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Human beings encompass sophisticated microcirculation and microenvironments, incorporating a broad

spectrum of microfluidic systems that adopt fundamental roles in orchestrating physiological mechanisms.

In vitro recapitulation of human microenvironments based on lab-on-a-chip technology represents a

critical paradigm to better understand the intricate mechanisms. Moreover, the advent of micro/

nanorobotics provides brand new perspectives and dynamic tools for elucidating the complex process in

microfluidics. Currently, artificial intelligence (AI) has endowed micro/nanorobots (MNRs) with

unprecedented benefits, such as material synthesis, optimal design, fabrication, and swarm behavior. Using

advanced AI algorithms, the motion control, environment perception, and swarm intelligence of MNRs in

microfluidics are significantly enhanced. This emerging interdisciplinary research trend holds great potential

to propel biomedical research to the forefront and make valuable contributions to human health. Herein,

we initially introduce the AI algorithms integral to the development of MNRs. We briefly revisit the

components, designs, and fabrication techniques adopted by robots in microfluidics with an emphasis on

the application of AI. Then, we review the latest research pertinent to AI-enhanced MNRs, focusing on their

motion control, sensing abilities, and intricate collective behavior in microfluidics. Furthermore, we

spotlight biomedical domains that are already witnessing or will undergo game-changing evolution based

on AI-enhanced MNRs. Finally, we identify the current challenges that hinder the practical use of the

pioneering interdisciplinary technology.

1. Introduction

The human body comprises a myriad of sophisticated
microcirculation networks that play significant roles in
managing physiological mechanisms to maintain systemic
balance and optimal health.1 Networks of arterioles, capillaries,
venules and interstitial space, which function as innate
microfluidic systems, are integral to the microcirculation.2 The

transportation of nutrients, hormones and oxygen and the
simultaneous removal of metabolic waste through the
microfluidic systems are essential to meeting metabolic
demands, maintaining body fluid balance, and mediating
immune responses.3 Lab-on-a-chip technology, derived from
the miniaturization and integration of chemical and biological
processes onto chips, enables the precise control and
manipulation of fluids that are geometrically constrained to a
small scale.4–6 As a subset of microfluidics, organ-on-a-chip
(OOC) technology has been developed to recapitulate in vitro
human microphysiological systems, including organ level
structures, physiological features and mechanical cues.7 This
technology offers a sophisticated tool for studying cell-to-cell
interactions, signal transmission and essential cell functions.8

Within these microengineered biomimetic systems, cells can be
cultured in an dynamic environment that closely mimics their
in vivo conditions, enabling researchers to perform the precise
and controlled investigations of complex cellular dynamics.9 By
linking together multiple OOCs through fluidic interfaces,
‘body-on-chips’ can be built and systemic responses of the
human body can be studied.10 Beyond the original progress in
OOC development focused on recapitulating healthy organ
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environments, OOC disease models have been recently created
for more in-depth investigations.11,12 These models have served
as predictive tools of human responses to pathogens, medicines
and chemicals.13

Following Richard Feynman's groundbreaking 1959
discourse “There is Plenty of Room at the Bottom”,14 continuing
advancements in the conception and manufacture of active
miniaturized components have prompted an array of
explorations within the micro, nano, and quantum
dimensions.15,16 Nowadays, micro/nanorobots (MNRs) have
extended our ability to observe, exploit and control the
microscopic world.17,18 MNRs refer to robotic agents with
dimensions from the millimeter to nanometer range that are
capable of transforming energy to movement and forces. They
became reified owing to the microelectromechanical system
(MEMS) technology that emerged in the late 1980s.19 Thereafter,
various microrobotic devices (such as microgripper,20

microgears,21 micromotors22 and microdrillers23) were
successfully developed for multiple applications. With a size

similar to or larger than the small organisms (e.g., bacteria and
viruses), microrobots can interact with the microscale world in
ways that are not possible for macroscopic robots.24 Meanwhile,
nanorobots are typically developed with the intent of interacting
with the molecular components of living organisms, such as
DNA and proteins.25 Microfluidics offers a robust foundation to
faithfully reveal the characteristics of MNRs in the human
body.26 In microfluidics, interactions of MNRs with small
organisms can be precisely monitored and analyzed, and
therefore enable refinement of the robots' functionalities.27,28

Manipulation of MNRs (like a microswimmer or vehicle) in
microfluidics is essential for practical use. During the past
decade, the microscale or nanoscale objects made from soft or
solid materials have been positioned, oriented, and controlled
by external magnetic,29 acoustic,30 optical31 or electric32 fields.
Theranostic payloads for targeted treatment can also be
maneuvered, controlled, and delivered by tethered or
untethered MNRs.33,34 The microscopic robot MNRs have also
been utilized to manipulate, capture, sort and deliver cells.35
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Moreover, minimally invasive surgeries have benefited from
MNRs aids based on precise motion and advanced imaging.36

Artificial Intelligence (AI) has established groundbreaking
benchmarks across many industries and academic realms, and
revolutionized virtually all aspects of human life. As an integral
part of AI, machine learning equips computers with the ability
to learn from data without the requirement of explicit
programming.37 Numerous algorithms of machine learning
(such as decision tree, random forest, support vector machine

(SVM), k-nearest neighbors (k-NN), convolution neural network
(CNN), recurrent neural network (RNN), Transformers, graph
neural network (GNN), reinforcement learning (RL), and their
variants) have made remarkable accomplishments in diverse
domains.38–42 These include computer vision, natural language
processing, facial recognition, robotic process automation and
bioinformatics. For instance, in the field of computer vision, AI
algorithms have improved the ability to interpret and
understand visual data, which have a profound impact on areas
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like image analysis.43 AI has also reshaped the micro/
nanorobotics study by providing a unique prowess in motion
measurement and autonomous control of MNRs.44,45 Firstly, by
leveraging AI-based data processing techniques, the robotic
systems can increase the accuracy and reliability of motion
measurement.46 These algorithms can extract meaningful
information to facilitate robust tracking and localization of
MNRs. In parallel, by AI-based control strategies, MNRs can
precisely navigate and autonomously respond to environmental
obstacles with improved adaptability.47 Multiple complex tasks
such as sorting, filtering and transporting cells or substances
within a microfluidic environment can be accomplished.48

Furthermore, accompanied by the prevalence trend of MNRs in
the medical field, it can be foreseen that massive amounts of
image or video data,49 time-series data50 or multimodal sensing
data51,52 will be generated in the future, either experimentally or
clinically. The capability to proficiently investigate vast
quantities of data is indeed the primary strength of AI.
Therefore, it can be anticipated that AI and micro–nanorobotics
will intersect more closely, and the convergence will be
projected to reciprocally stimulate progress in their respective
fields.

Although initially developed independently, MNRs,
microfluidics and AI have become more intertwined in the past
few years (Fig. 1). Following Richard Feynman's conceptual
trope, there should also be significant advances in intelligence
consequently endowed by the interdisciplinary technologies.
The cross-disciplinary research integrating AI, MNRs and
microfluidics is rapidly growing, which may make substantial
contributions to the paradigm shift in the field of biomedical
research. In this review, we initially illustrate the useful AI
algorithms for developing MNRs. A concise examination of the

components, design, and assembly of robots in microfluidics is
also presented. Subsequently, we provide an overview of the
most recent research relating to AI-enhanced MNRs with an
emphasis on their motion control, sensory capabilities, and
group dynamics. Moreover, various biomedical sectors which
are experiencing change or poised for transformations resulting
from the integration of AI and MNRs are discussed. Such
sectors include drug delivery, cell maneuvering, organ-on-chip
systems, biopsy and precision surgery, and implantation
techniques. Finally, we profile the predominant barriers that
pose as constraints to the practical application of this
groundbreaking interdisciplinary technology.

2. AI and micro/nanorobots
2.1 Algorithms

Since the landmark Dartmouth Conference in 1956,53 AI has
experienced several phases of refinement. Numerous algorithms
have been continuously developed, ranging from elementary
rule-based algorithms to advanced machine learning and deep
learning algorithms that dominate the landscape today. This
section of review selectively presents a collection of classic
algorithms that are relevant to microfluidics. A concise
introduction is provided for algorithms without delving
excessively into technical details.

2.1.1 Traditional machine learning. Traditional machine
learning refers to a class of algorithms that mainly utilize
statistical techniques to extract patterns and make
predictions from data. These algorithms can be supervised
(learning from labeled data), unsupervised (learning from
unlabeled data), or semi-supervised (a mix of the two). Naive
Bayes, linear regression, logistic regression, SVM, decision

Fig. 1 Artificial intelligence-enhanced robots and their applications in microfluidics.
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trees, random forests, hierarchical clustering, Gaussian
mixture models, self-organizing maps, Apriori algorithm and
k-NN are among the mainstream traditional algorithms.
Traditional machine learning methods have many
advantages. They excel in handling large datasets, extracting
meaningful features that may lead to accurate predictions for
labeled data. The algorithms are usually well-established with
a solid theoretical foundation and wide understanding. Their
effectiveness in processing structured data also enhances
their usability.54 However, traditional methods have some
limitations. They often require extensive manual feature
engineering, making them time-consuming processes. The
algorithms may struggle with generalizing complex and high
dimensional data well, and can be sensitive to outliers and
noise, which potentially impact the robustness.55

Nevertheless, on-chip study, cell classification,56 biomarker
detection,57 optimization of chemical reactions58 and fluid or
droplet control42,59 have been successfully improved by
machine learning technologies.

2.1.2 Deep learning. Deep learning (DL), a key subset of
machine learning, is a computational approach that emulates
the human brain's neural networks to process intricate
patterns and extract meaningful representations from datasets.
By employing multiple layers of interconnected nodes, DL
models enable hierarchical feature extraction and data
transformation. DL algorithms can also be supervised,
unsupervised, or semi-supervised. Convolution neural networks
(CNNs), deep residual networks, sequence-to-sequence models,
recurrent neural networks (RNNs), long short-term memory
networks (LSTMs), transformer networks (including BERT,
GPT, etc.), graph neural networks (GNN), and generative
adversarial networks (GANs) are among the most famous DL
algorithms. DL offers several notable advantages over
traditional methods.60 The deep neural networks are proficient
in autonomously handling high dimensional and unstructured
data, such as images, text, and audio independent of domain
knowledge. The need for manual feature extraction required in
conventional machine learning can be avoided. DL also thrives
with a larger dataset and higher computational power, which
make it especially effective in dealing with massive data.
Despite noteworthy advancements, DL is constricted by certain
limitations.61 The process of training a DL model typically calls
for thousands or potentially millions of datasets. This
requirement often presents a significant challenge due to the
difficulties intrinsic to gathering such extensive data in every
context. DL models also suffer from a lack of interpretability,
which causes challenges to understanding how they have
arrived at a particular decision through “black boxes”. Recently,
interpretable and trustworthy deep learning which aim at
producing dependable and comprehensible models has
evolved into a topic of significant interest.62,63 By these
approaches, the transparency, robustness, fairness and privacy
of models can be enhanced. On-chip cell classification,64,65

drug design66 and delivery,67 target recognition,68 and nucleic
acid amplification prediction69 have been successfully assisted
by DL models (Fig. 2).

2.1.3 Physics-based deep learning. Physics-based deep
learning (PBDL) is an emerging interdisciplinary field that
integrates principles of physics into DL to enhance model
interpretability and training efficiency.70 These physical laws,
commonly articulated as ordinary differential equations
(ODEs) or partial differential equations (PDEs), support DL
models with innovated structures. The models transcend the
rudimentary dependencies on data-driven correlations, and
offer a more sophisticated learning paradigm.71 Current
representative methods under this discipline include physics-
informed neural networks (PINNs) and deep hidden physics
models (DHPMs). PINNs mold the deep learning procedure
by supplementing the loss function with ODEs or PDEs (i.e.,
governing equations, initial and boundary conditions), which
orient the functioning of the neural network towards
compliance with physical laws.72 From a different
perspective, DHPMs learn the time evolution of nonlinear
systems to discover unknown equations governing the system
dynamics, followed by reasonably forecasting future states.73

It is noteworthy that PBDL methods do not undermine the
conventional data-driven learning. Instead, they enrich AI
methodologies by layering on the systematic knowledge
derived from physical laws. The intersection of physics and
deep learning leads to more robust and interpretable
paradigms. On-chip concentration gradient generator,74

droplet formation,75 and blood flow analysis76 have been
empowered by PBDL models.

2.1.4 Reinforcement learning. Reinforcement learning (RL)
is a facet of AI that employs a method of learning via
interaction with the environment. The concept revolves
around an agent making decisions based on a set of actions
with the aim of maximizing the cumulative reward. RL does
not necessitate the presence of prelabeled data as a
prerequisite for the initiation of the learning process.
Instead, it learns through a system of trial and error through

Fig. 2 Exemplary AI algorithms developed for microfluidics. A) A
generative deep learning model based on a long-short term memory
network for on-chip synthesis for drug design.66 B) machine learning-
guided ultrasonic method for versatile two-dimensional droplet
manipulation in programmable microfluidic devices.59 C) Schematic
illustrating an artificial-intelligence velocimetry model based on PINN.
A fully connected neural network is employed to approximate the
solutions for the desired output parameters.76 Reproduced with
permission from ref. 66. Copyright 2021, Science Advances, ref. 59.
Copyright 2022, ACS Publications, ref. 76. Copyright 2021, Proceedings
of the National Academy of Sciences.
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continuous observation of its actions and the results.77 One
major advantage of RL is the capacity to robotically improve
the performance through repeated learning patterns.
However, the learning process by RL may be inevitably time-
consuming and computationally expensive, and struggle in
situations where the reward system or environment are
unpredictable. Specifically, in the field of robotics, the impact
of RL is monumental. Algorithms based on the RL framework
have enabled robots to learn a plethora of complex tasks
independently and adapt to new environments. On-chip
experiments, including flow network construction,78 pump
control79 and microbead manipulation,80 were elevated by RL
algorithms.

2.1.5 Swarm intelligence. Swarm intelligence (SI)
represents an innovative distributed intelligent paradigm for
problem-solving systems inspired by the collective behavior
of social insects and other animal societies.81 The power of
SI arises from the process of self-organization, a set of
individuals interacting with one another in a decentralized
manner to achieve global behaviors. It significantly embodies
the Aristotle's axiom, “the whole is greater than the sum of
the parts”. Ant colony optimization (ACO) and particle swarm
optimization (PSO) are the main SI algorithms used, as well
as bacterial foraging optimization, artificial shepherd
algorithm, artificial bee swarm, and fish school search.82 The
fusion of SI and ML can potentially overcome their individual
limitations and fortify their strengths. For instance, ACO and
PSO can be used to optimize the hyperparameters of ML
models efficiently, which eliminates the need for trial-and-
error in hyperparameter tuning.83 Conversely, RL can
enhance the learning and adaptation abilities of SI systems,
making them more intelligent and capable of solving a wider
range of problems.84 On-chip fault localization and residue
removal,85 single-particle micropatterning,86 and droplet
sorting87 were refined by ACO and PSO algorithms.

2.2 Material

MNRs are typically made from solid materials (like metals,
ceramics, polymers, and composites) or non-solid materials
(such as gels, bubbles and droplets) that are suitable for
miniaturization. These materials are selected for their
mechanical strength, biocompatibility, and responsiveness to
external stimuli, such as light, acoustic and magnetic fields
or chemicals. Biocompatibility is a critical requirement for
materials used in MNRs. The materials should be non-toxic
and non-immunogenic, resistant to corrosion, and capable of
peacefully coexisting within a biological environment without
causing adverse reactions. AI promotes material science by
accelerating the discovery and development of new materials.
These advanced algorithms also provide unique advantages
in the aspect of material and composition of MNRs.88 In
order to discover new materials, machine learning algorithms
have been harnessed to process massive databases of the
existing materials. These algorithms can extract features and
predict the properties of potential materials, and thus

expedite the materials discovery process.89 To optimize
material synthesis, AI collaborates the parameters and
conditions with specific qualities. Deep learning models
predicted the resultant material properties based on different
protocols, which may improve the manufacturing efficiency.
Furthermore, AI can forecast the relationships between the
MNR's structures and their resulting biological or physical
functions.90 Interesting, AI tools, particularly inverse design
approaches, are being utilized to engineer materials with
bespoke functions.91 By providing the desired functionality,
AI algorithms backtrack to determine the optimal
composition. The unique contributions of AI in MNRs-related
material research are expected to offer invaluable
opportunities for future advancements.

2.3 Design

For AI-enhanced material selection, the configuration design
of MNRs can be rendered flexible, but still nontrivial. First,
the miniaturization of robots should incorporate scalability,
which enable them to retain functionality at reduced scales.
The actuation mechanisms based on light, acoustic and
magnetic fields or chemicals methods should also be
harmonized with design strategy. Moreover, it is imperative
to consider the mechanical properties and dynamic response
characteristics in the configuration design phase. Evaluating
these factors is crucial to the successful execution of the
micro/nano robotic systems. The contribution of AI to the
optimized design process in macro mechanical design has a
similar applicability in the domain of MNRs. Machine
learning enables the exploration of numerous design
possibilities and predicts performance outcomes.92 For the
driving or energy transducing units, AI can analyze variables
such as electrostatic, electromagnetic, and electrothermal
forces followed by evaluating the driving performance and
regulating energy consumption.93 For actuators or end-effect
manipulators, AI is able to facilitate the design with
emphasis on high precision and responsiveness.94 On the
other hand, considering the mature application of numerical
simulation such as multi-physics coupled simulation in
design optimization, the integration of multi-physics
simulation with PBDL can provide additional insights for
optimizing the design of MNRs.95

Biomimetics offers a wealth of inspirational concepts for
improving micro and nanorobot design. Learning from
natural structures and physiological systems, bionic MNRs
can imitate cells and microorganisms. Biological motors like
kinesins,96 sperm,97 and bacteria98 presented potential for
ecologically benign self-propulsion biomedical applications.
The synergistic interaction between natural cells such as red
blood cells,99 macrophages,100 and intelligent MNRs
enhanced biocompatibility and autonomous movement. AI-
enhanced bionic carriers, termed “smart nanocarriers” like
pollen101 and microalgae,102 also offered invisibility to the
immune system, enhancing targeting precision and
minimizing toxicity.
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2.4 Fabrication

The main fabrication methods for MNRs include
photolithography, chemical vapor deposition electron beam
lithography, and additive manufacturing, which utilize the
optical transfer of patterns, chemical reactions, focused
electron beams and printing technique, respectively.103 They
offer customized structures with high precision at a micro/
nanoscale. Encapsulation technologies for MNRs primarily
involve self-assembly, DNA origami, and sol–gel chemistry.
Moreover, coating methods such as layer-by-layer assembly
can be employed to encapsulate the robots. Each of these
technologies contributes different attributes towards the
mechanical strength and biochemical stability. The
adoption of environmentally sustainable materials and
methods to minimize hazardous waste is highly favored in
the manufacturing process. For medical utilization, it is
crucial that the manufactured devices are nontoxic,
biocompatible, and ultimately recyclable or biodegradable.
The contributions of AI to the manufacturing of MNRs are
versatile. In the stages prior to and during manufacturing,
machine learning can be used to perform predictive
analysis and optimization (Fig. 3).104 By studying the key
manufacturing parameters and possible outcomes, machine
learning was employed to predict the potential flaws or
errors. In addition, the intermediate products of micro/
nano manufacturing can be identified by AI.105 In the stage
of post-manufacturing, by collaborating with microscopic
morphological characterization or material composition
analysis, the fabricated robot products can be assessed

quickly through automated morphological analysis based
on AI.106

3. Intelligent robotics in microfluidics
3.1 Propulsion

The simple transition of traditional power sources by
instrumental miniaturization is often not suitable for MNRs.
Activating these tiny robots in a biological microfluidic
environment such as blood vessels and interstitial space within
tissues can be difficult. As device dimensions decrease to a few
micrometers/nanometers, the ratio of inertial to viscous forces
becomes significantly small. Thus, inertial forces become
virtually negligible for MNRs movement. In these highly viscous,
low Reynolds number environments, continuous power
provision for propelling these devices becomes important.107

Prior to clinical applications, it is imperative to conduct a
certain amount of tests on MNRs in microfluidic environments.
In microfluidics, the motion of these microscopic robots can be
either self-propelled or remotely stimulated.108–110 Self-
propulsion uses chemical reactions on the MNRs surface to
convert chemical energy into kinetic energy. Such strategies can
be divided into two categories: chemical propulsion, which
typically requires a range of chemical fuels; and propulsive
forces based on microorganisms, such as enzymes or motile
cells.111 For instance, the tiny mechanized entities has
employed temperature fluctuations for efficient propelling.112

Computational capabilities and machine learning algorithms
have enabled an achievement of desirable energy for activating

Fig. 3 AI-enhanced material synthesis, device design and fabrication. A) Algorithmic framework for a high-throughput experimental loop to assist
the synthesis of metal nanoparticles.91 B) A comprehensive structure for the machine learning-aided design of Kirigami meta-atoms and
metamaterials.94 C) A neural network trained on binary design patterns and SEM images from focused ion beam milling, enabling the accurate
prediction of postfabrication appearances for unseen designs.104 Reproduced with permission from ref. 91. Copyright 2022, Nature Portfolio, ref.
94. Copyright 2022, Nature Portfolio, ref. 104. Copyright 2022, ACS Publications.
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MNRs with optimal velocities.113 Rohr et al. presented a
probabilistic learning strategy rooted in the concepts of
Gaussian processes and Bayesian optimization for activating
soft microrobots through light. This data-driven methodology
led to a propelling procedure with optimized gait under a
restrictive trials budget. The method illustrated a significant
amplification of locomotive performance of microrobots by
115%.114 For gait optimization, recent studies using RL and
genetic algorithms for swimming strategy optimization in
different microswimmers have been explored.115–117 Hartl et al.
employed the NEAT (NeuroEvolution of Augmenting
Topologies) genetic algorithm and artificial neural networks to
control the motion of microswimmers. This method obtained
inspiration from biologically relevant chemotactic sensing
strategies.118 Huang et al. developed a closed-loop method for
propelling swimming microrobots along arbitrary three-
dimensional (3-D) trajectories at low Reynolds numbers using
visual servoing. The trajectory was segmented into a sequence
of linear parts within this approach. The microrobots were
activated to follow intricate 3-D paths without requirement for
inputting parametric equations.119 Janiak et al. delineated a
discernment and depiction of the microbubbles' behavior
within a limited aperture between the glass confines in an
acoustic field. With discontinuous activation, transformation
occurred from spherical to ellipsoidal forms, facilitating
entrapment within the interstice. Meanwhile, persistent
activation propelled alterations in the ellipsoidal microbubbles'
shape and volume modes.120 The ongoing research and
evolution in AI-enhanced propulsion methodologies will be
instrumental in supporting and revolutionizing the capabilities
of MNR technologies.

3.2 Sensing

By virtue of their reduced size, these robots have the capability
to infiltrate and effectively operate in confined spaces. This
characteristic is particularly advantageous for applications
wherein the mobile entity is required to actively engage with
microenvironments inaccessible to human operators.
Microfluidic technology is a vital platform for assessing the
sensory capabilities of MNRs. It is also a key tool for analyzing
the robot-environment interactions and optimizing the choice
of biomarkers. Meanwhile, AI can be utilized for tasks of data
mining, feature extraction, specimen classification, and
intelligent forecasting tasks.121,122 Generally, these tasks
represent a unidirectional flow from the physical domain to the
information domain. In the context of micro-electromechanical
engineering, MNRs, which possess the capacity for energy
transformation and move according to predetermined human
inputs or machine intelligence, can perceive the environment
for themselves. The sensing feedback from their environment
subsequently provides dynamic information essential for
targeted positioning, navigation, and control of these bots.
Within this framework, the data will be bidirectionally
communicated between the physical and information domains.

With the grown data scale, AI is delegated with a broader range
of responsibilities.123

Dai et al. developed microswimmers capable of sensing the
external light source illumination direction and adjusting its
orientation accordingly. The robot comprised a Janus nanotree
with a nanostructured photocathode and photoanode at opposite
ends. Chemical alterations allowed control over the photoanode's
zeta potential, which facilitated the programmable positive or
negative phototaxis.124 Li et al. presented a cutting-edge AI
microrobot capable of responding to environmental changes
without an onboard energy supply and transmitted real-time
signals wirelessly. Controlled by an external magnetic field, the
microbot can move accurately, which could enable minimally
invasive in situ monitoring, especially in potential disease areas.
The study highlighted the feasibility of self-sensing AI microbots
for in situ diagnostic or even therapeutic development.125 Li et al.
proposed swarming photonic nanorobots capable of mapping
diverse physicochemical conditions on-the-fly and guiding
localized photothermal therapy. These responsive photonic
nanorobots were composed of a photonic nanochain of
periodically assembled encapsulated Fe3O4 nanoparticles. The
color-responsive mapping of physiological anomalies enables the
targeted irradiation for localized photothermal treatment.126 AI-
enhanced micro/nanorobotic perception technology has achieved
significant advancements, such as more precise environment
mapping and improved target localization. Existing challenges in
this field include constraints in computational capacity and the
requirement for enhanced algorithms to adapt complex
environments affected by factors, such as pH, temperature, and
glucose levels.

3.3 Navigation

For guiding a robot from the current location to a designated
destination, it often requires the intricate interplay of two
fundamental factors: localization and path planning. Accurate
localization is performed either relative to an environmental
landmark or based on various sensor data. Path planning should
be realistically feasible, meaning it should respect the robot's
kinematic and dynamic constraints and ensure safety by avoiding
obstacles. Navigation of MNRs represents a distinctive subclass
characterized by unique demands arising from scale-specific
properties.127 One of the main challenges at this scale is the
influence of Brownian motion, which tends to produce random
and unpredictable movements of MNRs. The stochastic
movement can lead to imprecise navigation and cause significant
deviations from planned routes. Another issue encountered by
MNRs is the highly nonlinear and non-Newtonian characteristics
of the microfluidic flow, as well as sensitivity to friction and
viscosity.128,129 Friction and viscosity forces dramatically increase
as the size of the objects decreases, which may impede the
movements of MNRs and cause them to slow down or even stop.
Unanticipated changes in the environment's friction and viscosity
can lead to unplanned movements and decreased navigational
accuracy of MNRs. Microfluidics can serve as a major
observational instrument for assessing the navigational accuracy
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and response speed of MNRs, and acts as a principal platform
for dynamically optimizing real-time trajectories.

AI has significantly promoted the development of MNRs
navigation.130 Advanced algorithms have provided contributions
in localization, path optimization and adaptive responses to
environmental changes. Cai et al. proposed an innovative control
strategy that relies on deep reinforcement learning (DRL) to
maneuver a soft magnetic microrobot (SMMR). A neural network-
based simulator was constructed to establish the association
between the induced magnetic field and the movement states of
the robot. With scant prior knowledge relating to the
surrounding environment, a DRL algorithm grounded on a gated
recurrent unit (GRU) was formulated. The analysis indicated the
promising capabilities of DRL in navigating soft magnetic robots
in microfluidic environments.131 Botros et al. introduced a
microrobot ultrasound dataset composed of 40k frames. The
dataset was examined by four deep learning detectors (named as
Faster R-CNN, Yolo, Mask-R-CNN, TPH-Yolo) and four
corresponding trackers (named as STARK, DiMP, Tomp, Pr-
Dimp). By this means, the enhanced navigation of a greater
quantity of microrobots can be potentially obtained.132 Liu et al.
investigated the management of small-scale, electromagnetically
actuated swimmers. To establish a navigation system for these
magnetically propelled microswimmers, an informed optimal
random exploring tree (informed RRT*) global planning
algorithm was used. A closed-loop control algorithm was also
proposed to track various reference paths using visual feedback.
Specifically, a single hidden layer feedforward neural network
approximated the mapping between the magnetic self-rotation
direction and actual movement.133 In dealing with complex and
unknown environments, AI plays a crucial role for microswimmer
navigation, especially through RL methods.134–137 AI will
potentially foster the development of MNRs navigation by
facilitating more autonomous capabilities and proactive
adaptability.

3.4 Control

Pose and motion control underpin the functionality of robotics
by enabling precise operation regulation, accurate execution, and
interaction with environments. When it comes to MNRs in
microfluidics, the robotic control encounters challenges due to
the reduced scale and extreme operating conditions. Miniature
robots are often utilized in environments characterized by high
dynamism, nonlinearity, and prevalent uncertainty.138 High
dynamism implies swift and recurring alterations in the
environment, to which robots should adapt quickly. This
necessitates real-time identification, interpretation, and
processing of environmental transformations. Nonlinearity
indicates complex spatial configurations through which robots
must navigate in real-time, requiring intricate movement
controls. Moreover, the inherent uncertainty refers to
unpredictable elements and situations that can disrupt robot
operations, and demands advanced predictive and reactive
mechanisms. In parallel, the multimodal fusion technologies
which processes data based on the integration of information

from multiple sensor types have proved the capacity for
generating holistic interpretation. The fusion method helps
surpass individual sensor limitations with improved robustness
and reliability, and can act as a vital facilitator in the motion
control of MNRs.139

Leveraging AI technology, the control strategies for MNRs will
become enriched and augmented. To date, there has been a big
scope for the utilization of AI for MNRs control. For controlling
the pose of MNRs, Zhang et al. Illustrated a sim-to-real method
to estimate the 3D pose of micro/nano objects. Based on a GAN
model, limited experimental data were enhanced through
simulated data generation. The method enabled advancement of
closed-loop control in micro/nanorobotic systems to handle
complex shaped micro/nano-objects.140 Khiyati et al. presented
optimal control strategies for thin deformable microswimmers in
viscous fluids. The approach addressed complex scenarios, in
which the effects of non-homogeneous flow, limited
configuration information, robot motion, and decision-making
were intertwined. Using multiple independent Q-learning
simulations, a set of viable policies was generated, which allowed
profound efficiency and robustness for robotic control.141 Chen
et al. proposed a magnetic untethered peanut-like millirobot
(MUPM) with rolling and crablike motion modes. The tiny robot
was manipulated under a rotating magnetic field created by a
magnetic driving navigation system. An algorithm named as
tracking-learning-detection was adopted for facilitating robotic
control. The MUPM demonstrated maneuverability in both
modes, and had potential applications in intraluminal drug
delivery.142 Xu et al. developed a control policy using the broad
learning system (BLS), and applied it to a microrobotic system.
Advantages of the BLS included its simple structure, and no need
for retraining when new demonstration data were provided. The
Lyapunov theory was combined with a complex learning
algorithm to establish constraints for the controller parameters.
The effectiveness of the strategy was confirmed through
simulation and tests by a microswimmer trajectory tracking
system.143 Neghab et al. demonstrated a stochastic model
predictive controller (MPC) based on a neural network for
regulating the motion of the microrobots. The system
identification was firstly performed to obtain the model's state
spaces for constructing the MPC. A nonlinear neural network was
utilized to predict the dynamic model of the physical systems.
The controller successfully tracked the reference trajectory
without error and reduced noise.144 As indicated by Reynolds
et al., the creation of microscopic robots capable of processing
internal information rather than external controls would
establish the groundwork for the emergence of “next-generation
intelligent micromachines”, which may become a burgeoning
field.145

3.5 Collective behavior

MNRs are more pragmatically meaningful when they operate in
swarm mode. From the viewpoint of flow-field control,
microfluidic technology provides a controllable variable for
manipulating swarmed MNRs. Swarm intelligence, as a bio-
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inspired computational paradigm, provides a robust framework
for collective behaviors. The collective behavior provides
scalability, reconfigurability, self-organization, and optimizes
resource utilization.146 Firstly, the expansion or reduction of the
swarm scale can be modulated by recruiting more members or
releasing surplus members. This flexibility allows a swarm to
operate efficiently under fluctuating conditions and
requirements, and thereby enhances resilience. Reconfigurability
entails the ability to rearrange components to suit new
conditions. Hence, it permits the potential to evolve dynamically
as per environmental stimuli. Self-organization endows MNRs
with adaptability in response to environmental changes or
internal feedback, without explicit external control. This extends
to an efficient utilization of system resources, driving towards an
optimal state of operation. Moreover, the intelligent collective
behavior ensures resource utilization to maximize the output
from the available resources. The resource allocation with
minimized redundancy upholds the systematic efficiency and
sustainability.147

AI-enhanced swarm intelligence promotes continuous
improvement in coordinating and collaborating MNRs. By
leveraging AI, adaptive decision-making ability based on
environment dynamics requirements can be obtained. The
continuous learning capabilities of AI permit enhancement of
efficacy, precision, and autonomy.148 Wang et al. presented a
novel approach for real-time navigation of a nanoparticle
microswarm in active endovascular delivery by employing
ultrasound Doppler imaging guidance. A magnetic microswarm
was generated and guided near the vessel boundaries. The
strategy demonstrated a promising link between swarm control
and real-time imaging of microrobotic swarms.149 Shahrokhi
et al. conducted a study to find the important factors in
manipulating particles based on a collection of online games, in
which players steer swarms of up to 500 particles. By analyzing
data from over 10000 players, control techniques that relied
solely on the mean and variance of the swarm were investigated.
Practicability of the controllers was verified by manipulating 100
kilobots controlled by a global light source direction.150 Ceraso
et al. described a swarm intelligence-based control mechanism
for medical nanorobots, which function as artificial platelets to
locate wounds in the human body. A coloured perceptive particle
swarm algorithm was adopted to regulate the movement of
nanorobots through self-assembly. The study basically verified
that swarm intelligence algorithms can benefit from Compute
Unified Device Architecture (CUDA)-based implementations due
to their inherent parallel structure.151 Recently, more studies have
emerged on the adaptive behaviors of microrobots via RL.152,153

However, given the intricacy of microrobot swarms coupled with
their potential for reconfiguration, the progress in learning-based
intelligent navigation has yet to reach a mature stage.

3.6 Bio-hybrid behavior

The conceptual exploration of biomimetic engineering based
on gaining insights from nature has formed a crucial
junction of contemporary research pursuits. The forthcoming

frontier in robotics is anticipated to be spearheaded by
biohybrids.154 Bio-hybridization of MNRs relies on combining
biological (e.g., DNA-, enzyme- or cytomembrane-based) with
artificial elements, which are often achieved in microfluidics.
In contrast to the counterparts without living organisms, the
bio-hybrid MNRs offer notable advantages, such as higher
functional versatility, naturally enhanced adaptability, and
responsiveness and compatibility.155 Firstly, the biological
components offer specificity and sensitivity, while the
artificial module brings resilience. Next, biological
constituents in bio-hybrid MNRs possess inherent capability
of biological organisms to acclimate autonomously to
altering environments or stimuli. Lastly, the presence of
biological elements suggests a higher degree of
biocompatibility, which is vital in scenarios like medical
interventions. Reduced chances of immunological rejection
and increased prospects for integration with biological
tissues can reduce operating complexity. Within microfluidic
systems, the characteristics and behaviors of these bio-hybrid
MNRs can be more proficiently observed, controlled, and
optimized.

AI greatly assists in advancing hybrid MNRs by providing
capabilities, ranging from propulsion to collective behaviors,
as mentioned in the above sections. Wang et al. developed a
data-processing pipeline based on deep neural networks to
facilitate the rapid characterization of dynamic DNA devices.
Tasks of particle detection and pose estimation were achieved
by the YOLOv5 and Resnet50 network architectures. The
results by the neural network exhibited fine performance and
consistency with experimental distributions. The
generalization of the pipeline was verified by diverse
nanodevices (Fig. 4).156 Mirzaiebadizi et al. designed an
intelligent nanorobot dependent on a DNA framework using
molecular programming and logic gate operation. To
examine the applicability, DNA nanorobots were applied as
capping agents on silica nanoparticles pores.157 Chen et al.
presented a biohybrid microrobot with integrated thermal,
magnetic and hypoxia sensitivities, and a dual-reporter
fluorescent protein for targeted cancer therapy. Probiotic E.
coli Nissle1917 were loaded with nanoparticles and NDH-2
enzymes. The microrobot effectively targets the tumor area by
combining magnetothermal ablation and NDH-2-induced
ROS damage, demonstrating its potential utility in AI-based
perception and targeted therapy.158 Although bio-hybrid
MNRs have not yet been used in clinical trials, the novel
convergence of biology and engineering may offer
unprecedented opportunities for advancements in biomedical
applications.

4. Game-changing applications

MNRs offer unique and unparalleled applications in the
biomedical field. Particularly, by integrating AI algorithms,
these intelligent agents demonstrate the proficiency to
process information, signal, sense, actuate, communicate,
and execute biological tasks at cellular levels. Such
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capabilities lead to an enhancement in the efficacy of
traditional therapeutics, while also abating the associated
side effects. We selected various applications, including drug
delivery, cell manipulation, organ-on-chip deployment,
precision surgery, and implanted device maintenance, to
illustrate the revolutionary impact of integrating AI, MNRs,
and microfluidics within these fields.

4.1 Drug delivery and targeted therapy

Traditional drug delivery methods rely on systemic
administration of medicines, which are distributed throughout
the body via the bloodstream. It is difficult to control the
timing, dosage, and release rate of drugs, which may lead to
fluctuations in drug concentration and compromise the efficacy
of the treatment.159 MNRs are revolutionizing the way that
medications are administered by delivering drugs directly to the
targeted cells or tissues in the body with reduced toxic side
effects.160 Yu et al. presented magnetic photonic crystal
microrobots that can visually detect pH changes and enable
self-regulated drug delivery. The development of this technology

supported the progression of intelligent MNRs for active,
targeted tumor diagnosis and treatment.161 In light of the rising
prevalence of neurological disorders and the need for innovative
drug delivery, there has been a notable emphasis on expediting
brain research in recent years.162 When diseases occur in the
brain, the blood–brain barrier (BBB) may block drugs and
hinder their therapeutic effects.163 The traditional experimental
validation of theranostic agents that successfully cross the BBB
to investigate their permeability and targeted drug development
in the central nervous system is a time-consuming process. It
often spans over a decade with a relatively low success rate upon
completion. Nanorobots offer significant advantages in the field
of drug delivery to the brain. Their miniature size and precise
control enable them to navigate through the complex pathways
of the central nervous system. Nanorobots can also be
programmed to specifically target diseased cells or regions,
thereby increasing the therapeutic efficiency and reducing off-
target effects. Furthermore, nanorobots can overcome the BBB,
allowing for the transportation of therapeutic agents to targeted
areas. Several studies have identified numerous benefits
associated with the utilization of nanoscale materials in brain

Fig. 4 Intelligent biomedical robots tested in microfluidics for drug delivery and cell manipulation. A) Schematic of the acoustically propelled, train-like
microbubble assembly.104 B) Time-resolved optical images of self-sensing intelligent microrobots for noninvasive and wireless monitoring.125 C)
Schematic illustration of a pH-responsive photonic nanorobots moving in a ‘rolling’ mode, and D) time-lapse microscopic images depicting ‘rolling’
nanorobots moving in a predesigned trajectory (red curves) when navigated by a magnetic field.126 E) Illustrative instances of the data procured through
CycleGAN-based sim-to-real transfer, and F) conceptual exposition of the learning-to-match approach and the comprehensive architecture of the pose
estimation model.140 G) Schematic elucidation of the swarm origination and navigation within vascular channels driven by ultrasound Doppler imaging.
Doppler signals in proximity to the microswarm were observed within the blood environment, allowing for real-time tracking and navigation of the
microswarm via Doppler feedback.149 H) Dynamic DNA origami devices characterized by deep neural networks.156 Reproduced with permission from ref.
104. Copyright 2023, Nature Portfolio, ref. 125. Copyright 2023, Nature Portfolio, ref. 126. Copyright 2023, Springer Link, ref. 140. Copyright 2022, Nature
Portfolio, ref. 149. Copyright 2021, Science Advances, ref. 156. Copyright 2023, Biorxiv.

Lab on a Chip Tutorial review

Pu
bl

is
he

d 
on

 0
4 

Ja
nw

al
iy

o 
20

24
. D

ow
nl

oa
de

d 
on

 2
0/

02
/2

02
6 

04
:1

7:
07

. 
View Article Online

https://doi.org/10.1039/d3lc00909b


1430 | Lab Chip, 2024, 24, 1419–1440 This journal is © The Royal Society of Chemistry 2024

research.164 To evaluate various nanobots, the development of
prescreening tools is of utmost importance. AI algorithms can
analyze large volumes of data and extract patterns to accurately
predict the efficacy and safety of nanorobots in crossing the
BBB. This enables the identification of optimal nanorobot
designs and drug formulations for enhanced brain-targeted
drug delivery. Machine learning can also adapt and learn from
ongoing experimental data, and improve the predictive
capabilities. Alsenan et al. presented a deep learning approach
utilizing the RNN model for predicting the BBB permeability.165

Singh et al. employed the correlation function as a machine
learning algorithm to accurately predict cellular and nuclear
shapes, as well as polarity functions. Studies have been
performed on the distinctive interactions among nanoparticles
(which may vary in comparison to their individual interactions)
that govern their diffusion, aggregation, and transportation
from the cell culture medium to the cell surfaces.166

AI algorithms are able to further endow MNRs with higher
automation, adaptability, and modulated immune response
that deliver precise doses in the target area, rather than
relying on the release of ordinary drug doses. Current
challenges that limit MNRs from laboratory settings to
clinical applications primarily involve entry barriers, such as
susceptibility to immune system attacks. For example, the
deficiency of highly effective non-viral systems with limited
cellular toxicity continues to pose a significant hurdle. The
employment of AI holds immense potential to unearth novel
paradigms to resolve this issue.167 Remarkable evidence
suggested that AI may hold significant promise in projecting
potential immune responses towards not only viral vectors,
but also non-viral gene delivery vehicles. This can be
achieved through the establishment of a surrogate assay for
genotoxicity evaluation that is proficient in predicting the
genotoxicity associated with viral and retroviral vectors
employed for stem cell gene therapy. Such predictive
capabilities are largely attributed to machine learning
methodologies.168 In parallel, when operating the MNRs for
drug delivery, one main issue is the aggregation properties of
micro or nanovehicles. The surface charge strongly influences
the agglomeration phenomena of nanoparticles, which in
turn, increases their overall size and triggers a heightened
immune response.

This challenge may potentially be mitigated by leveraging
AI-based workflows, such as linear regression models,
capable of accurately predicting the zeta potential and
surface charge of nanoparticles. Additional methodologies
encompass deep learning techniques incorporating scanning
electron microscopy and a CNN-supported interactive
learning and segmentation tool. These methods are proven
to facilitate excellent predictive and evaluative capacity in
terms of MNRs interactions and their distributions.169

Moreover, AI has been employed for forecasting and
enhancing the functionality of nanorobots embedded with
biosensors and transducers. Such an approach could have
momentous implications in cancer therapy, and in mitigating
adverse drug reactions. Furthermore, some illustrations

entailed the utilization of a CNN algorithm combined with
Surface Enhanced Raman Spectroscopy (SERS). The
combination could be leveraged for the unequivocal analysis
of extensive spectral data sets, and quantification of analyte
concentrations at the single molecule level. The methods
facilitated metabolomic profiling and fundamental
investigations into serum and blood components, which
interfere with MNRs and impede them from reaching their
target cells.170,171 To meet the needs of precision medicine
and individualized healthcare, AI can be used to analyze
patient-specific data to optimize the performance of MNRs.
An individual patient's drug dosages based on features such
as body weight, age and medical history can be analyzed by
AI, which help to reduce the risk of overdosing or underdoing
and improving treatment outcomes.172 Although AI-based
MNRs drug delivery and targeted therapy lead to adaptability
and precision, it may often require more computational
resources. Additional research is still required to optimize
and standardize AI-based MNRs in drug delivery and targeted
therapy.

4.2 Cell manipulation

Traditional cell manipulation methods consist of
micropipette aspiration, optical tweezers, and magnetic
tweezers, as well as dielectrophoresis, acoustophoresis, and
optoelectronic methods. These techniques are frequently
constrained by additional factors that could hinder cell
viability and proliferation abilities, such as excessive volume
and high power requirements. In contrast, MNRs offer
exceptional control and adaptability, which enable the
precise manipulation of cells with fewer concerns about
damaging cell structures.173 Cell health and integrity due to
minimal invasiveness could be ensured.174 Also, these tiny
agents can often be scaled for simultaneous manipulation of
multiple cells, and thus increase the efficiency of processes.
However, conventional micro/nanorobots usually require
direct control from an operator for specific tasks. This
manual control can be insufficient for tasks requiring high
repeatability and adaptability to dynamic cellular
environments due to limitations in human response and
decision-making speed. Integrated with AI, MNRs can utilize
advanced algorithms to learn from and adapt to their
environment autonomously with higher speed. Therefore, the
intelligent MNRs have the potential to revolutionize cell
manipulation, leading to breakthroughs in fields, such as
genetic or tissue engineering and regenerative medicine.

Grammatikopoulou et al. presented a supervised CNN-
LSTM method to estimate the transparent microrobots'
depth. The model used monocular grayscale images as input,
and achieved submicron accuracy in depth estimation.
Validation data confirmed the efficacy of the pretrained
regression model under various illumination conditions and
orientations for a specific geometrical model. This specific
design can be applied for actuation purposes in a
microfluidic chip or for the manipulation of cells.175 Most
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recently, Schrage et al. applied a RL control strategy to
navigate ultrasound activated microrobots, enabling efficient
transport of a single swarm of microrobots to a user-defined
target point. The utilization of a RL strategy can be extended
to the manipulation of living cells utilizing a stationary
acoustic wavefield. Specifically, when multiple piezo elements
are simultaneously activated, a standing acoustic wavefield is
generated. As a consequence of the positive contrast factor
exhibited by cells in a surrounding microfluidic medium,
they can be effectively trapped at the pressure nodes within
the wavefield (Fig. 5).176 As reported by Wang et al., the gap
between integrated systems and in vivo applications still
needs more technical and scientific innovations.177

4.3 Organ-on-chip deployment

OOC typically consists of microfluidic channels lined with
living cells, which closely resemble the physiological
environment of the targeted organ.178 This technology offers
several advantages over traditional in vitro models and
animal testing. The simulated in vivo-like conditions of OOC,

together with the precise manipulation provided by MNRs,
make it possible to perform experiments that closely mimic
in vivo scenarios, providing more reliable and physiologically
relevant results.179 Singh et al. presented a bacteria-propelled
microswimmer utilizing the proactive locomotion and
sensory characteristics of bacteria, which facilitated the active
transportation and delivery of various cargoes, such as
imaging constituents, genetic material, and therapeutics, to
living cells. The method also may carry therapeutic gene
components to live tissues in in vitro disease model systems
(e.g., OOC devices).180 Jeon et al. illustrated that MNRs hold
the capability to transfer colorectal carcinoma cells to
microtissue tumors in a liver-tumor micro-organ-on-chip
under in vitro conditions. Similarly, it was demonstrated that
nanorobots possess the ability to traverse through
mesenchymal stem cells located in an intraperitoneal cavity
of a nude mouse brain, and in a blood vessel of a rat brain
under in vivo conditions.181 Sun et al. have introduced a
caterpillar-styled soft robotic entity in a heart-on-a-chip
paradigm, which is driven by cardiomyocytes and derives
structural color alteration as a result of employing an inverse

Fig. 5 Drug delivery and cell manipulation by AI-enhanced robots in microfluidics. A) Self-regulated drug delivery by swarming photonic-crystal
microrobots, and B) fluorescence images of MCF-7 cells after being incubated with the microrobots and DOX-loaded microrobots for 24 hours.161

C) The possibility to predict and design the next generation of nanorobots that can interact and deliver substances across the blood–brain barrier
by combining artificial intelligence with robotics.163 D) Machine learning used to profile and quantify the effects of nanomaterials on cell shape.166

E) Example-learned feature maps obtained from the first, second, and third pair of convolutional and max-pooling layers of the trained network
for a input image.175 F) Real-time images demonstrating the manipulation of the swarm, and G) the utilization of both global and local dynamics in
swarm manipulation to spell “ETH”.176 Reproduced with permission from ref. 161. Copyright 2023, Wiley, ref. 163. Copyright 2021, ACS
Publications, ref. 166. Copyright 2020, ACS Publications, ref. 175. Copyright 2018, IEEE, ref. 176. Copyright 2023, Wiley.
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opal flexible substrate, aiming to serve as a platform for drug
discovery.182 Raman et al. developed a biohybrid robot by
seeding genetically modified myoblasts onto a patterned
substrate or a microfluidic chip integrated with elastic
cantilevers. The activities of the microrobot were modulated
via electrical stimulation control and motor neuron
innervation through the neuromuscular junction.183

The integration of OOC and AI technologies is a
burgeoning research area with considerable prospects for
advancing drug development, disease modeling, and
personalized medicine.184 AI-powered OOCs are expected to
originate innovative paradigms in cellular network
modeling.185 As presented by Jordan and Mitchell, machine
learning algorithms can readily be leveraged to detect on-
chip recurring patterns among diverse cells and/or cellular
clusters once cellular activities were quantified into
numerical features. This usage facilitated the comprehension
of biological behaviors in response to various external factors
encompassing contaminants and chemical stimulants.
Comes et al. introduced an innovative hybrid-imaging
paradigm that hinged on the assimilation of organs-on-chip/
time-lapse microscopy (OOC/TLM) with a multi-scale
generative adversarial network. The objective was to generate
interleaved video frames to yield high-throughput videos. The
predictive aptitude of GAN was tested on synthetic videos
and on actual OOC experiments. This proposed methodology
grants the option to obtain a lower quantity of high-caliber
TLM images.186 Reported by Pérez-Aliacar et al., a CNN
framework was formulated to pinpoint the critical parameters
of tumor cell behavior from fluorescence images within a
glioblastoma OOC setup.187 Chong et al. presented a
microfluidic multicellular co-culture array (MCA) combined
with machine learning for the appraisal of skin sensitivity to
drugs. The predictive efficacy of the MCA and the SVM
classification algorithm embodied a model precision of
87.5%, specificity of 75%, and a sensitivity of 100% in
foretelling the skin's adverse drug responses.188 Theoretically,
OOCs provide ideal platforms for expanding the capabilities
of machine learning-based microrobot control. The synergy
of AI, OOC and MNRs may empower the amalgamation of
advanced computational methodologies with bioengineered
models and nanoscale devices, and is expected to enable
breakthroughs in precision medicine and healthcare
technology in the future.

4.4 Biopsy and precision surgery

Traditional tissue biopsy procedures typically involve
invasive methods that may cause patient discomfort and
possible complications. Biopsies-leveraging MNRs can be
executed with a higher degree of precision and work in a
minimally or non-invasive manner, owing to their minuscule
size and superior maneuverability. These attributes make
micro–nano robotic biopsies more efficient and have lower
associated side effects. Also, the capacity for target specific
sampling significantly enhances the accuracy of diagnostics.

Gultepe et al. elucidated the application of microgrippers,
which distinctly feature a smaller scale compared with
biopsy forceps or robotic grasping apparatus. Their
operations hinged on the mechanical energy derived from
residual stress-fueled microactuators.189 Actis et al. devised
a single-cell nanobiopsy platform that depended on
scanning ion conductance microscopy tailored for the
continuous sampling of the intracellular content from
individual cells. This nanobiopsy platform harnesses
electrowetting within a nanopipette to sequester cellular
material from living cells, while minimally disrupting the
cellular environment.190

Traditional surgical procedures usually require large or
multiple incisions, invasive manipulation, and a relatively
long recovery period. Surgeries based on MNRs introduce a
new dimension to minimally invasive surgery with higher
precision and unprecedented dexterity.191 Unique capabilities
such as navigability across intricate anatomical structures,
accurate targeting with reduced trauma to surrounding
tissues can be endowed by MNRs. Then, they help to reduce
the risk of postoperative complications, wound infection, and
pain, while accelerating patient recovery.192 In particular,
compared with their larger robotic equivalents, MNRs are
able to accomplish procedures at the cellular level. In the last
decade, micro/nanorobotic instruments (including
nanodrillers, microgrippers, and microbullets) have shown
distinct capabilities for minimally invasive surgical
procedures when utilized in an untethered manner.193 Go
et al. presented microrobots, which can be magnetically
directed towards the tumor feeding vessels to perform
transcatheter chemoembolization in the liver in vivo.194 Cao
et al. introduced phototactic/phototherapeutic nanomotors
incorporating biodegradable block copolymers adorned with
aggregation-induced emission motifs capable of transmuting
radiant energy into movement. The potential applicability of
these nanomotors in photodynamic therapy was
substantiated in vitro.195 Lin et al. documented the
deployment of a bubble-propelled Ga/Zn Janus micromotor
with strong biocompatibility and biodegradability, which can
be employed for the active management of bacterial
infections. The motility of Ga/Zn micromotors was amplified
by the Ga–Zn galvanic effect, and then the antibacterial
efficiency against H. pylori were significantly elevated.196

AI grants significant advantages in the sphere of micro
and nanoscale robotics concerning targeted biopsies and
precision surgery. Through machine learning algorithms,
MNRs can be continuously self-improved to enhance their
performance over time. The ability to integrate and
synthesize data from various sources by AI could also
promote surgical procedure or biopsy, following the patient's
individual needs. Recently, implementation of computer
vision and RL algorithms has suggested potential avenues for
further exploration in this domain. Zhang et al. introduced a
data-driven approach for estimating pose and depth in a
system of optically manipulated microrobots. The utilization
of focus measurement provided features for Gaussian process
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regression (GPR) to facilitate depth estimation. A deep
residual neural network fused with prior knowledge encoded
in GPR was employed by the microrobots to exhibit various
poses. The study demonstrated novel microrobotics for
potential surgery application.197 Xie et al. demonstrated
algorithms premised on visual data to discern the cell from
image plane orientation angles, which leveraged two-
dimensional image slices garnered via microscope.
Subsequently, a feedback controller was presented to
accomplish the out-of-plane cellular rotation. Cell nucleus
extraction surgeries were conducted to validate the efficacy of
the proposed approach.198 Yang et al. reported a model-
independent deep RL algorithm that instructed colloidal
robots to navigate proficiently amidst unfamiliar terrains.
The robot agents acquired the capability to execute
navigation decisions based on circumventing obstacles and
reducing travel time. The employment of this robot and

training methodology may potentially contribute to the
advancement of precision surgery.199 Biopsy and precision
surgical interventions powered by AI-enhanced MNRs are in
their initial stages of evolution. However, the amalgamation
of these technologies offers promising potential to radically
transform the conventional paradigm and improve patient-
centered care execution.

4.5 Maintenance of implanted devices

Traditional methods for the maintenance of implantable
devices usually consist of external monitoring systems,
routine medical check-ups, and invasive procedures. Routine
medical check-ups can detect device malfunctions, but the
interval between each check-up might leave potential issues
for prolonged periods. Invasive procedures for the
maintenance, repair, or replacement pose inherent surgical

Fig. 6 Intelligent biomedical robots tested in microfluidics for organ-on-a-chip assay, biopsy and precision surgery, and maintenance of
implanted devices. A) Concept of an AI-enhanced high-throughput platform for comprehensive investigation and replication of the intricate
characteristics of the tumor microenvironment.185 B) Deep learning-based prediction of cell behaviour parameters from glioblastoma using on-
chip images.187 C) Fusion of a microfluidic multicellular coculture array coupled with machine learning to forecast the skin sensitizing capability of
obeticholic acid.188 D) Assessment of tumor therapy utilizing microrobots.194 E) Investigation of the biological efficacy of phototherapeutic
nanomotors on cancer cells.195 F) Assessment of the antibacterial activity of microrobots on a planar substrate.202 Reproduced with permission
from ref. 185. Copyright 2019, Frontiers Media S.A., ref. 187. Copyright 2021, Elsevier, ref. 188. Copyright 2022, Royal Society of Chemistry, ref.
194. Copyright 2022, Science Advances, ref. 195. Copyright 2021, Nature Portfolio, ref. 202. Copyright 2023, Wiley.
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risks. MNRs for the monitoring and maintenance of
implantable devices provide several unique advantages, which
mainly stem from overcoming the limitations of traditional
methods.200 MNRs are able to directly interface with the
device and surrounding tissues at a micro/nano level. This
allows for an unprecedented level of detail in data acquisition,
and facilitate far superior accuracy in monitoring. The high
frequency of data acquisition allows for the real-time visibility
of device function and condition. Moreover, the precision,
small size and excellent maneuverability of MNRs make them
ideal candidates for highly targeted maintenance or repair
tasks without the need for risky procedures.

Titanium miniplates, which are essential in oral and
maxillofacial surgery, often entail removal due to biofilm-
induced complications. Ussia et al. exploited the potential of
light-activated nanorobots to control bacterial biofilms on
these implants. By motion analysis, various responses to
different wavelengths were disclosed. The results suggested
that these nanorobots could enhance the treatment of
biofilm-infected metallic miniplates.201 Mayorga-Martinez
et al. effectively eliminated dental biofilm on titanium
implants using swarming magnetic microrobots constructed
from ferromagnetic and photoactive components. These
microrobots derive their propulsion from a rotating magnetic
field, while utilizing reactive oxygen species for biofilm
eradication. This demonstrates their potential application in
precision medicine (Fig. 6).202 The team also developed
magnetic microrobots composed of halloysite nanotubes and
iron oxide nanoparticles, which were capable of carrying
ampicillin. These microrobots demonstrate multimodal
motion, transitioning between various forms of movement.203

Dong et al. developed a microswarm controlled by a rotating
magnetic field. Remote actuation, high cargo capacity, and
strong localized convections had been realized. The swarm
efficiently eliminated biofilms by generating bactericidal free
radicals and physically disrupting the biofilm. This platform
holds promise for treating biofilm occlusions in medical and
industrial settings.204 Interestingly, in some scenarios, the
MNRs themselves can serve as wireless controlled
implantable devices. Chatzipirpiridis et al. presented
miniaturized devices exhibiting potential applications in
ophthalmology, specifically in targeted drug release and
minimally invasive surgery. Manipulation of the
microimplants in biological settings was facilitated by a
5-degree-of-freedom magnetic manipulation system. The
tubular shape maximized the size of the magnetic materials,
and enabled seamless injection into the eye.205

Despite the joint studies into AI, MNRs and implantable
devices are few so far. The recent application of nanorobots
in the dentistry field has provided potential opportunities for
this integration.206 A dentifrice containing configured
nanorobots was developed for calculus debridement. These
nanorobots were capable of identifying pathogenic bacteria
present within the plaque that cause halitosis and
subsequently eliminating them. To ensure safety, they were
preprogrammed with an automatic disablement feature if

inadvertently ingested.207 A nanorobotic dentifrice which
could survey all supragingival and subgingival surfaces for
undertaking constant calculus removal was also introduced.
The nanorobots would be programmed to achieve enhanced
teeth cleaning outcomes. With the development in material
science, fabrication processes, and algorithms, a new era
beckons in the integrated research of AI, MNRs, and
implantable technologies.

5. Challenges and perspectives

Intelligent biomedical robots in microfluidics have brought
about cutting-edge and promising possibilities within the
biomedical field. Nevertheless, the amalgamation of these
revolutionary technologies also poses some significant
challenges that warrant investigation.

5.1 Design, fabrication and integration

One of the foremost obstacles encountered in the field of
MNRs pertains to the difficulty in ensuring the cohesive
functionality of constituent components. The primary factor
underpinning this trial can be linked to the scale-dependent
sensitivity of these robotic systems. In essence, as the
dimensions of the robot decrease, an exponential rise in its
sensitivity toward environmental changes is experienced. This
necessitates that the design components of MNRs not merely
function independently, but that they also operate collectively
in an intricate, microscopically coordinated manner
dedicated to precision.

Also, the gradual reduction in size of these robotic
systems poses specific issues with respect to their fabrication.
Traditional manufacturing methods, with their broad scopes
and larger scales of operation, often find themselves inept at
addressing the nuanced needs of MNR production.
Therefore, the development of precise, scalable, and
specialized fabrication techniques capable of producing these
minuscule robotic systems remains an essential and central
challenge.208

Additionally, the inherent features of MNRs create further
complications. The drastically reduced physical dimensions of
micro and nanorobots correlate directly with the limited sensor,
actuator, and power-source capacity, thereby catalyzing the
demand for advanced miniaturized and integrated technologies
that facilitate efficient in situ operations. This shifts the focus
from an external field dependency toward developing internal
capacities, further reinforcing the complexity in the operational
design of MNRs.

In addition to the intricate operational design, miniaturized
sensor technology development, and precise fabrication
techniques, the issues of functionality optimisation (while
ensuring cost-effectiveness) also pose significant challenges.
Increased sensitivity to environmental changes, integration at
higher densities, and robust operation under dynamic
conditions also constitute key hurdles in the successful
implementation and deployment of MNRs that researchers
strive to address. This industry's evolution thus depends heavily
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on technological advancements, fabrication prowess, and
interdisciplinary synergy of materials science, robotics, and
control engineering, among others.

5.2 Control strategy and algorithm

The paramount algorithmic challenges in the evolving realms
of autonomous micro-/nano robotic systems principally
encompass the development of real-time decision-making
mechanisms, formulating effective coordination algorithms
for decentralized control in multi-agent systems, and
enhancing machine learning techniques to accommodate
fluctuating conditions and environmental uncertainties.

Micro-/nano robotic navigation in intricate environments
represents a notable challenge due to the minuscule sizes and
distinct navigational constraints of these technologies.
Therefore, real-time decision-making tools are indispensable to
enhance the dynamism of these systems. Advancements in this
area require innovative algorithms that can instantaneously
analyze high volumes of data from sensors to calculate an
optimal pathway, while simultaneously circumventing
obstacles. These algorithms, due to the sensitivity of micro-/
nano robotic systems, need to accommodate a variety of
uncertainties associated with varying environmental conditions.
The task of articulating such sophisticated algorithms requires
an in-depth understanding of the micro-/nano scale dynamics,
making such ventures intricate and demanding.

Multi-agent systems, characterized by multiple interactive
entities or agents working together towards a collective
outcome, introduce another significant challenge: devising
efficient coordination algorithms for decentralized control.
Such systems, given their inherent decentralized structure
and collaborative orientation, necessitate the operators
(individual agents) to not only make independent decisions,
but also synchronize their actions harmoniously with others.
The complexities arise from including the individual agents'
unique capabilities and inter-agent dynamics, while
designing these algorithms, culminating in a multifaceted
challenge that involves several areas of research from control
theory to computer science.

Moreover, the dynamic nature of micro-/nano
environments and the inherent uncertainties implicate the
need for refining machine learning techniques for these
systems. Machine learning algorithms need to consistently
adapt and learn from new data, a challenge that intensifies
in environments prone to sudden changes. Consequently, the
focus lies in developing algorithms that are dexterous in
navigating the thin line between adapting to new information
(plasticity) and retaining learnt knowledge from historical
data (stability), a conundrum that is widely thought of as the
plasticity-stability dilemma in the field of machine learning.

Given the intertwined complexity of the algorithmic
challenges, the approach to devise solutions should be
interdisciplinary, involving expertise from the fields of computer
science, artificial intelligence, nanotechnology, robotics, and
data analytics. Liquidating these ostensible bottlenecks would

yield revolutionary advancements in micro-/nano robotic
systems, making them more robust, efficient, and adaptable
than ever.

5.3 Safety and ethical considerations

AI-enhanced MNRs, owing to their miniature sizes, can
infiltrate human systems where any unplanned disturbances
could potentially lead to detrimental consequences. This
introduces the pivotal importance of the development of
detailed error-correction and fault-mitigation strategies that
can prevent any unexpected system malfunction or erroneous
behavior.

In parallel, the associated system or equipment of these
MNRs may potentially collect and monitor personal data
without explicit knowledge or consent. The nature of invasive
technologies sometimes makes it challenging to preserve the
sanctity of private information. In this digital age characterized
by massive data creation and storage, questions about data
privacy and security have become more pressing. Analogue
tracking features must be adequately defended against potential
misuse, warranting the encryption of personal health data and
ensuring necessary control measures are in place to handle data
breaches. This leads to significant ethical implications, such as
the transparency in decision-making processes and impact on
human life. These MNRs, while contributing immensely to the
advancement of science and technology, are effectively making
decisions autonomously – a characteristic that may
consequently lead to potential ethical quandaries, especially in
incidences of error or crisis. It becomes crucial to address these
ethical conundrums by striking a delicate balance between
encouraging advancements in algorithmic development and
ensuring ethical considerations are not compromised.

Precisely, a proactive regulatory framework needs to be
devised that governs the operational principles of MNRs,
thereby defining a boundary for their decision-making
capacity, while ensuring the indispensable accountability.
Such a framework would not only free humans from being
unreasonably subjected to automated decisions, but also
authenticate that the accountability for decisions is not
entirely relinquished to AI. The whole exploration of AI-
enhanced MNRs thereby stands as a paramount stride
towards scientific growth, warranting an equally evolved
safety, ethical and regulatory framework.

5.4 Perspectives

Artificial general intelligence (AGI) focuses on developing
systems that can learn and perform any intellectual task that
a human can. One of the most significant advances in AGI is
the development of RL, which can be used to train MNRs to
navigate the human body, to deliver drugs to specific cells, or
to repair damaged tissue. If AGI is ever achieved, it will have
a profound impact on MNRs, which are more intelligent,
more autonomous, and more capable than what is currently
possible. AGI could also be used to develop new ways to
control and manipulate MNRs. Furthermore, it is exciting
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that given the promising prospects of compute-in- memory
chip or in situ learning technology, a superior integration of
AI-enhanced MNRs in microfluidics may be achieved.
Unencumbered by conscious intervention and devoid of
bulky external devices, these robots are poised to conquer
much more intricate tasks intelligently and autonomously.

In parallel, with the continuous development of lab-on-a-
chip technology, an increasing amount of massive data in
formats of time series, image, and video is generated. AI
provides an unprecedented ability to integrate these diverse
data types, and consequently enhances the performances of
decision making and task execution. The attainment of
success relied on the standardization of data collected from
MNRs across various patient populations. Collaborations
among experts in AI, big data, medicine, bioinformatics,
MNRs and microfluidics will expedite the interdisciplinary
field towards more avant-garde development.

Currently, technological revolutions are spurred by
transformative advances in 3D printing nanofabrication, and
the fusion of biological and information technologies. These
encompass the internet of things (IoT), robotics, artificial
intelligence, and nanomedicine. Progressions in 3D technology
have given birth to mobile microsystems, capable of diverse
in vitro and in vivo functionalities. Micro-robotics presents a
wealth of opportunities to address a myriad of challenges
related to minimally invasive diagnostics, targeted drug delivery,
gene engineering, organ-on-a-chip phenomena, among others.
These burgeoning technologies could play a seminal role in the
commercialization of concept-validated micro-robots as clinical
devices. In this light, several domains are expected to emerge as
future foci: 1) incorporation of artificial intelligence algorithms
within MNRs. 2) Optimization of payload efficiency through
intelligent, collaborative operation of MNR swarms. 3) Imbuing
sensing, actuation, and learning/decision-making capabilities
into MNRs using smart materials.

6. Conclusions

Human health is determined by microscopic physiological
environments and processes within the body. The integration
of artificial intelligence with micro/-nano robots has
revolutionized their design, fabrication, and functionality. In
particular, motion control, sensing abilities, and intricate
collective behavior in microfluidics can be significantly
enhanced by artificial intelligence. This pioneering
technology has the potential to transform biomedical fields
and further our understanding of complex physiological
mechanisms, despite current challenges that need to be
addressed for its practical implementation.
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