
rsc.li/espi

Environmental
Science
 Processes & Impacts

rsc.li/espi

ISSN 2050-7887

PAPER
Michael S. McLachlan et al. 
Predicting global scale exposure of humans to PCB 153 from 
historical emissions 

Volume 20
Number 5
May 2018
Pages 737-856Environmental

Science
 Processes & Impacts

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

Accepted Manuscript

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  F. Barraza, A. Luu,

T. Noernberg, J. Schultz, W. Shotyk, Y. Wang and Q. Ybañez, Environ. Sci.: Processes Impacts, 2025, DOI:

10.1039/D5EM00334B.

http://rsc.li/espi
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d5em00334b
https://pubs.rsc.org/en/journals/journal/EM
http://crossmark.crossref.org/dialog/?doi=10.1039/D5EM00334B&domain=pdf&date_stamp=2025-10-14


1 Environmental Significance Statement: 

2 Industrial activities such as open pit mining are thought to affect the environment due to the 

3 presence of trace elements (TEs) in the dusts they emit. Beyond determining TE 

4 concentrations, it could be useful to also assess their association to colloids and ionic species. 

5 We studied the total, particulate, “filterable”, and “truly dissolved” concentrations of TEs in 

6 the particulate matter occurring in snow deposited along a boreal river which bisects the 

7 Athabasca Bituminous Sands (ABS) region in Canada. The 11 TEs studied were 

8 predominantly found in the particulate fraction. The “filterable” fraction was dominated by 

9 ionic and small species (below 300 Da). However, the concentrations of TEs in this fraction 

10 were extremely low, suggesting limited bioaccessibility to aquatic organisms. 

11
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12

13 ABSTRACT  

14 Dust containing potentially toxic trace elements (TEs) from open pit mining, smelting of metallic 

15 ores, aggregate extraction, and road dust is a major concern worldwide. The potential ecological 

16 significance of TEs in these dusts, however, depends not only upon their concentrations, but also 

17 their physical and chemical forms. Here, dusty snow from the Athabasca River (AR) which bisects 

18 an open-pit bitumen mining and upgrading area in Canada was collected to perform size-resolved 

19 analysis of selected TEs. Conservative, lithophile (Al, Th, Y), bitumen-enriched (Mo, Ni, V), and 

20 chalcophile (As, Cd, Pb, Sb, Tl) elements were overwhelmingly found in the particulate fraction 

21 (> 0.45 µm), with concentrations increasing toward industry. The mineralogical composition of 

22 this fraction was similar to dusts from natural and anthropogenic sources in the area. In the 

23 “filterable” fraction (< 0.45 µm), Al, Mo, and V in snow were elevated near industry. Within the 

24 filterable fraction, TEs occur predominantly in the “truly dissolved” fraction (< 300 Da): these are 
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25 assumed to be ionic species and small molecules, and represent potentially bioavailable species. 

26 However, the concentrations of TEs in this fraction were extremely low: for perspective, Cd and 

27 Pb are similar to values reported for ancient Arctic ice. Within the filterable fraction at midstream 

28 sites, up to 30% of Ni and 37% of Y were associated with organic colloids (≈1 kDa) which may 

29 be from bitumen and soil-borne sources, respectively. Except for V, TE concentrations in the 

30 filterable fraction of snow were below the average values for the AR and the global average for 

31 uncontaminated river water. Consequently, the threat to aquatic life in the river by TEs in snowmelt 

32 may be limited. 

33

34 KEYWORDS: trace elements, AF4-ICPMS, ionic species, bioavailability, dust, oil sands

35

36

37

38
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39 1. INTRODUCTION 

40 Atmospheric dust is increasing considerably from industrial development, changing land-use 

41 activity and climate change-induced drought.1–3 Anthropogenic dust from wind erosion of land-

42 disturbed areas accounts for approximately 30 to 70% of the total global dust flux.2 Significant 

43 portions of these dusts are from open pit mining of coal,4,5 iron and base metal mining and 

44 smelting,2,5–7 aggregate extraction,5,8 and road dust.6,9 Natural sources include wind erosion of 

45 soils, especially deserts in arid and semi-arid regions,2,10 sea salt spray,10,11 volcanic emissions,10,11 

46 and wildfires.3,10

47 Mechanical processes generate coarse dust particles with most of their mass present in the 2.5 

48 to 10 µm diameter size range12,13.  Fine particles (< 2.5 µm) on the other hand, are generated by 

49 combustion processes at high temperatures.10,13 Fine particles and nanoparticles (1,000 nm) tend 

50 to be more toxic than the larger ones due to their smaller size and larger surface area,4,11 posing 

51 environmental risks to living organisms.10,14 The chemical composition of these dusts also plays a 

52 critical role given that they may contain potentially toxic contaminants such as Cd, Pb, and other 

53 trace elements (TEs).2,5,10,14 

54 In the northern hemisphere, up to one-third of the land is covered with snow for a minimum of 

55 three months per year.15,16 When wet deposition occurs, light absorbing dust particles can darken 

56 snow and ice packs12,17 reducing albedo, accelerating snowmelt and reducing snow cover.1,17 

57 Snowmelt water is a critical source of freshwater, accounting for 50 to 80% of total runoff.16 In 

58 spring, the concentrations and bioaccessibility of TEs in rivers and lakes receiving snowmelt can 

59 fluctuate markedly, presenting challenges for the protection of aquatic organisms17,18 particularly 

60 during the spawning season.
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61 Previous research has examined the size distribution of particles containing TEs in order to 

62 better understand their bioaccessibility and their potential bioavailability to living organisms.18 

63 These studies include surface waters of large boreal rivers,19–26 permafrost peatlands,27 rainfall and 

64 snowmelt runoff,28 and snow24. Other studies focused on the analytical challenges posed by 

65 available methodologies for size-resolved analysis of TEs such as asymmetric flow field-flow 

66 fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS).29–31 

67 In the Athabasca Bituminous Sands (ABS) region of northern Alberta, Canada, open pit 

68 bitumen mining and upgrading generate considerable amounts of dust.32–35 Research conducted in 

69 the area include studies of total, particulate (> 0.45 µm), and dissolved (< 0.45 µm) TEs 

70 concentration in surface waters,19,20,36,37 moss,38–40 peat bog porewaters,41 peat cores,42,43 

71 lichens,44,45 berries,46,47 and snow.19,37,48–52 More precisely, our previous studies in river waters and 

72 snow focused on the spatial20,36,50 or spatiotemporal variation of TEs,20,49 the reactivity of TEs in 

73 dust deposited on snow,48,49 the size-resolved analysis of Pb in river waters and snow from peat 

74 bogs19 and the distribution of TEs among colloidal and ionic forms in river waters.20,25 These 

75 publications highlighted the abundance and predominance of TEs in the particulate form, low 

76 concentrations of elements of concern in the dissolved fraction (below water quality guidelines), 

77 and limited solubility of the dusts containing TEs. 

78 Snowmelt, rainfall, peatland runoff as well as groundwater and inputs from tributary rivers all 

79 contribute water to the lower Athabasca River (AR), which bisects the ABS region.53,54 Given that 

80 the AR drains into Lake Athabasca by forming the Peace-Athabasca-Delta (PAD), a UNESCO 

81 world heritage site,55 it is vital to understand how the size and speciation of TEs in dust deposited 

82 within the ABS region may affect their bioavailability in the river and its delta. Snow deposited 

83 here during the winter months provides a convenient opportunity to address these questions. 
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84 The aim of this research was to determine the significance of dust for TEs in snow.  

85 Specifically, to determine the concentrations of TEs that: i) are potentially bioavailable (i.e. ionic 

86 species and molecules smaller than 300 Da), ii) occur as colloidal materials within the fraction 

87 smaller than 0.45 µm (i.e. "filterable" fraction), and iii) are present in particulate form (i.e. larger 

88 than 0.45 µm). For consistency, and to help guide the reader, “dissolved” refers to the < 0.45 µm 

89 fraction of a water sample, and “filterable” to the same size fraction in snow; “truly dissolved” 

90 refers to the fraction smaller than 300 Da in both sample types. This latter size fraction is assumed 

91 to consist of ionic species and small molecules The species in this size range are also assumed to 

92 be directly bioavailable to living organisms, as they are capable of passing through cell 

93 membranes.56 

94 The elements of interest are conservative lithophile elements (Al, Th, Y)57 which are indicators 

95 of mineral dusts, elements enriched in bitumen (Mo, Ni, V),57,58 and chalcophile TEs (As, Cd, Pb, 

96 Sb, Tl)57 which are of greatest concern. Given that snowmelt provides direct access of TEs to 

97 surface waters, the results are also discussed within the context of water quality guideline values 

98 for the protection of aquatic life.

99

100 2. MATERIALS AND METHODS

101

102 2.1 Study area, sample collection, and sample processing

103 Bulk snow samples representing complete snow profiles were collected between February 24 

104 and March 5, 2016 from 20 sites along the Athabasca River (AR), 5 of its tributaries, and at a 

105 reference site, Utikuma (UTK) located 264 km SE of the ABS region (Figure 1). Sites were 

106 classified as upstream, midstream, and downstream with respect to their distance to the mid-point 
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107 between the two central bitumen upgraders (Table S1, Supporting Information) as presented in 

108 previous studies.38,51  

109 Sampling was conducted using ultra-clean procedures, including acid-cleaned consumables 

110 (bottles, syringes and filters) as described elsewhere.50 Details of the collection and photographs 

111 of the study area, and some of the samples are provided in Section S1 and Figure S2 respectively. 

112 Prior to processing, the bulk samples were thawed overnight in a class-1000 clean room, located 

113 in the metal-free, ultraclean SWAMP laboratory (https://swamp.ualberta.ca/). Once the samples 

114 had melted, they were placed inside a metal-free class-100 air clean cabinet. Four fractions were 

115 obtained from the melted snow: (i) total (unfiltered, acidified); (ii) filterable (filtered, acidified); 

116 (iii) colloidal and truly-dissolved (filtered, unacidified) and (iv) particulate (collected on filter 

117 membranes). Potential loss of TEs due to adsorption of dust particles to the polyethylene (PE) 

118 plastic bags was assessed as described in Section S2. The percentage of these losses is summarized 

119 in Table S3. 

120 For total TE concentrations, a 2 mL aliquot was digested in 3 mL of concentrated HNO3 (sub-

121 boiled twice) using high-pressure microwave-assisted digestion (Ultraclave MLS, Milestone).38,50 

122 The use of HNO₃ alone may be insufficient to achieve complete sample decomposition, as TEs 

123 contained within refractory mineral phases (e.g. quartz, monazite, rutile, titanite, and zircon) are 

124 unlikely to be released (see recoveries in Table S2). On the other hand, the addition of other 

125 reagents such as HBF4 to dissolve refractory minerals could contribute to higher blank 

126 concentrations59 and inadequate detection limits for some TEs. Even though the term “quasi-total 

127 concentration” is more accurate in this context, “total concentration” is employed here given that 

128 this procedure provides good recoveries for most of the TEs of environmental concern.59 Four 

129 certified reference materials (NIST 1643f “Trace Elements in Water”, SPS-SW2 “Elements in 
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130 Surface Water”, NIST 2709a “San Joaquin Soil”, and IAEA-Soil 7; see Table S2), laboratory 

131 blanks, and replicates selected randomly were also digested. As noted earlier, the digestion method 

132 employed resulted in lower recoveries of some elements (Table S2). For the filterable TE 

133 concentrations, approximately 120 ml of sample was filtered through acid-cleaned 0.45 µm 

134 polytetrafluoroethylene (PTFE) filter membranes. Half of this volume was collected inside a 

135 polypropylene (PP) bottle and acidified with HNO3 to reach a final concentration of 2%, whereas 

136 the other half was collected inside a fluorinated ethylene propylene (FEP) bottle and maintained 

137 unacidified. 

138

139 2.2 Determination of TEs 

140 Selected TEs such as indicators of dust (Al, Th, and Y), those enriched in bitumen (Mo, Ni, V) 

141 as well as chalcophile elements (As, Cd, Pb, Sb, and Tl) were determined using an ICP-MS (iCAP 

142 RQ, Thermo Fisher Scientific). The limits of detection (LOD), quantification (LOQ), method 

143 detection limit (MDL; for total concentrations), as well as the precision (RSD), accuracy (%) and 

144 recoveries (%) of the certified reference materials are listed in Table S2. As mentioned in Section 

145 2.1, the digestion method used in this study resulted in low recoveries of some elements. Therefore, 

146 the concentration of some TEs may have been underestimated. 

147 To determine the TE concentrations in the particulate fraction (> 0.45 µm), the dissolved 

148 fraction was subtracted from the totals.50

149

150

151
152
153
154
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155

156
157
158
159 Figure 1. Sampling locations along the Athabasca River (SAR) near the east and west banks, its tributaries, and at the reference site 
160 (UTK), winter 2016. 

Page 9 of 45 Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ki
to

bb
a 

20
25

. D
ow

nl
oa

de
d 

on
 1

6/
10

/2
02

5 
08

:4
6:

28
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5EM00334B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5em00334b


9

161

162 2.3 Size-resolved analysis of TEs in the filterable fraction of snow

163 The samples that were filtered (< 0.45 µm) and kept unacidified were analyzed within 24-48 

164 hours after being processed using asymmetrical flow field-flow fractionation (AF4) equipped with 

165 an auto injector (AF2000 MF and PN5300, respectively, Postnova Analytics), coupled to a UV-

166 visible absorbance detector (G4212 DAD, Agilent Technologies), and ICP-MS. The UV detector 

167 measured the absorbance at a wavelength of 254 nm (A254), which served as a proxy for organic 

168 matter (OM) concentrations.

169 Analytical conditions and settings are described in previous publications,19,25,60 however a 

170 summary is presented in Section S3 and the QA/QC parameters in Table S4.  Of the 11 TEs 

171 presented here, Sb and Tl were not analyzed because integrable peaks were either absent or small 

172 and similar to levels in the blanks as reported in previous study about TEs in the surface waters of 

173 the AR.25

174 Four subfractions can be obtained from the filterable snow using this method, each of them 

175 associated with a specific retention time (tr) and corresponding molecular mass (Mp): 1) unretained 

176 materials and part of the primarily ionic and small molecular species eluted in the void peak (tr ≈ 

177 445 s, Mp ≈  300 Da ), 2) OM-associated species, co-eluting with organic matter (tr ≈ 550 s, Mp ≈ 

178 1 kDa), 3) small inorganic species eluted before the crossflow pump was turned off, with minimal 

179 overlap with the organic matter peak (tr ≈ 900 s, Mp ≈ 15 kDa), and 4) large inorganic species 

180 eluted after the crossflow was shut off (tr > 1800s, Mp > 20.7 kDa). 20,25

181

182 2.4 Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) 
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183 Prior to these analyses, dust particles (> 0.45 µm) from selected locations (Firebag River, SAR-

184 1.5, SAR-5, SAR-10, Muskeg River, SAR-15, SAR-15.5, SAR-16, Steepbank River, SAR-18, 

185 SAR-19, SAR-20, SAR-21, Clearwater River, SAR-UP2, and UTK; see Figure 1) were examined. 

186 The housing of the filters containing dust particles was cut and opened to remove the filter 

187 membranes.19,48

188 The major element composition, morphology, and size of the particulate fraction was 

189 determined using an SEM equipped with an energy dispersive X-ray spectroscopy (EDS) system 

190 as described in our previous studies.48 To identify the mineralogical composition of these particles, 

191 XRD analyses were performed directly on the filters using a Rigaku Ultima IV X-ray 

192 diffractometer in the Earth and Atmospheric Sciences XRD laboratory, at the University of Alberta 

193 (https://cms.eas.ualberta.ca/xrd/). Filter blanks were also analyzed to assess the contribution from 

194 the PTFE membrane to the diffraction pattern. 

195

196 2.5 Statistical analysis

197 The software used for statistical analysis were R 4.2.0 and MATLAB. Linear regressions were 

198 conducted using the lm function to explore the relationship between selected conservative 

199 lithophile elements (Al and Th), elements enriched in bitumen, and potentially toxic TEs. Besides, 

200 Spearman correlations were calculated at a p-value of 0.05 for particulate and dissolved TE 

201 concentrations, and visualized using the corrplot package. An ANOVA test was also performed in 

202 order to determine statistical differences of dissolved TE concentrations up, mid, and downstream 

203 the ABS region and UTK, the reference site. Finally, statistical fractogram deconvolution of the 

204 AF4-UV-ICPMS data was employed to decompose the overlapping peaks into each fraction using 

205 MATLAB 2021a.61,62
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206 3. RESULTS AND DISCUSSION 

207

208 3.1 Distribution of total, particulate, and filterable TEs in snow 

209 3.1.1 General trends

210 All TEs were predominantly found in the particulate fraction (Figure 2 and 3, Table 1, Table 

211 S5 and S7). These results are similar to previous studies in the ABS region37,50,52 with the exception 

212 of Pb and Tl,  and Ni and Sb, which were previously reported to be more abundant in the filterable 

213 fraction.37,52 It is also evident that TEs were more abundant in sites located midstream of the 

214 industrial area (from Muskeg R. to SAR-18) than at upstream (SAR-18.5 to SAR-UP2) and 

215 downstream locations (Firebag River to McK River). These spatial trends have already been 

216 observed and are well documented not only in snow 37,48,50–52 but also in vegetation growing in the 

217 area.38,46,63 Trace elements were also more abundant at sites located within the ABS region than at 

218 UTK, the reference site, except for Sb (Figure 2 and 3). The pH of the snow samples was slightly 

219 acidic to slightly basic, with average values of 6.9 ± 0.6 (upstream), 7.3 ± 0.5 (midstream), and 6.6 

220 ± 0.7 (downstream) (Table S1), similar to snow samples collect in 2017, except at SAR-5 and McK 

221 River.48 

222

223 3.1.2 Conservative lithophile elements

224 a. Snow

225 The concentrations of total and particulate Al, Th, and Y increased 5 to 6x from downstream 

226 to midstream of industry, and 3 to 4x from upstream to midstream (Figure 2). The filterable fraction 

227 of these elements represents less than 1% of the total (Table 1). The concentrations of filterable Al 

228 increased approximately 8x from downstream to midstream. In addition, filterable Al, Th, and Y 

Page 12 of 45Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ki
to

bb
a 

20
25

. D
ow

nl
oa

de
d 

on
 1

6/
10

/2
02

5 
08

:4
6:

28
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5EM00334B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5em00334b


12

229 increased 3 to 4x from upstream to midstream. (Figure 2).  The concentrations of Al, Th, and Y in 

230 the filterable fraction at upstream and midstream locations in the ABS region were either similar 

231 or higher (2 to 5x) that at the reference site, UTK (Figure 2, Table S6). However, significant 

232 differences in the concentrations of filterable Al between the ABS area and UTK were only 

233 observed at midstream locations (Table S6). 

234

235 b. Snow vs river water

236 The filterable concentrations of Al, Th, and Y in snow were 3, 4, and 14x respectively lower 

237 than their average dissolved concentrations in the main stem of the AR in autumn of 201436 (Figure 

238 2, black dotted line). In addition, the concentrations in snow samples were 5x (Th), 6x (Al), and 

239 9x (Y) lower than the global average dissolved concentrations in river waters (Figure 2, green 

240 dotted line).64  For perspective, Al in the dissolved fraction of the AR (< 0.45 µm) was 2x lower 

241 than the global average in river waters(< 0.2  or 0.45 µm)36,64 (Figure 2). 

242

243 3.1.3 Elements enriched in bitumen

244 a. Snow

245 The concentrations of total and particulate Mo, Ni, and V increased 17 to 26x from 

246 downstream to midstream of industry, and 9 to 14x from upstream to midstream (Figure 2). The 

247 filterable fraction of these elements represented less than 9% of the total (Table 1). Filterable Mo 

248 and V concentrations increased between 2 to 7x toward the centre of industrial activities (Figure 

249 2).  Moreover, the filterable Ni, Mo, and V concentrations were 2 to 32x greater upstream and 

250 midstream than at UTK. These differences in concentrations were only significant for filterable V 

251 at midstream locations (Figure 2, Table S6). 
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252

253
254
255 Figure 2. Average concentrations of total, particulate and filterable (< 0.45 µm) Al, Th, Y 
256 (conservative lithophile elements), Mo, Ni, and V (elements enriched in bitumen) in snow from 
257 upstream, midstream, and downstream locations (with respect to the industry), and at the reference 
258 site (UTK), winter 2016. The horizontal black line represents the dissolved TE concentrations in 
259 the AR main stem in autumn of 201436 whereas the green line represents the global average (GA) 
260 dissolved (< 0.2 or 0.45 µm) concentrations of TEs in river water.64

261
262 Notes: The map on the right side shows the snow sampling locations in the ABS region along the Athabasca River 
263 (SAR) and its tributaries. The location of UTK is provided in Figure S1 and Table S1 (Supporting Information). The 
264 red star represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit 
265 of detection, MDL = method detection limit, nd = not determined. Th and Mo concentrations at UTK are based on 
266 one location instead of the average of two. 
267
268
269
270
271
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272 b. Snow vs river water

273 Filterable concentrations of Ni and Mo in snow were 3 and 8x respectively lower than their 

274 respective concentrations in the dissolved fraction of the AR.36 Similarly, the concentrations of Ni, 

275 V and Mo in filterable snow were 3x, 4x, and 5x lower than their concentrations in uncontaminated 

276 river waters64 (Figure 2). Again, for context V in the AR was 3x lower than the global average in 

277 river waters36,64 (Figure 2). 

278

279 3.1.4 Chalcophile elements

280 a. Snow

281 The total and particulate concentrations of As, Cd, Pb, Sb, and Tl increased 3 to 6x from 

282 downstream to midstream, and 3 to 4x from upstream to midstream (Figure 3). The filterable 

283 fraction varied from 1 to 17% of the total (Table 1) and demonstrated the following spatial patterns: 

284 (i) no increase toward the centre of industrial operation (Pb and Tl), (ii) a modest increase either 

285 from down to midstream (Sb) or in both directions (As), or (iii) no clear trend (Cd) (Figure 3). Of 

286 this group of elements, filterable Cd and Pb showed significantly lower concentrations within the 

287 ABS region (at the 3 location types for the former, and at upstream and midstream for the latter) 

288 than at UTK. By contrast, filterable As and Tl concentrations were significantly greater (up to 5x) 

289 at midstream locations compared to UTK (Figure 3, Table S6). 

290

291 b. Snow vs river water

292 The concentrations average dissolved concentrations of these TEs in snow were 4 (Cd, Pb, Sb, 

293 Tl) to 12x (As) lower than their respective concentrations in the AR36 (Figure 3). Similarly, the 

294 filterable concentrations of Sb and As in snow from the ABS region were 6 to 19x respectively 
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295 lower than in uncontaminated river waters.64,65  In addition, the dissolved concentrations of these 

296 five potentially toxic chalcophile elements were 2 to 6x lower in the AR than in river waters 

297 worldwide36,64 (Figure 3). 

298

299 Figure 3. Average concentrations of total, particulate and filterable (< 0.45 µm) As, Cd, Pb, Sb, 
300 and Tl (chalcophile elements) in snow from upstream, midstream, and downstream locations (with 
301 respect to the industry), and at the reference site (UTK), winter 2016. The horizontal black line 
302 represents the dissolved TE concentrations in the AR main stem in autumn of 201436 whereas the 
303 green line represents the global average (GA) dissolved (< 0.2 or 0.45 µm) concentrations of TEs* 

304 in river water.64

305
306 Notes: The map on the right side shows the snow sampling locations in the ABS region along the Athabasca River 
307 (SAR) and its tributaries. The location of UTK is provided in Figure S1 and Table S1 (Supporting Information). The 
308 red star represents the midpoint between bitumen upgraders. Error bars represent one standard deviation. LOD = limit 
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309 of detection, MDL = method detection limit, nd = not determined. As and Sb concentrations at UTK are based on one 
310 location instead of the average of two. *For Tl, the estimated mean natural concentration in river waters was used.65

311 3.2 Characterization of TEs in the particulate fraction of snow and their potential 

312 sources

313 3.2.1 Mineral characterization and identification using SEM and XRD

314 Scanning electron microscope analyses performed on PTFE filters (see section 2.4), revealed 

315 the presence of particles with irregular shape and microaggregates, ranging from less than 10 to 

316 200 µm (Appendix A, selected images) as reported in our previous studies.48,49 The elemental 

317 composition obtained from the EDS spectra indicated the presence of Si, Al, Ca and Fe, followed 

318 by S, Mg, K, Ti, Na, and traces of REEs (La, Ce, Nd) and Zr (Appendix A). The XRD analyses of 

319 the same samples indicated the presence of insoluble silicates (quartz; clay, feldspar, and mica-

320 like phases), carbonates (calcite, dolomite, and ankerite), and Ti oxides (anatase and rutile) 

321 (Appendix B). Midstream and upstream locations showed more mineral diversity in terms of clays 

322 (kaolinite, dickite, nacrite, muscovite), micas (i.e. biotite minerals, but only midstream), feldspars 

323 (albite and microcline, only upstream), and other silicates such as enstatite (Appendix B). No 

324 mineral phases were identified at UTK, the reference site, simply because the mass of particles on 

325 the filter were not sufficient to perform this type of analysis (Appendix B). However, dust particles 

326 at UTK are usually smaller (< 30 µm) and less abundant than at the ABS region, and are composed 

327 of quartz, feldspars, and clay minerals.39,40,48  Taking these results together, the composition of the 

328 particulate fraction in the AR snows is similar to the mineral fraction of the ABS66–69 but also with 

329 other dust sources such as limestone and aggregate used in the construction of local roads.44,51,70 

330

331 3.2.2 Source assessment using TE ratios, correlations, and linear regressions in 

332 the particulate fraction
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333 Several authors have stated that it is still challenging to separate natural from anthropogenic 

334 atmospheric sources of TEs in the ABS region.34,71–74 Three methods summarized in Figure 4, 

335 Figure S3, Figure S4, and Table S8 were used in order to understand the geochemical behaviour 

336 and possible sources of TEs in the particulate fraction of the snow from the AR and its tributaries. 

337 a. Trace element correlations

338 Aluminum, Th and Y are considered as indicators of mineral dusts.19,38,51 Aluminum is 

339 commonly used as an indicator of the abundance of clay minerals,38,75 whereas the latter pair are 

340 enriched in heavy minerals and froth treatment tailings.76–78 Trace elements in the particulate 

341 fraction showed a correlation (r > 0.8) with the conservative lithophile elements, except Sb and 

342 Mo (r < 0.8) (Figure S4). These strong correlations would suggest that TEs in this fraction (> 0.45 

343 µm) have a common mineral source including heavy minerals and clays.  

344 b. Trace element ratios

345 Trace element ratios have been previously reported in the ABS region not only in snow49–51 

346 but also in moss39 and peat bog porewaters.41 Focus here is placed on Pb and Tl in the particulate 

347 fraction of snow given that these elements are vey toxic, they are enriched in bitumen have, and 

348 have already been extensively discussed in previous publications.49,50 Lead and Tl were normalized 

349 to Al and Th and compared to their respective ratios at UTK (the reference site), the Upper 

350 Continental Crust (UCC),79 the bulk ABS and its mineral and bitumen fractions,58 as well as to 

351 diverse geomaterials found in the study area (Section S4, Figure S3, Table S8).

352 Lead /Th ratios at the ABS region were approximately 2x lower than at UTK . The Pb/Th 

353 ratios at UTK were similar to those reported in peat cores collected from the same site,42 which in 

354 turn were similar to Pb/Th reported in the cleanest peat cores ever found, dating from pre-industrial 

355 times.80 Unfortunately, Tl was below the LOD at UTK.  However, within the ABS location types, 
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356 Pb/Th and Tl/Th were similar upstream, midstream, and downstream of industrial operations 

357 (Figure 4, Figure S3, Table S8). In addition, Pb/Th ratios in the ABS region were double their 

358 equivalent ratios in the UCC. In contrast, Tl/Th ratios were similar to the UCC.79 Many possible 

359 sources of dust, ranging from dry tailings to road dust maybe be responsible for these TEs in the 

360 particulate fraction (Table S8). For example, Pb/Th and Tl/Th in tailings were similar to the ratios 

361 in other industrial materials in the area such as petcoke, tailings, and bulk ABS (Figure 4 and 

362 Figure S3). Thus, these element ratios cannot be used to ascribe them to a specific dust source, but 

363 they are comparable to many of the possible dust sources in the area. A previous study conducted 

364 in the same area, suggested that Pb in lichens collected near industry had an overlapping signature 

365 with bulk ABS and tailings.81   

366 Regarding the other chalcophile element ratios, they were greater in the ABS region than at 

367 UTK given that the concentrations of As, Cd, and Tl in the latter were below the LODs or MDLs 

368 (see Table S5). In addition, As/Th and Sb/Th in the industrial area were below the ratios for the 

369 UCC79 while the opposite was observed for Cd/Th and Cd/Al (Table S8).The  As/Al and As/Th 

370 ratios in the ABS region were very similar to their respective ratios in road construction material 

371 (Table S8). Previous studies have linked As to three types of sources (road dust, raw oil sand dust. 

372 and road salt)51 while Sb may be associated with fuel combustion, residential wood burning, and 

373 waste combustion.82 Antimony can also be associated with truck brake pads.83,84  
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374

375

376 Figure 4. (A) Pb/Th ratios in the particulate fraction of snow from UTK (reference site) and upstream, midstream, and downstream 
377 locations (with respect to the industry) in winter 2016. The dashed lines represent the Pb/Th ratios in the Upper Continental Crust 
378 (UCC),79 in the bulk ABS, mineral and bitumen fractions,58 and in tailings (see Table S7). The yellow area represents the range of Pb/Th 
379 ratios in petcoke (see Table S7). (B) Linear regression between Pb and Th concentrations in the particulate fraction of snow from the 
380 Athabasca River (SAR) and its tributaries. 
381
382 Notes: sites in green, red, and blue represent upstream, midstream, and downstream locations, respectively. The Pb/Th at UTK was calculated based on concentrations from UTK-1 
383 (See Table S5). 

384
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385

386 c. Linear regressions 

387 The increase in the concentrations of particulate Pb and Tl toward industry was proportional 

388 not only to the increase of Th (Figure 4B and Figure S3B) but also to that of Al (Table S9), which 

389 is in agreement to what was found in the acid-soluble fraction of snow.49 Arsenic and Sb behaved 

390 similarly to Pb and Tl (Table S9). These results indicate that the abundance of these elements in 

391 snow of the ABS region reflect the abundance of mineral matter in the samples. 

392 The low R2 values (0.10 to 0.28) of elements enriched in bitumen vs Al and Th (Table S9) 

393 may be explained by specific sites or “hotspots” at midstream (SAR-15, SAR-16 and SAR-17) and 

394 downstream locations (SAR-18.5 and SAR-19) that have concentrations that do not follow the 

395 spatial trends observed for the other elements (Table S7). Snow collected at some of these sites 

396 contained small black particles most likely to be petcoke which is stockpiled in large amounts 

397 around the mines 35,49 and is known for elevated concentrations of V and Ni. 85 The poor correlation 

398 between Mo, Ni, and V with Al and Th, may reflect the sporadic occurrence of petcoke particles 

399 in snow samples.  

400

401 3.3 Trace element in colloidal and < 300 Da fractions

402 3.3.1 General trends

403 In the ABS region, TEs in the filterable fraction of snow were mainly in the < 300 Da fraction 

404 (Figure 5, Table S7). However, there are some exceptional elements and sites. For example, at 

405 midstream locations, 37.2 % of Y and 30.4% of Ni in this fraction on average were mainly 

406 associated with OM.  Downstream, the OM fraction ranged from < LOD to 47.5% of the filterable 

407 Th, Y, and Ni (Figure 5, Table S7).  A study conducted in snow from Western Siberia (from the 
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408 vicinity of Barnaul city to the Ob estuary) reported that OM colloids can originate from 

409 thermokarst lakes that freeze solid during winter. These colloids may consist of organic aerosols, 

410 humic-like substances, black carbon, and mineral dust coated with organic matter. Freeze-thaw 

411 cycles can also contribute by producing large colloidal particles and releasing low molecular 

412 weight organic compounds.24

413 At UTK, the reference site, most TEs were also predominantly found in the < 300 Da fraction. 

414 The exceptional elements found also in other fractions were Th and Pb (OM: 40.7 and 16% 

415 respectively), Mo (small inorganic, 41.4%), and As (large inorganic, 29.6%) (Table S7). 

416 According to a previous study, the higher abundance of certain elements in colloidal form in snow 

417 is linked to various mechanisms of colloid formation, transformation, and transport in the 

418 atmosphere, processes that remain poorly understood. The study points to possible pathways such 

419 as the fragmentation of fly ash particles, condensation of volatile compounds from industrial 

420 emissions, and the dissolution or dispersion of soil minerals like clays. During winter, both the 

421 sources of dissolved elements and the atmospheric processes acting on aerosols may determine the 

422 chemical composition of snow water colloids.24

423 The ABS surface-mineable area spans roughly 4,800 km² and is bordered by boreal forest, with 

424 numerous lakes and wetlands. In addition, the lower Athabasca River contains many islands, 

425 secondary channels, wetlands, and floodplain lakes.55 Additional features include agricultural land, 

426 several urban centers, and wastewater treatment plants.86 Together, these observations underscore 

427 the potential influence and diversity of both natural and anthropogenic sources to the composition 

428 of the filterable fraction of the snow. Hypotheses about specific sources will be discussed by class 

429 of elements. 
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430

431 Figure 5. Percentages of filterable A) Al, Th and Y (conservative lithophile elements), B) Mo, Ni, 
432 and V (elements enriched in bitumen, and C) As, Cd, and Pb (chalcophile elements) in the “truly 
433 dissolved” (< 300 Da), OM-associated (≈ 1 kDa), small inorganic (≈ 15 kDa), and large inorganic 
434 (> 20.7 kDa) forms, in selected locations along the Athabasca River (SAR) and its tributaries, 
435 winter 2016.  
436
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437 3.3.2 Conservative lithophile elements

438 Between 62 to 87% of the filterable Y, Al, and Th in snow occur < 300 Da (Figure 5, Table 

439 1, Table S7). In the case of Al, the second most abundant fractions at downstream and midstream 

440 locations were the small and large inorganic forms respectively (Figure 5, Table S7). However, 

441 two sites were exceptional (SAR-UP2 and SAR-5) and had considerable amounts of Al associated 

442 with OM (Table S7).  

443 At downstream locations, approximately 21% of Th was associated with OM (Figure 5, 

444 Table S7). Similarly, and as mentioned above, Y was mainly associated with OM, except at sites 

445 SAR-10, SAR-18.5 and SAR-19 where the large inorganic form contributed to 18 to 40% of the 

446 filterable fraction in snow (Figure 5, Table S7). The forests of uplands and wetlands, and their 

447 soils and sediments, represent important reservoirs of OM in the ABS region. Therefore, the 

448 decomposition of plant matter and the formation of metal- and mineral-organic complexes, may 

449 help account for the occurrence of organically-bound Y. Yttrium exhibits notable behaviour, in 

450 that it occurs in a number of distinct forms in the filterable fraction of the snow, including ionic 

451 species and small molecules as well as organic and inorganic colloids. This diversity suggests that 

452 number of natural and anthropogenic sources may be contributing to the atmospheric deposition 

453 of this element. The lack of large changes in the OM-associated fraction of Y at sites from upstream 

454 to downstream suggests that there may be an ubiquitous source of naturally occurring Y in this 

455 form (Table S7).

456

457 3.3.3 Elements enriched in bitumen

458 Between 78 to 98% of the filterable Ni, V, and Mo in snow was found < 300 Da (Table 1, 

459 Table S7, Figure 5). Up to 51.8% and 35.8% of Ni midstream and downstream of industry 
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460 respectively had an important contribution from organic forms which do not occur at upstream 

461 locations (Figure 5, Table S7). Even though V and Ni in bitumen are in the form of porphyrin 

462 complexes,87 and are both enriched in petcoke,85 Ni is more volatile.88 We hypothesize that the 

463 more volatile Ni porphyrins were more readily released during upgrading and some have ended up 

464 in the snow. Another possible explanation could be bacterial and algae activity in snow,89,90 given 

465 that Ni is an essential TE to both organisms. 

466

467 Table 1. Average percentages and concentrations of TEs in the particulate, filterable, and “truly 
468 dissolved” fraction of snow from the AR main stem and its tributaries in winter 2016.   
469

Total
Particulate fraction

(> 0.45 µm)
Filterable fraction

(< 0.45 µm)

 “Truly dissolved” 
(< 300 Da)Geochemical 

group TE

% ng/L % ng/L %  ng/L
Al 99.8 3470 ± 3630* 0.2 5.2 ± 5.2* 80 4.5 ± 4.7*
Th 99.6 780 ± 894 0.4 1.2 ± 0.4 86.5  1.0 ± 0.2Conservative 

lithophile
Y 99.2 2050 ± 2260 0.8 4.8 ± 2.0 61.8 3.0 ± 1.5 

Mo 90.9 2460 ± 5860 9.1 86 ± 109 97.7 86 ± 109
Ni 93.3 16 ± 40* 6.7 260 ± 91 78.2  203 ± 83Enriched in 

bitumen
V 98.4 38 ± 105* 1.6 200 ± 232 95.5 194 ± 231 
As 91 972 ± 1110 9 32 ± 13 93.5 30 ± 13 
Cd 83 33 ± 34 17 3.3 ± 2.2 97.2  3.3 ± 3.2
Pb 99 1750 ± 1920 1 4.9 ± 2.5 96.7  4.7 ± 2.4
Sb 86.6 124 ± 108 13.4 13 ± 5.5 NA NA

Chalcophile

Tl 96.8 45 ± 43 3.2 0.9 ± 0.3 NA NA
470
471 Notes: 
472 *in µg/L
473 Please refer to Table S7 for percentages per site. 
474 The filterable percentage was calculated based on data provided in Table S5. 
475 NA= not analyzed.
476
477
478 3.3.4 Chalcophile elements

479 Between 94 to 97% of the filterable As, Cd, and Pb in snow were found < 300 Da (Table 

480 1, Table S7, Figure 5).  As indicated in section 2.3, Sb and Tl were generally below the LOD using 
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481 AF4-UV-ICPMS. A small fraction of Pb (up to 17%, SAR-18.5) and a larger fraction of As (up to 

482 43%, SAR-UP2) were associated with large, inorganic colloids mainly at upstream sites (Table 

483 S7): this fraction consists predominantly of oxyhydroxides of Al and Fe. It is well known that Pb 

484 and As in soils, sediments and natural waters are often associated with colloidal ferric hydroxide 

485 (FeOOHs).22,25,26,91 

486

487 3.4 Broader significance for the protection of the aquatic life of the AR watershed

488

489 3.4.1 Importance of the partitioning of TEs into particulate and filtered forms of 

490 snow

491 There is ongoing concern about the water quality of the lower AR watershed, which 

492 directly affects the PAD,55,92 not only from the human health perspective but also in terms of 

493 aquatic organisms.37,72,93–98 It is well known that snowmelt plays a vital role in the AR flow,54,99,100 

494 however the literature regarding the potential impact of snowmelt to the river is not conclusive. 

495 37,51,52,98,101,102  Water quality guidelines for the protection of aquatic life in Alberta and in Canada20 

496 are very conservative, and generally consider total concentrations, pH, and hardness,103,104 

497 although some values are based on dissolved concentrations (e.g. Al101; Mn and Zn 100).  By 

498 contrast, the European Union and the United States water quality standards respectively for Cd and 

499 Pb105 and As, Cd, and Pb,106 are based on dissolved concentrations. A previous publication 

500 reported that the total concentrations of Cd, Cu, Pb, Hg, Ni, Ag, and Zn in melted snow and/or 

501 water from the AR and the dissolved concentration of Cd in snow collected in the ABS region 

502 exceeded Canada’s or Alberta’s guidelines.37
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503 Here, it is clear that the particulate fraction of TEs in snow is the dominant one, similar to what 

504 was observed in the AR not only in autumn36,74 but also in spring.20 It was reported that the 

505 particulate fraction of the AR has limited bioaccessibility.74,107 It is also expected that TEs in the 

506 particulate fraction of snow have limited availability.

507 When snowmelt occurs, the waters of the AR experience a pH depression, resulting in a 

508 short-term acidification of its waters 20,98 which in turn could increase TE concentrations.108,109 To 

509 date, only one publication has reported that of 12 TEs analyzed during acidification episodes in 

510 the AR and its tributaries, only Al and Cu may pose a risk to rainbow trout.98 It has been suggested 

511 that the high alkalinity of the river and its buffer capacity, could attenuate the acidification process 

512 during early spring48,86 limiting the availability of TEs. 

513 Regarding the potential bioavailability of TEs, our study shows that in the filterable 

514 fraction of snow, between 62 (Y) to 98% (Mo) of the TEs studied were in the < 300 Da form (Table 

515 1, Table S7). Extremely low concentrations were found in this snow fraction, with averages of 30 

516 ± 12, 3.3 ± 3.2, and 4.7 ± 2.4 ng/L for As, Cd, and Pb respectively (Table 1). To put some of these 

517 values into perspective, Pb and Cd concentrations from melted and unfiltered snow from the Devon 

518 Island ice core (Nunavut, Canada) -which represents snow accumulation from the mid-Holocene-

519 were 5.1 ± 1.4 ng/L 110 and 2.4 ± 0.5 ng/L111 respectively. Thus, by any measure the concentrations 

520 in snow of elements such as Cd and Pb which are < 300 Da and potentially bioavailable, are 

521 exceedingly small. In the cases of Sb and Tl, they are too small to be determined, even in a metal-

522 free, ultraclean laboratory.  

523

524 3.4.2 Bioaccessibility and bioavailability of TEs
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525 Exposure of TEs to aquatic organisms such as fish occurs via aqueous uptake of water-

526 borne compounds through respiration and/or through ingestion of food and sediment.112,113 The 

527 former pathway considers the conventionally defined “dissolved” fraction, which serves as an 

528 indicator of the amount of TEs that could induce a toxic or beneficial effect in a given organism.18 

529 In contrast, the latter is represented by the particulate material. Based on our findings, it seems as 

530 though the low concentrations of TEs found in the < 300 Da fraction of snow (Table 1) upon 

531 release to the river as meltwater would have a negligible impact on the health of aquatic organisms.  

532 However, bioaccumulation and biomagnification process should also be considered as these 

533 increase the concentrations of TEs over time within specific target organs and within the trophic 

534 chain. 112,114

535 Although some leaching experiments under extreme acidic conditions (pH <1) have been 

536 conducted in snow in order to determine the reactivity of TEs in dust particles,48–50 no studies have 

537 assessed their gastric bioaccessibility. In-vitro digestion experiments simulating the composition 

538 of the gastric fluids in fish113 could serve as a proxy to better determine the impacts of particulate 

539 TEs in snow that enter the AR and contribute to its sediment supply. 

540

541 4. CONCLUSIONS

542

543 A number of studies conducted in the ABS region have now shown that the concentrations of 

544 TEs increase toward the centre of the industrial zone, following the general pattern of dust 

545 deposition.37,51,52 Based upon our own work,48–50 we have further scrutinized the relationships 

546 between dusts and the TEs they contain. In snow collected in 2016, TEs of environmental interest, 

547 including the chalcophile elements, occur predominantly in the particulate fraction, and exhibited 
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548 strong correlations with Al and Th: this indicates that mineral particles are the dominant carriers. 

549 Elemental ratios further suggested contributions from both natural and anthropogenic sources in 

550 the area. Here, we show that, within the filterable fraction, TEs were primarily found in the < 300 

551 Da fraction: this fraction represents ionic and small molecules which can cross cell membranes 

552 and are readily assimilated by organisms. However, the concentrations of TEs in this fraction are 

553 extremely low: for example, Y, Th, Cd, and Pb were all below 10 ng/L. The use of AF4-ICP-MS 

554 to obtain size-resolved analyses has provided valuable new insights regarding the chemical forms 

555 of TEs found in snow. Having this instrumentation in a metal-free, ultraclean lab facility provides 

556 a very important cautionary tale: TEs may occur predominantly in the form of ionic species and 

557 small molecules, and yet have limited ecological significance, if they occur at the very low 

558 concentrations reported here.  

559 Because TEs in snow from the ABS region are mainly in the form of dusts made up of relatively 

560 large, mineral particles, and hosted in stable mineral phases, their release to natural waters is 

561 expected to be limited. The extent to which snow in the ABS region contributes to TE loads in the 

562 AR depends on two factors: the hydrological significance of snowmelt in the ABS region versus 

563 the rest of the AR watershed, and the concentrations of the elements in the snowpack. Hydrological 

564 considerations are beyond this scope of our work, but clearly, the concentrations of Mo and Ni 

565 (elements enriched in bitumen) and As, Cd, Pb, Sb and Tl (chalcophile elements) in snow of the 

566 ABS region are low compared to the dissolved fraction of the AR. Thus, snowmelt in the ABS 

567 region would be expected to dilute the concentrations of these elements in the river, not increase 

568 them. 

569 In summary, our findings clearly show that mining and upgrading activities have certainly 

570 increased TE concentrations in snow toward industry, the environmental significance of these 
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571 elements may be limited, given their association with comparatively large particles of insoluble 

572 minerals. While ionic species and simple molecules may dominate the filterable fraction of the 

573 snow, their concentrations are extremely low.

574
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1146

1147

1148 Captions

1149 Figure 1. Sampling locations along the Athabasca River (SAR) near the east and west banks, its 
1150 tributaries, and at the reference site (UTK), winter 2016.
1151
1152 Figure 2. Average concentrations of total, particulate and filterable (< 0.45µm) Al, Th, Y 
1153 (conservative lithophile elements), Mo, Ni, and V (elements enriched in bitumen) in snow from 
1154 upstream, midstream, and downstream locations (with respect to the industry), and at the reference 
1155 site (UTK), winter 2016. The horizontal black line represents the dissolved TE concentrations in 
1156 the AR main stem in autumn of 201436 whereas the green line represents the global average (GA) 
1157 dissolved (< 0.2 or 0.45 µm) concentrations of TEs in river water.64
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1158
1159 Figure 3. Average concentrations of total, particulate and filterable (< 0.45µm) As, Cd, Pb, Sb, 
1160 and Tl (potentially toxic chalcophile elements) in snow from upstream, midstream, and 
1161 downstream locations (with respect to the industry), and at the reference site (UTK), winter 2016. 
1162 The horizontal black line represents the dissolved TE concentrations in the AR main stem in 
1163 autumn of 201436 whereas the green line represents the global average (GA) dissolved (< 0.2 or 
1164 0.45 µm) concentrations of TEs* in river water.64

1165
1166 Figure 4. A) Pb/Th ratios in the particulate fraction of snow from UTK (reference site) and 
1167 upstream, midstream, and downstream locations (with respect to the industry) in winter 2016. The 
1168 dashed lines represent the Pb/Th ratios in the Upper Continental Crust (UCC),79 in the bulk ABS, 
1169 mineral and bitumen fractions,58 and in tailings (see Table S7). The yellow area represents the 
1170 range of Pb/Th ratios in petcoke (see Table S7). (B) Linear regression between Pb and Th 
1171 concentrations in the particulate fraction of snow from the Athabasca River (SAR) and its 
1172 tributaries. 
1173
1174 Figure 5. Percentages of filterable A) Al, Th, Y (conservative lithophile elements); B) Mo, Ni, V 
1175 (elements enriched in bitumen); and C) As, Cd, and Pb (chalcophile elements) in the “truly 
1176 dissolved” (< 300 Da), OM-associated (≈ 1 kDa), small inorganic (≈ 15 kDa), and large inorganic 
1177 (> 20.7 kDa) forms, in selected locations along the Athabasca River (SAR) and its tributaries, 
1178 winter 2016.  
1179
1180 Table 1. Average percentages and concentrations of TEs in the particulate, filterable, and “truly 
1181 dissolved” fraction of snow from the AR main stem and its tributaries in winter 2016.   
1182
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