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As Li-metal anodes become more readily available, next-gen Li-ion battery cathodes are no longer
required to contain Li in their as-synthesized state, vastly expanding the materials search space. In order
to identify potential cathode materials that do not necessarily contain Li in their native state, we here
develop a computational screening pipeline for rapid cathode discovery. This pipeline operates on any
database of inorganic materials without a priori information on Li sites and performs screening based on
computed voltage, capacity from sequential insertions of Li ions and most importantly, mobility built
upon the graph-based migration network obtained through site connectivity. A preliminary application
of the pipeline was carried out on a subset of the materials project database, and one particular
polymorph of MnP,O7 is shown here as an example of a new candidate compound which completed
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the pipeline and was selected for further, detailed analysis. The compound is shown to present a 2D ion
migration topology, consisting of two separate intercalation pathways where the corresponding energy
landscapes are calculated with the nudged-elastic band formalism. Acceptable energy barriers are found
in the dilute (highly charged) limit, however the material is expected to exhibit slower kinetics in the
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1 Introduction

The commercialization of Li-ion batteries (LIB) has enabled
numerous major breakthroughs towards a more sustainable
energy society; most notably, it has facilitated the advancement
of electric vehicles and large-scale grid storage for electricity.
However, as the demands grow for safer, cheaper and higher
energy density LIBs, the search for next-gen LIB materials
design has become a top priority. Researchers have entertained
several directions to improve LIB design, such as Co-free
cathodes,'™ solid-state electrolytes,* ® and Li-metal anodes.”®
Among other advantages, Li-metal anodes promise a massive
leap in theoretical energy capacity (3860 mA h g~ '” compared
to 372 mA h g~ '° for state-of-the-art graphite anodes), proving
to be one of the most promising paths forward.

Although technological challenges still remain, the scientific
research community has made major progress towards device-
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ready Li-metal anodes, and potential improvements are
addressed gradually through experimental and computational
efforts.” *'"'> Importantly, today’s Li-ion battery implementa-
tion with a graphite anode requires the cathode to supply the
working Li-ions in the cell. With the adoption of Li metal
anodes, the design space can be expanded to materials that
do not contain Li in their native (charged) state, as long as they
are able to reversibly intercalate Li ions and remain stable. The
consideration of non-Li-containing materials opens up the
search space, but also presents a challenge: how do we identify
a viable cathode from an unbounded space of structures and
chemical variations?

To accelerate the search for new Li-free cathode materials in
such a large design space, we present a high-throughput
computational screening pipeline capable of handling large
datasets, while providing detailed information on compounds
that pass the screening. The pipeline couples the materials
project software infrastructure’® for high-performance first-
principles computations with two recently developed algorithms
by Shen et al.**** which (1) identify meta-stable working ion sites
in any given host structure and (2) use those sites to present a
graph-based migration network of working ion sites. The frame-
work can be applied to any database of inorganic materials,
greatly accelerating the process of identifying potential Li-free
cathode materials in this expanded search space.

It should be acknowledged that recent publications by
Zhang et al.'®'” address computational cathode design, as well
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Fig. 1 A flowchart of the rapid cathode discovery pipeline. The left portion (blue shaded) of this pipeline is performed in a high-throughput fashion, while

the right portion (not shaded) requires detailed, case-by-case analysis.

as in-depth analysis of a particular structure, for sodium-based
layered materials for Na-ion batteries. However, while the above
previous work performs screening on structures that already
contain the working Na-ions, the methodology in this study
does not require the presence of any working ions (Li, Na, etc.),
and therefore applies to a broader structure and chemistry
space, as demonstrated in sections below.

2 Methodology

In the sections below, we show an overview of the procedures
used in the rapid cathode discovery pipeline and present
procedures of its exemplary application.

2.1 Rapid cathode discovery pipeline

The diagram in Fig. 1 shows the general workflow of the rapid
cathode discovery pipeline. It consists of two major compo-
nents, starting with a set of high-throughput screening proce-
dures, followed by a set of individual analysis procedures
specific to the collection of resulting materials from the high-
throughput efforts.

In the first step, we apply the Shen et al. insertion workflow"*
to a database of potential Li-free cathode structures with
appropriate redox-active elements. Firstly, host structure relaxa-
tion calculations are carried out to obtain charge density
information. The workflow then returns meta-stable working
ion sites by performing analysis of the charge densities and
sequentially calculating partially inserted structures until the
resulting intercalated structure either cannot accept more
working ions by redox state or no longer can be reasonably
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matched to the original host structure. The flexibility of this
algorithm allows one to find potential working ion sites in any
given host structure, yielding maximally lithiated structures
where Li-ions occupying all potential meta-stable sites, as well
as their calculated energies. All results from the insertion
workflow are stored within the database.

Secondly, we screen compounds based on calculated proper-
ties obtained from results of the previous step, such as stability,
voltage, capacity and energy density. The metric of choice to
quantify stability is the energy per atom above the convex hull,
which is defined by the most stable phases in the chemical
space of interest; the energy above hull for the thermodynami-
cally stable phase at 0 K is 0 meV per atom. The cutoff energy
for stability as a function of working ion content can be
adjusted by the user, however it is recommended to filter for
compounds with <200 meV per atom above the convex hull as
more unstable structures are either unlikely to be synthesizable
or remain stable during discharge.’®'® Additionally, filters
based on voltage and capacity are useful to comply with the
thermodynamic stability window of electrolytes and to meet a
certain performance standard.

Subsequently, the resulting working ion sites are used to
construct a MigrationGraph."® The framework of the Migration-
Graph allows for the construction of intercalation pathways,
which connects every working ion site to its periodic neighbor,
with a number of “hops” connecting one meta-stable site to
another. At this tier, compounds that exhibit no intercalation
pathways are dismissed, since Li would not be able to migrate
through the entire periodic structure without percolating path-
ways. In addition, this framework performs symmetry analysis
and identifies groups of hops that are symmetrically equivalent,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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reducing the entire migration network into a smaller number of
symmetrically unique hops, which is subsequently used to
calculate by first-principles the energy profile of a single ion
migration event.

ApproxNEB>° analysis is then carried out on the identified
symmetrically unique hops from the previous step. The Approx-
NEB energy barriers serve as yet another criterion for screening;
structures with exclusively high-barrier intercalation pathways
(the definition of which depends on the type of working ion; for
Li ions 600 meV is here used as an upper cutoff) are discarded.
This step completes the high-throughput part of the pipeline,
leading to in-depth analyses of the screened materials.

Once promising materials are identified based on the cri-
teria outlined, diffusion analysis is performed through nudged
elastic band (NEB)*! calculations and a complete picture of the
migration network, composed of a MigrationGraph and corres-
ponding energy landscapes from NEB results, is constructed.
This migration network describes one or more percolating
pathways that connect one working ion site to its periodic
image, with a calculated corresponding energy landscape. An
example of a completed migration network will be shown in a
later section. Further ab initio analysis (such as AIMD) can also
be performed if desired. The resulting materials can then be
transferred into experimental efforts for synthesis and electro-
chemical analysis, and thus the pipeline concludes.

2.2 Preliminary application of the pipeline

The materials project,”® a database of more than 150000
inorganic structures covering a massive chemical space, pro-
vides an ideal testing ground for this pipeline. As a proof of
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concept, a subset of the database was selected for testing. This
subset of roughly 40 000 materials consists of oxides, sulfides
and fluorides that contain appropriate redox-active elements
(Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Ag, Sn, Sb, W, Se and Bi)
with <0.2 eV per atom energy above hull. As a first step of
screening, only compounds that contain reducible species are
selected, and as a result, systems with redox-capable elements
at their lowest oxidation state are discarded. After this step, the
candidate pool size is reduced to about 26 000. To obtain
information on Li sites, voltage profile, capacity, and energy
density, the insertion algorithm is performed on the structures
in this subset, resulting in around 6000 successful candidates
whose inserted structures match their host structures topotac-
tically. No further attempts were initiated on materials dis-
carded at this step. Subsequently, several additional filters are
applied in a preliminary application of the presented frame-
work. Here, we choose to restrict the average voltage to within
3 Vto 4.5V, and the stability (as defined by energy above the
convex hull) to not exceed 50 meV per atom for the charged
structure and 100 meV per atom for the discharged structure,
which reduced the dataset to around 500 systems. Furthermore,
the gravimetric and volumetric capacities have to be at least
100 mA h g~ * and 200 mA h ecm?, respectively (or, equivalently,
300 W h kg~ " and 600 W h L™ for gravimetric and volumetric
energy densities, given the 3 V voltage threshold). Notably,
these limits are selected based on performance criteria and
can be easily adjusted to allow for a broader analyses.

More than 200 promising systems have been identified as a
result and are being further explored. Fig. 2 shows a compar-
ison in the distribution of redox-active species before and after

3360
2013
1546 -
3 952
10
610
ey
S o
010
Q
[e))
kel 37
17,
1
10
D A R R R R T T
— —
COVL VSISO S5>SZ 300095
SOLSPZF5-S876F32002@=H5=2 S

Redox-active Species in

Il before screening
after screening
542
400
243 218
164
11
91
11
4
N D S R R R R A T T
SIS COSCSSISSNOSQO0c o0l oLs
BFOHESHESFOCD IS5 ISF2 RS
Charged Structures

Fig. 2 Distribution of redox-active species in charged structures for cathode candidates before the screening (~40 000 compounds) and after the

screening (~200 compounds). Species with low frequencies of occurrence
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are not shown.
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the screening. As shown in this comparison, the dataset before
the screening contains a large number of ions that cannot be
reduced, such as Mn>*, Co*", Fe**, etc., which are, as expected,
discarded after the first screening tier. Furthermore, ions such
as Cu”*, Ti"", W°" etc. are commonly present until the insertion
calculations and subsequent voltage screening. Some com-
monly seen high-voltage redox species, such as V>*, Co*" and
Mn*"** dominate the distribution after screening. Other
known high-voltage redox species, such as Bi’", are not present
due to limitation of the dataset as well as the filter on stability,
capacity and energy density. Apart from the diverse chemical
range, the pipeline is also able to handle various types of
structural motifs. In Section I of the ESI,{ we provide energy
landscapes of migration hops for some representative structure
types, calculated with ApproxNEB. These structures contain Mn
and V as redox-active elements, chosen for their prevalence in
the candidate pool after screening, and include a variety of
anions, ranging from oxides to polyanion groups such as BO,
and PO,. Furthermore, they encompass both layered and
tunnel topologies, which the pipeline is able to handle well.
It has identified in-layer migration hops along both directions
in the 2-D layers, as well as in-tunnel and cross-tunnel hops in
tunnel structures, and has yielded their ApproxNEB results,
some of which are shown as sample plots in the ESL

Many of the aforementioned systems are being actively
investigated, and as an example, we present one compound
of interest MnP,0; (identifier from the materials project: mp-
26982), which completed the entire pipeline and serves as a
demonstration case. The pipeline identified the host structure
MnP,0-, successfully inserted one Li ion per formula unit —
commensurate with the experimentally synthesized but electro-
chemically untested LiMnP,0,>* - and further finds one more
Li ion site to reach the fully discharged (to Mn>") new com-
pound Li,MnP,0;. The meta-stable sites are used to construct
the topology of the ion migration network and the Li-ion
mobility is evaluated in the charged and discharged states. In
general, we emphasize that the framework can be applied to
any database of inorganic structures with appropriate redox-
active elements. Furthermore, this discovery pipeline can be
readily applied to cathode discovery of other working ions, such
as Na-ions and K-ions, by simply altering ion species in the
insertion algorithm, and tuning parameters such as voltage
cutoff and volume change tolerance.

3 Results & discussions

The following sections discuss the study on MnP,0-, the proof-
of-concept system, in detail.

3.1 Background information about MnP,O,

There are previous investigations®*?® into lithium manganese

pyrophosphates as cathode materials, specifically the o-Li,-
MnP,0,** and the B-Li,MnP,0,**> polymorphs have shown
activity, albeit with low ion conductivity. However, the here
identified MnP,0; is structurally different such that o- and -
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Fig. 3 The unit cell structure of the fully discharged y-Li,MnP,O5. (a)
Shows the c-axis, the tunnel direction, pointing into and out of page, and
(b) shows the c-axis pointing up and down. This structure is in the P2;
spacegroup (@ = 7.27 A, b = 855A, c =512 A, and « = 90°, f = 110°, y =
90°). Identifier from the materials project: mp-770967.

Li,MnP,0, belong to space group P2,/c, whereas the charged
(MnP,0,), half-discharged (LiMnP,0-) and discharged (denoted
v-Li,MnP,0;) phases of the system of interest exhibit P2; sym-
metry, indicating the addition of a glide plane.

Notably, the half-discharged LiMnP,0;, was synthesized by
Ivashkevich et al.>® Although, to our knowledge, the particular
system of LiMnP,0; has not been evaluated electrochemically,
isostructural compounds such as LiFeP,0;, LiFeAs,0,, and
LiVP,0,, have shown the ability to cycle electrochemically.>®
Rousse et al.”” synthesized VP,0; by extracting Li from LiVP,0-,
and observed an apparent irreversibility of 0.4 Li for VP,0, at
the first cycle. LiFeP,0, and LiScP,0, were found to exhibit
“low lithium ion conductivity’” by Vitins et al.?®

In summary, while numerous polymorphs and isostructural
pyrophosphate materials have been synthesized and tested
electrochemically, the half-discharged LiMnP,O, has been
synthesized but not studied electrochemically, while the charged
phase MnP,0, and the discharged phase y-Li,MnP,0; has, to
our knowledge, not been synthesized.

The experimental structure of LiMnP,O, contains one
lithium atom per formula unit, occupying what we here denote
a sites. Through the insertion workflow, additional f sites are
here identified, which provide one more lithium atom per
formula unit. A detailed discussion of its crystal structure and
migration network including both o and P sites will be shown
in the following section.

3.2 Computational data for MnP,0,

The calculated voltage of Li, ,MnP,0;, upon discharge ranges
from 4.57 V (MnP,0,-LiMnP,0,) to 3.64 V (LiMnP,0O,-v-
Li,MnP,0,). Assuming full lithiation the theoretical capacity
of MnP,0; is 221 mA h g, and the theoretical energy density
is 907 W h kg~ '. The reaction at the cathode during discharge,
where Mn*" is reduced to Mn>*, is shown as follows:

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ya00397c

Open Access Article. Published on 10 Novemba 2023. Downloaded on 07/11/2025 02:42:06.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy Advances

c out of page

a (a) looking down tunnels

View Article Online

Paper

a out of page (b) side of tunnels

Fig. 4 Connectivity between meta-stable sites as constructed by MigrationGraph, where (a) shows tunnels going in and out of page, and (b) shows
tunnels going up and down, along the direction of lattice vector c. Neighboring meta-stable sites, labeled o and  based on symmetry, are connected via
hops shown as cylinders. Sites and hops with identical labels in (a) and (b) are identical.

MnP,0, + 2Li" + 2e” — Li,MnP,0, (1)

Furthermore, thanks to a set of additional meta-stable Li
sites (P sites) identified by the pipeline, the system’s migration
network is expanded from one-dimensional (with only the
experimental « site) to two-dimensional. The calculated struc-
ture of the fully discharged y-Li,MnP,0, system is shown in
Fig. 3. This structure belongs to the P2; spacegroup, and
exhibits calculated lattice parameters of a = 7.27 A, b=855A4,
c=5.12 A, and « = 90°, f = 110°, y = 90°, with a tunnel along the
lattice vector ¢ direction. The Mn atoms corner-share with six P
atoms from five different P,O, groups; one P,0; group ‘“chelates”
the Mn atom, meaning that both P atoms in the same group
corner-share with the same Mn. Additionally, the Mn atoms edge-
share with one Li ion (at the 3 site), and face-share with a different
Li ion (at the o site), but do not share oxygen with another Mn
atom. Li ion at o sites face-share with one manganese and corner-
share with another, while corner-sharing with neighboring P
atoms; Li ions at P sites edge-share with one Mn and corer-
shares with another, while corner-sharing with neighboring
P atoms. It should be noted that the fully delithiated structure,
MnP,0, shows roughly a 20% change in unit cell volume as
compared to the fully lithiated structure but both structures are
structure-matched within a tolerance of symprec = 0.01 and
angle_tol = 5.0 via Spglib*® and ltol = 0.2 and stol = 0.3 via
pymatgen.*

Furthermore, the intermediate half-discharged LiMnP,0O,
phase displays Mn®**, a well-known Jahn-Teller active ion.
Indeed, careful examination of the calculated structure reveals
that the Mn*" ions demonstrate Jahn-Teller distortion, in
agreement with the experimental structure. MnOs octahedra
in the calculated structure exhibits a longer Mn-O bond length

© 2024 The Author(s). Published by the Royal Society of Chemistry

along the elongation axis (4.40 A), by roughly 10%, than the
Mn-O bond length perpendicular to the axis (3.95 A).

Identification of the meta-stable sites yields a complete
picture of the migration network, constructed with the Migra-
tionGraph. In Fig. 4, all meta-stable Li sites are shown as either
an o (in-tunnel) site or a B (on tunnel-wall) site. A “hop”
represents an event where a Li ion at one meta-stable site
migrates to a neighboring meta-stable site, shown as connec-
tions between neighboring sites in Fig. 4. In the Migration-
Graph of y-Li,MnP,0,, every hop connects an o site and a f site.
There are three symmetrically unique hops in this compound,
labeled hops 1, 2 and 3; and all hops within the same symmetry
family share the same chemical environments and energy
landscapes. For example, in Fig. 4, hop 3; and hop 3 are
symmetrically equivalent and thus have the same energy land-
scape, while hops 1 and 2 each exhibit different energy
landscapes.

The resulting migration network generates the connectivity
of this structure’s 2-D ion migration topology. One pathway,
denoted Pathwayl, connects the o sites along the tunnel’s
direction; it is visualized as hop 3; (o; to B,) and hop 1 (B, to
o) in Fig. 4. Another pathway, denoted Pathwayll, connects o
sites in neighboring tunnels via a B site; it is shown as hop 2 (o4
to B,) and hop 3y (B, to a3). Note that even though Pathwayll
does not connect one site to its periodic image, it allows for
migration from one tunnel to another, enabling two-
dimensional mobility in the structure. Moreover, simply repeat-
ing this pathway from o; transports the Li ion to o4, the
periodic image of the initial o, site along the lattice vector b
direction. This connectivity is used to initialize ApproxNEB and
NEB calculations to add energy profiles to the migration path-
ways, whose results are shown in the following sections.

Energy Adv., 2024, 3, 255-262 | 259
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Fig. 5 Energy profiles calculated with ApproxNEB of (a) Pathwayl and (b)
Pathwayll.

3.3 ApproxNEB results

As discussed in the methodology section above, dilute limit
ApproxNEB calculations serve as a high-throughput screening
criterion based on ion mobility. For the MnP,O, system,
ApproxNEB analysis was performed on both intercalation path-
ways, the results of which are shown in Fig. 5. The ApproxNEB
pathways exhibit energy barriers of 681 meV and 487 eV, one
below and one slightly above the screening standard of 600 meV.
Since this system has at least one pathway with barrier under the
cutoff, it is qualified for further detailed NEB analysis. We show
the more accurate energy profiles obtained through NEB, the
final component of the migration network description, in the
next two sections.

3.4 NEB results in the dilute limit

In the dilute limit, only one Li ion is present in the simulation
supercell with composition Lig 1,5MnP,05, ensuring that peri-
odic Li ions are at least 7 A apart, to be representative of the
dilute limit. Shown in Fig. 6 and 7 are the energy landscapes,
calculated by NEB, of Pathwayl and Pathwayll in the dilute
limit, respectively.
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Fig. 6 Li-ion evolution of the along-tunnel pathway (Pathwayl) in the
dilute limit. (a) Shows images along the pathway, and Li positions labeled
oy, B1 and o, have the same positions with identical labels in Fig. 4. (b)
Shows calculated energy evolution as a function of Li migration distance,
where labels a4, B1 and o, correspond to the images in (a).

260 | Energy Adv, 2024, 3, 255-262

View Article Online

Energy Advances

Ener

5001 9 c out of page

(b)
4004 SN
S
£ 300 /

200+ " Y

Energy (

o

1004

04 <

Distance (A)

Fig. 7 Li-ion evolution of the along-tunnel pathway (Pathwayll) in the
dilute limit. (a) Shows images along the pathway, and Li positions labeled
a1, P2 and az have the same positions with identical labels in Fig. 4.
(b) Shows calculated energy evolution as a function of Li migration
distance, where labels oy, B, and oz correspond to the images in (a).

For PathwaylI in the dilute Li ion limit as shown in Fig. 6, the
migrating Li ion first moves from an in-tunnel site (o) to the
nearest tunnel-wall site B, (hop 3; in Fig. 4). The pathway then
completes with a hop from B, to o, (hop 1 in Fig. 4), a periodic
image of the initial site. This pathways takes a Li ion from an o
site to another a site along the tunnel direction with an overall
energy barrier of 588 meV.

For Pathwayll in the dilute limit as shown in Fig. 7, the
migrating Li ion initially resides in the in-tunnel site o, as well.
However, unlike in Pathwayl, the Li ion hops to a tunnel-wall
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Fig. 8 Livacancy evolution of the along-tunnel pathway (Pathwayl) in the
vacancy limit. (a) Shows images along the pathway, where dashed circles
indicate positions of vacancies; vacancy positions labeled a4, B; and o
have the same positions with identical labels in Fig. 4. (b) Shows calculated
energy evolution as a function of vacancy migration distance, where labels
a4, B1 and o, correspond to the images in (a).
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Fig. 9 Livacancy evolution of the cross-tunnel pathway (Pathwayll) in the
vacancy limit. (a) Shows images along the pathway, where dashed circles
indicate positions of vacancies; vacancy positions labeled oy, B, and oz
have the same positions with identical labels in Fig. 4. (b) Shows calculated
energy evolution as a function of vacancy migration distance, where labels
oy, B2 and az correspond to the images in (a).

site B, on the opposite side of the tunnel (hop 2 in Fig. 4).
The Li" then migrates to a5 site, which is in a different tunnel
from initial o, site (hop 3y in Fig. 4). This pathway has an
overall energy barrier of 485 meV.

3.5 NEB results in the vacancy limit

In the vacancy limit, all except one Li site are occupied in the
simulation supercell with composition Li; g;sMnP,0, ensuring
that periodic Li vacancies are at least 7 A apart, to be repre-
sentative of the vacancy limit. Shown in Fig. 8 and 9 are the
energy landscapes, calculated by NEB, of Pathwayl and
Pathwayll in the vacancy limit, respectively.

As shown in Fig. 8, PathwayI in the vacancy limit involves the
vacancy, much like the Li ion in the dilute limit, migrating from
a4 to the nearest B, (hop 3; in Fig. 4) and then to a, in the same
tunnel (hop 1 in Fig. 4). This series of vacancy hopping is
equivalent to the Li ion initially at §; moving to o4, and
subsequently the Li ion, which initially resides at o,, moves
to B;. The calculated overall energy barrier for this pathway in
the vacancy limit is 943 meV. One noteworthy feature of the
energy landscape is that the midpoint configuration in the
pathway (vacancy at PB,) exhibits the lowest energy. This is
intuitive since o sites have a lower insertion energy than B
sites, and therefore the configuration with a vacant B site is
more stable than one with a vacant « site.

In Pathwayll, similar to its counterpart in the dilute limit,
the vacancy moves from a4, via 3, on the opposite side of the
tunnel (hop 2 in Fig. 4), to a3, in a neighboring tunnel (hop 3j
in Fig. 4). Equivalently, the Li ion initially at B, migrates to oy,
followed by the Li ion at oz migrating to B,. As mentioned
above, the midpoint energy is the lowest because its configu-
ration has two stable « sites filled and the less stable B site

© 2024 The Author(s). Published by the Royal Society of Chemistry
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empty. The nudged-elastic-band calculation shows this path-
way to exhibit an overall energy barrier of 719 meV.

4 Conclusions

A general and rapid cathode discovery pipeline for non-Li-
containing materials is presented and implemented. Notably,
the workflow does not need any a priori knowledge of Li sites.
The pipeline is here applied to a subset of inorganic structures
within the materials project and one particular compound,
MnP,0-, emerges as an exemplary application of the pipeline.
To our knowledge, this compound has not been explored
electrochemically, but has been synthesized in its half-
discharged state LiMnP,0,. The framework successfully iden-
tifies the correct first Li site according to the experimental
results, and then proceeds to suggest another metastable Li
site, completing the Mn*" to Mn** redox reaction. The compu-
tationally identified Li" migration network shows the structure
to exhibit features of a 2-dimensional topology with two sepa-
rate intercalation pathways parallel as well as perpendicular to
the structure tunnels. In the dilute limit, these pathways show
reasonable 588 meV and 485 meV of energy barriers, however in
the vacancy limit, the ion migration barriers increase to 943 meV
and 719 meV, respectively. Future work will focus on expanding
the search space to all classes of Li-free inorganic compounds
and combining efforts with experimental efforts to realize inno-
vative cathode materials for LIB.
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