

@875 241  than the global average in river waters(< 0.2 or 0.45 um)**** (Figure 2).

322

% 242

g 243 3.1.3 Elements enriched in bitumen

3=

38| 244 a. Snow

39

40 245 The concentrations of total and particulate Mo, Ni, and V increased 17 to 26x from

41

fé 246  downstream to midstream of industry, and 9 to 14x from upstream to midstream (Figure 2). The

44

45 247  filterable fraction of these elements represented less than 9% of the total (Table 1). Filterable Mo

46

47 248 and V concentrations increased between 2 to 7x toward the centre of industrial activities (Figure

48

:g 249  2). Moreover, the filterable Ni, Mo, and V concentrations were 2 to 32x greater upstream and

51 . . . . .

5o 250  midstream than at UTK. These differences in concentrations were only significant for filterable V

53

54 251  at midstream locations (Figure 2, Table S6).
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Figure 2. Average concentrations of total, particulate and filterable (< 0.45 pum) Al, Th, Y
(conservative lithophile elements), Mo, Ni, and V (elements enriched in bitumen) in snow from
upstream, midstream, and downstream locations (with respect to the industry), and at the reference
site (UTK), winter 2016. The horizontal black line represents the dissolved TE concentrations in
the AR main stem in autumn of 201436 whereas the green line represents the global average (GA)
dissolved (< 0.2 or 0.45 um) concentrations of TEs in river water.%*

Notes: The map on the right side shows the snow sampling locations in the ABS region along the Athabasca River
(SAR) and its tributaries. The location of UTK is provided in Figure S1 and Table S1 (Supporting Information). The
red star represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit
of detection, MDL = method detection limit, nd = not determined. Th and Mo concentrations at UTK are based on
one location instead of the average of two.
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b. Snow vs river water
Filterable concentrations of Ni and Mo in snow were 3 and 8x respectively lower than their
respective concentrations in the dissolved fraction of the AR.3¢ Similarly, the concentrations of Ni,
V and Mo in filterable snow were 3x, 4x, and 5x lower than their concentrations in uncontaminated
river waters® (Figure 2). Again, for context V in the AR was 3x lower than the global average in

river waters3%%4 (Figure 2).

3.1.4 Chalcophile elements
a. Snow

The total and particulate concentrations of As, Cd, Pb, Sb, and TI increased 3 to 6x from
downstream to midstream, and 3 to 4x from upstream to midstream (Figure 3). The filterable
fraction varied from 1 to 17% of the total (Table 1) and demonstrated the following spatial patterns:
(1) no increase toward the centre of industrial operation (Pb and TI), (ii) a modest increase either
from down to midstream (Sb) or in both directions (As), or (iii) no clear trend (Cd) (Figure 3). Of
this group of elements, filterable Cd and Pb showed significantly lower concentrations within the
ABS region (at the 3 location types for the former, and at upstream and midstream for the latter)
than at UTK. By contrast, filterable As and Tl concentrations were significantly greater (up to 5x)

at midstream locations compared to UTK (Figure 3, Table S6).

b. Snow vs river water
The concentrations average dissolved concentrations of these TEs in snow were 4 (Cd, Pb, Sb,
T1) to 12x (As) lower than their respective concentrations in the AR3¢ (Figure 3). Similarly, the

filterable concentrations of Sb and As in snow from the ABS region were 6 to 19x respectively
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lower than in uncontaminated river waters.®*% In addition, the dissolved concentrations of these

five potentially toxic chalcophile elements were 2 to 6x lower in the AR than in river waters

worldwide3¢% (Figure 3).
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Figure 3. Average concentrations of total, particulate and filterable (< 0.45 um) As, Cd, Pb, Sb,
and Tl (chalcophile elements) in snow from upstream, midstream, and downstream locations (with
respect to the industry), and at the reference site (UTK), winter 2016. The horizontal black line
represents the dissolved TE concentrations in the AR main stem in autumn of 20143¢ whereas the
green line represents the global average (GA) dissolved (< 0.2 or 0.45 um) concentrations of TEs*
in river water.%

Notes: The map on the right side shows the snow sampling locations in the ABS region along the Athabasca River
(SAR) and its tributaries. The location of UTK is provided in Figure S1 and Table S1 (Supporting Information). The
red star represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit
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1

2

3 309 of detection, MDL = method detection limit, nd = not determined. As and Sb concentrations at UTK are based on one
4 310 location instead of the average of two. *For T1, the estimated mean natural concentration in river waters was used.®
Z 311 3.2 Characterization of TEs in the particulate fraction of snow and their potential
7

8 312 sources

9

10, 313 3.2.1 Mineral characterization and identification using SEM and XRD

115

58_2% 314 Scanning electron microscope analyses performed on PTFE filters (see section 2.4), revealed
SES

v 3

245 315 the presence of particles with irregular shape and microaggregates, ranging from less than 10 to
AN q

62 . : : . :

gzg 316 200 um (Appendix A, selected images) as reported in our previous studies.*®#° The elemental
kS
%9‘5; 317  composition obtained from the EDS spectra indicated the presence of Si, Al, Ca and Fe, followed
2%

%12% 318 by S, Mg, K, Ti, Na, and traces of REEs (La, Ce, Nd) and Zr (Appendix A). The XRD analyses of

>

%jg 319 the same samples indicated the presence of insoluble silicates (quartz; clay, feldspar, and mica-
Q2
258
o) . . . . . . .
Q62 320  like phases), carbonates (calcite, dolomite, and ankerite), and Ti oxides (anatase and rutile)
2%
%ﬁ 321  (Appendix B). Midstream and upstream locations showed more mineral diversity in terms of clays
%% 322 (kaolinite, dickite, nacrite, muscovite), micas (i.e. biotite minerals, but only midstream), feldspars
322

% 323  (albite and microcline, only upstream), and other silicates such as enstatite (Appendix B). No
g 324  mineral phases were identified at UTK, the reference site, simply because the mass of particles on
g | 325 the filter were not sufficient to perform this type of analysis (Appendix B). However, dust particles
39

40 326 at UTK are usually smaller (<30 pum) and less abundant than at the ABS region, and are composed
41

42 327  of quartz, feldspars, and clay minerals.>*4048 Taking these results together, the composition of the
43

j;' 328 particulate fraction in the AR snows is similar to the mineral fraction of the ABS%*-%° but also with
46 . . .

47 329  other dust sources such as limestone and aggregate used in the construction of local roads.*+>1.70
48

49 330

50

g; 331 3.2.2 Source assessment using TE ratios, correlations, and linear regressions in
53 . .

54 332 the particulate fraction
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Several authors have stated that it is still challenging to separate natural from anthropogenic
atmospheric sources of TEs in the ABS region.>*7!-7* Three methods summarized in Figure 4,
Figure S3, Figure S4, and Table S8 were used in order to understand the geochemical behaviour
and possible sources of TEs in the particulate fraction of the snow from the AR and its tributaries.

a. Trace element correlations

Aluminum, Th and Y are considered as indicators of mineral dusts.!?-383! Aluminum is

commonly used as an indicator of the abundance of clay minerals,?®7> whereas the latter pair are
enriched in heavy minerals and froth treatment tailings.”¢-78 Trace elements in the particulate
fraction showed a correlation (r > 0.8) with the conservative lithophile elements, except Sb and
Mo (r < 0.8) (Figure S4). These strong correlations would suggest that TEs in this fraction (> 0.45
um) have a common mineral source including heavy minerals and clays.

b. Trace element ratios

Trace element ratios have been previously reported in the ABS region not only in snow#%-!
but also in moss®? and peat bog porewaters.*! Focus here is placed on Pb and Tl in the particulate
fraction of snow given that these elements are vey toxic, they are enriched in bitumen have, and
have already been extensively discussed in previous publications.*>*° Lead and T1 were normalized
to Al and Th and compared to their respective ratios at UTK (the reference site), the Upper
Continental Crust (UCC),”° the bulk ABS and its mineral and bitumen fractions,’® as well as to
diverse geomaterials found in the study area (Section S4, Figure S3, Table S8).

Lead /Th ratios at the ABS region were approximately 2x lower than at UTK . The Pb/Th
ratios at UTK were similar to those reported in peat cores collected from the same site,*? which in
turn were similar to Pb/Th reported in the cleanest peat cores ever found, dating from pre-industrial

times.8" Unfortunately, T1 was below the LOD at UTK. However, within the ABS location types,
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1

2

2 356  Pb/Th and TI/Th were similar upstream, midstream, and downstream of industrial operations

6 357  (Figure 4, Figure S3, Table S8). In addition, Pb/Th ratios in the ABS region were double their

7

8 358  equivalent ratios in the UCC. In contrast, T1/Th ratios were similar to the UCC.”® Many possible

9

:(1)8 359  sources of dust, ranging from dry tailings to road dust maybe be responsible for these TEs in the
@

g% 360 particulate fraction (Table S8). For example, Pb/Th and T1/Th in tailings were similar to the ratios

348

8% 361 in other industrial materials in the area such as petcoke, tailings, and bulk ABS (Figure 4 and

[

gé 362  Figure S3). Thus, these element ratios cannot be used to ascribe them to a specific dust source, but

gé 363  they are comparable to many of the possible dust sources in the area. A previous study conducted

215

322 364 in the same area, suggested that Pb in lichens collected near industry had an overlapping signature

e

g?@ 365  with bulk ABS and tailings.®!

o5

%% 366 Regarding the other chalcophile element ratios, they were greater in the ABS region than at

%ﬁ 367 UTK given that the concentrations of As, Cd, and TI in the latter were below the LODs or MDLs

2%

315 368 (see Table S5). In addition, As/Th and Sb/Th in the industrial area were below the ratios for the

322

% 369 UCC” while the opposite was observed for Cd/Th and Cd/Al (Table S8).The As/Al and As/Th

g 370 ratios in the ABS region were very similar to their respective ratios in road construction material

3=

3f&| 371  (Table S8). Previous studies have linked As to three types of sources (road dust, raw oil sand dust.

39

40 372 and road salt)’! while Sb may be associated with fuel combustion, residential wood burning, and

41

fé 373  waste combustion.?? Antimony can also be associated with truck brake pads.?384

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 18

59

(o))
o


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5em00334b

PPrind & ctEisTicétisdy undeA Creative Commons Attribution 3.0 Unported Li

NN N N ReRACcessAtticles Published on 14.Qkitobls 2025 Pewnlsaded gn 16/1042025 08:46:28.

2
2
2
2
3
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

374

375

376
377
378
379
380

381
382
383

384

Environmental Science: Processes & Impacts

. A) 75 . B)
I Mineral fraction of ABS = 3 I ‘._,S‘t"élepbank R
. L SAR-16 R -
5 (<]
. .......... 6.0 i SAR-15
....... (=]
45
= = I SAR-17
5 o5t £ L °
a i a | y =1.97x +0.22
3.0 SAR-18 ) R2=0.84
Bitumen= 0.2 i SARS o p< 0.001
B RRRREEEE et ERETREPRRTPR SCCE ERRTPTRRRPREE T SETSETRRCPIEES -ttt SR | Clearwater R Ll
Muskeg R @ SAR-185
1.5
SAR 8
SAR-UP2
0.05 0.0 e
UTK Upstream Midstream Downstream '
. 0.0 2.4 3.2 4.0
- Firebag R Th (ng/L)
¥ el

Figure 4. (A) Pb/Th ratios in the particulate fraction of snow from UTK (reference site) and upstream, midstream, and downstream
locations (with respect to the industry) in winter 2016. The dashed lines represent the Pb/Th ratios in the Upper Continental Crust
(UCC),” in the bulk ABS, mineral and bitumen fractions,*® and in tailings (see Table S7). The yellow area represents the range of Pb/Th
ratios in petcoke (see Table S7). (B) Linear regression between Pb and Th concentrations in the particulate fraction of snow from the
Athabasca River (SAR) and its tributaries.

Notes: sites in green, red, and blue represent upstream, midstream, and downstream locations, respectively. The Pb/Th at UTK was calculated based on concentrations from UTK-1
(See Table S5).
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385
386 ¢. Linear regressions
387 The increase in the concentrations of particulate Pb and Tl toward industry was proportional

388  not only to the increase of Th (Figure 4B and Figure S3B) but also to that of Al (Table S9), which
389 isin agreement to what was found in the acid-soluble fraction of snow.#’ Arsenic and Sb behaved
390 similarly to Pb and Tl (Table S9). These results indicate that the abundance of these elements in
391  snow of the ABS region reflect the abundance of mineral matter in the samples.

392 The low R? values (0.10 to 0.28) of elements enriched in bitumen vs Al and Th (Table S9)
393  may be explained by specific sites or “hotspots” at midstream (SAR-15, SAR-16 and SAR-17) and
394  downstream locations (SAR-18.5 and SAR-19) that have concentrations that do not follow the
395  spatial trends observed for the other elements (Table S7). Snow collected at some of these sites
396  contained small black particles most likely to be petcoke which is stockpiled in large amounts
397  around the mines 3>#° and is known for elevated concentrations of V and Ni. 3> The poor correlation
398  between Mo, Ni, and V with Al and Th, may reflect the sporadic occurrence of petcoke particles

399  in snow samples.
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400
2(1) 401 3.3 Trace element in colloidal and < 300 Da fractions
fé 402 3.3.1 General trends
fé 403 In the ABS region, TEs in the filterable fraction of snow were mainly in the <300 Da fraction
%Z 404  (Figure 5, Table S7). However, there are some exceptional elements and sites. For example, at
:g 405  midstream locations, 37.2 % of Y and 30.4% of Ni in this fraction on average were mainly
g; 406  associated with OM. Downstream, the OM fraction ranged from < LOD to 47.5% of the filterable
gi 407 Th, Y, and Ni (Figure 5, Table S7). A study conducted in snow from Western Siberia (from the
s
57
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vicinity of Barnaul city to the Ob estuary) reported that OM colloids can originate from
thermokarst lakes that freeze solid during winter. These colloids may consist of organic aerosols,
humic-like substances, black carbon, and mineral dust coated with organic matter. Freeze-thaw
cycles can also contribute by producing large colloidal particles and releasing low molecular
weight organic compounds.?*

At UTK, the reference site, most TEs were also predominantly found in the <300 Da fraction.
The exceptional elements found also in other fractions were Th and Pb (OM: 40.7 and 16%
respectively), Mo (small inorganic, 41.4%), and As (large inorganic, 29.6%) (Table S7).
According to a previous study, the higher abundance of certain elements in colloidal form in snow
is linked to various mechanisms of colloid formation, transformation, and transport in the
atmosphere, processes that remain poorly understood. The study points to possible pathways such
as the fragmentation of fly ash particles, condensation of volatile compounds from industrial
emissions, and the dissolution or dispersion of soil minerals like clays. During winter, both the
sources of dissolved elements and the atmospheric processes acting on aerosols may determine the
chemical composition of snow water colloids.?*

The ABS surface-mineable area spans roughly 4,800 km? and is bordered by boreal forest, with
numerous lakes and wetlands. In addition, the lower Athabasca River contains many islands,
secondary channels, wetlands, and floodplain lakes.>> Additional features include agricultural land,
several urban centers, and wastewater treatment plants.®¢ Together, these observations underscore
the potential influence and diversity of both natural and anthropogenic sources to the composition
of the filterable fraction of the snow. Hypotheses about specific sources will be discussed by class

of elements.
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Figure 5. Percentages of filterable A) Al, Th and Y (conservative lithophile elements), B) Mo, Ni,
and V (elements enriched in bitumen, and C) As, Cd, and Pb (chalcophile elements) in the “truly
dissolved” (< 300 Da), OM-associated (= 1 kDa), small inorganic (= 15 kDa), and large inorganic
(> 20.7 kDa) forms, in selected locations along the Athabasca River (SAR) and its tributaries,
winter 2016.
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3.3.2 Conservative lithophile elements

Between 62 to 87% of the filterable Y, Al, and Th in snow occur <300 Da (Figure 5, Table
1, Table S7). In the case of Al, the second most abundant fractions at downstream and midstream
locations were the small and large inorganic forms respectively (Figure 5, Table S7). However,
two sites were exceptional (SAR-UP2 and SAR-5) and had considerable amounts of Al associated
with OM (Table S7).

At downstream locations, approximately 21% of Th was associated with OM (Figure 5,
Table S7). Similarly, and as mentioned above, Y was mainly associated with OM, except at sites
SAR-10, SAR-18.5 and SAR-19 where the large inorganic form contributed to 18 to 40% of the
filterable fraction in snow (Figure 5, Table S7). The forests of uplands and wetlands, and their
soils and sediments, represent important reservoirs of OM in the ABS region. Therefore, the
decomposition of plant matter and the formation of metal- and mineral-organic complexes, may
help account for the occurrence of organically-bound Y. Yttrium exhibits notable behaviour, in
that it occurs in a number of distinct forms in the filterable fraction of the snow, including ionic
species and small molecules as well as organic and inorganic colloids. This diversity suggests that
number of natural and anthropogenic sources may be contributing to the atmospheric deposition
of this element. The lack of large changes in the OM-associated fraction of Y at sites from upstream
to downstream suggests that there may be an ubiquitous source of naturally occurring Y in this

form (Table S7).

3.3.3 Elements enriched in bitumen
Between 78 to 98% of the filterable Ni, V, and Mo in snow was found < 300 Da (Table 1,

Table S7, Figure 5). Up to 51.8% and 35.8% of Ni midstream and downstream of industry
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respectively had an important contribution from organic forms which do not occur at upstream

locations (Figure 5, Table S7). Even though V and Ni in bitumen are in the form of porphyrin

complexes,’” and are both enriched in petcoke,®® Ni is more volatile.’® We hypothesize that the

more volatile Ni porphyrins were more readily released during upgrading and some have ended up

in the snow. Another possible explanation could be bacterial and algae activity in snow,?%% given

that Ni is an essential TE to both organisms.

Table 1. Average percentages and concentrations of TEs in the particulate, filterable, and “truly
dissolved” fraction of snow from the AR main stem and its tributaries in winter 2016.

Total .
. - - - - “Truly dissolved”
Geochemical TE Particulate fraction Filterable fraction (< 300 Da)
group (> 0.45 pm) (<0.45 pm)
% ng/L % ng/L % ng/L
' Al 99.8 | 3470 £3630* | 0.2 52+£52% 80 45+4.7*
Conservative ™ 99.6 | 780+894 | 0.4 12404 86.5 1.0+0.2
lithophile

Y 99.2 | 2050 +2260 0.8 48+2.0 61.8 30+1.5

. . Mo 90.9 2460 &+ 5860 9.1 86+ 109 97.7 86+ 109
Enriched in Ni 93.3 16 + 40* 6.7 260+ 91 78.2 203 + 83

bitumen

A% 98.4 38 £ 105* 1.6 200 £232 95.5 194 + 231

As 91 972 £1110 32+13 93.5 30+ 13
Cd 83 33+34 17 33+£22 97.2 33+3.2
Chalcophile Pb 99 1750 + 1920 1 49+25 96.7 47+24

Sb 86.6 124 £ 108 13.4 13+£5.5 NA NA
T1 96.8 45+43 32 09+03 NA NA
Notes:
*in pg/L

Please refer to Table S7 for percentages per site.

The filterable percentage was calculated based on data provided in Table S5.
NA= not analyzed.

3.3.4 Chalcophile elements

Between 94 to 97% of the filterable As, Cd, and Pb in snow were found < 300 Da (Table

1, Table S7, Figure 5). As indicated in section 2.3, Sb and T1 were generally below the LOD using
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AF4-UV-ICPMS. A small fraction of Pb (up to 17%, SAR-18.5) and a larger fraction of As (up to
43%, SAR-UP2) were associated with large, inorganic colloids mainly at upstream sites (Table
S7): this fraction consists predominantly of oxyhydroxides of Al and Fe. It is well known that Pb

and As in soils, sediments and natural waters are often associated with colloidal ferric hydroxide

(FeOOHs).22.25.26.91

3.4 Broader significance for the protection of the aquatic life of the AR watershed

3.4.1 Importance of the partitioning of TEs into particulate and filtered forms of
sSnow

There is ongoing concern about the water quality of the lower AR watershed, which
directly affects the PAD,>>? not only from the human health perspective but also in terms of
aquatic organisms.377293-98 It is well known that snowmelt plays a vital role in the AR flow,3499,100
however the literature regarding the potential impact of snowmelt to the river is not conclusive.
37,51,52,98,101,102 Water quality guidelines for the protection of aquatic life in Alberta and in Canada®®
are very conservative, and generally consider total concentrations, pH, and hardness,!3:104
although some values are based on dissolved concentrations (e.g. Al'°'; Mn and Zn '), By
contrast, the European Union and the United States water quality standards respectively for Cd and
Pb'% and As, Cd, and Pb,'% are based on dissolved concentrations. A previous publication
reported that the total concentrations of Cd, Cu, Pb, Hg, Ni, Ag, and Zn in melted snow and/or
water from the AR and the dissolved concentration of Cd in snow collected in the ABS region

exceeded Canada’s or Alberta’s guidelines.?’
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1

2

2 503 Here, it is clear that the particulate fraction of TEs in snow is the dominant one, similar to what
5 . . . .

6 504 was observed in the AR not only in autumn3®%74 but also in spring.?’ It was reported that the
7

8 505  particulate fraction of the AR has limited bioaccessibility.”*!07 It is also expected that TEs in the
9

:(1)8 506 particulate fraction of snow have limited availability.

@

g% 507 When snowmelt occurs, the waters of the AR experience a pH depression, resulting in a
348

8§ 508  short-term acidification of its waters 2% which in turn could increase TE concentrations.'%:1%% To
[
gé 509 date, only one publication has reported that of 12 TEs analyzed during acidification episodes in
gé 510 the AR and its tributaries, only Al and Cu may pose a risk to rainbow trout.”® It has been suggested
215

322 511 that the high alkalinity of the river and its buffer capacity, could attenuate the acidification process
e
g?@ 512  during early spring*®8¢ limiting the availability of TEs.
25°
2o}

%% 513 Regarding the potential bioavailability of TEs, our study shows that in the filterable
%ﬁ 514  fraction of snow, between 62 (Y) to 98% (Mo) of the TEs studied were in the <300 Da form (Table
2%
8f5 515 I, Table S7). Extremely low concentrations were found in this snow fraction, with averages of 30
322

% 516 +12,3.3+3.2,and 4.7 + 2.4 ng/L for As, Cd, and Pb respectively (Table 1). To put some of these
g 517  values into perspective, Pb and Cd concentrations from melted and unfiltered snow from the Devon
3=

3[&| 518 Island ice core (Nunavut, Canada) -which represents snow accumulation from the mid-Holocene-
39

40 519 were5.1+1.4ng/L'"%and 2.4 +0.5ng/L'""! respectively. Thus, by any measure the concentrations
41

fé 520 in snow of elements such as Cd and Pb which are < 300 Da and potentially bioavailable, are
44

45 521  exceedingly small. In the cases of Sb and T, they are too small to be determined, even in a metal-
46

47 522  free, ultraclean laboratory.

48

49 523

50

51

5o 524 3.4.2 Bioaccessibility and bioavailability of TEs

53

54

55

56

57

58 26
59

(o))
o


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5em00334b

A D W w w QpenAcessAUicle Published ond4OkitobRa 2025 Prwnigaded on 16/10(202508:46128, - — 0 0o N O L1 D W N —
- © \0_ i arti ofRisfc&Rsed’ue 3 Creartte Commons Ritfbuiibr3.0-Uriportad Modnce™

ocouvuuUuuuuuuUuuudsdBNIAEDNANDNRN
SVWoONGOOULBDWN_OOVONOULDWN

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

Environmental Science: Processes & Impacts

Page 28 of 45

View Article Online
DOI: 10.1039/D5EM00334B

Exposure of TEs to aquatic organisms such as fish occurs via aqueous uptake of water-
borne compounds through respiration and/or through ingestion of food and sediment.!!>!3 The
former pathway considers the conventionally defined “dissolved” fraction, which serves as an
indicator of the amount of TEs that could induce a toxic or beneficial effect in a given organism. '8
In contrast, the latter is represented by the particulate material. Based on our findings, it seems as
though the low concentrations of TEs found in the < 300 Da fraction of snow (Table 1) upon
release to the river as meltwater would have a negligible impact on the health of aquatic organisms.
However, bioaccumulation and biomagnification process should also be considered as these
increase the concentrations of TEs over time within specific target organs and within the trophic
chain. 112114

Although some leaching experiments under extreme acidic conditions (pH <I) have been
conducted in snow in order to determine the reactivity of TEs in dust particles,**° no studies have
assessed their gastric bioaccessibility. In-vitro digestion experiments simulating the composition
of the gastric fluids in fish!!? could serve as a proxy to better determine the impacts of particulate

TEs in snow that enter the AR and contribute to its sediment supply.

4. CONCLUSIONS

A number of studies conducted in the ABS region have now shown that the concentrations of
TEs increase toward the centre of the industrial zone, following the general pattern of dust
deposition.37>1->2 Based upon our own work,*>% we have further scrutinized the relationships
between dusts and the TEs they contain. In snow collected in 2016, TEs of environmental interest,

including the chalcophile elements, occur predominantly in the particulate fraction, and exhibited
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1
2
2 548  strong correlations with Al and Th: this indicates that mineral particles are the dominant carriers.
5 . . . . .
6 549  FElemental ratios further suggested contributions from both natural and anthropogenic sources in
7
8 550 the area. Here, we show that, within the filterable fraction, TEs were primarily found in the <300
9
:(1)8 551  Da fraction: this fraction represents ionic and small molecules which can cross cell membranes

@
g% 552  and are readily assimilated by organisms. However, the concentrations of TEs in this fraction are
4
g 2 553  extremely low: for example, Y, Th, Cd, and Pb were all below 10 ng/L. The use of AF4-ICP-MS
AN q
g6
gé 554  to obtain size-resolved analyses has provided valuable new insights regarding the chemical forms
gé 555  of TEs found in snow. Having this instrumentation in a metal-free, ultraclean lab facility provides
215
322 556  a very important cautionary tale: TEs may occur predominantly in the form of ionic species and
e
g?@ 557  small molecules, and yet have limited ecological significance, if they occur at the very low
o5
%% 558  concentrations reported here.

85 . . . . .

;;;%9:” 559 Because TEs in snow from the ABS region are mainly in the form of dusts made up of relatively
20
315 560 large, mineral particles, and hosted in stable mineral phases, their release to natural waters is
322
% 561  expected to be limited. The extent to which snow in the ABS region contributes to TE loads in the
g 562 AR depends on two factors: the hydrological significance of snowmelt in the ABS region versus
3=
3[&| 563  therest ofthe AR watershed, and the concentrations of the elements in the snowpack. Hydrological
39
40 564  considerations are beyond this scope of our work, but clearly, the concentrations of Mo and Ni
41
fé 565 (elements enriched in bitumen) and As, Cd, Pb, Sb and T1 (chalcophile elements) in snow of the
44
45 566  ABS region are low compared to the dissolved fraction of the AR. Thus, snowmelt in the ABS
46
47 567 region would be expected to dilute the concentrations of these elements in the river, not increase
48
49 568 them.
50
51 . .. . C .
5o 569 In summary, our findings clearly show that mining and upgrading activities have certainly
53
54 570 increased TE concentrations in snow toward industry, the environmental significance of these
55
56
57
58 28
59
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elements may be limited, given their association with comparatively large particles of insoluble
minerals. While ionic species and simple molecules may dominate the filterable fraction of the

snow, their concentrations are extremely low.
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Figure 3. Average concentrations of total, particulate and filterable (< 0.45um) As, Cd, Pb, Sb,
and Tl (potentially toxic chalcophile elements) in snow from upstream, midstream, and
downstream locations (with respect to the industry), and at the reference site (UTK), winter 2016.
The horizontal black line represents the dissolved TE concentrations in the AR main stem in
autumn of 20143¢ whereas the green line represents the global average (GA) dissolved (< 0.2 or
0.45 um) concentrations of TEs” in river water.%*

Figure 4. A) Pb/Th ratios in the particulate fraction of snow from UTK (reference site) and
upstream, midstream, and downstream locations (with respect to the industry) in winter 2016. The
dashed lines represent the Pb/Th ratios in the Upper Continental Crust (UCC),” in the bulk ABS,
mineral and bitumen fractions,’® and in tailings (see Table S7). The yellow area represents the
range of Pb/Th ratios in petcoke (see Table S7). (B) Linear regression between Pb and Th
concentrations in the particulate fraction of snow from the Athabasca River (SAR) and its
tributaries.

Figure 5. Percentages of filterable A) Al, Th, Y (conservative lithophile elements); B) Mo, Ni, V
(elements enriched in bitumen); and C) As, Cd, and Pb (chalcophile elements) in the “truly
dissolved” (< 300 Da), OM-associated (= 1 kDa), small inorganic (= 15 kDa), and large inorganic
(> 20.7 kDa) forms, in selected locations along the Athabasca River (SAR) and its tributaries,
winter 2016.

Table 1. Average percentages and concentrations of TEs in the particulate, filterable, and “truly
dissolved” fraction of snow from the AR main stem and its tributaries in winter 2016.
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