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In recent years, rechargeable sodium-—air batteries have attracted extensive attention and shown rapid
development for use in the field of electrochemical energy storage owing to low costs, abundance of
the precursor resources, high theoretical specific capacity, and high energy density, all of which have
contributed to making them one of the most promising alternatives to lithium-ion batteries. Despite the
numerous advantages, Na-air batteries also face certain challenges, such as poor charge-discharge
reversibility at the cathode, formation of sodium dendrites at the anode, and low catalytic activity for
oxygen reduction/evolution reactions. Thus, designing efficient and stable air cathode materials is signifi-
cant for the development and practical application of Na-air batteries. Therefore, this paper aims to
review the advances related to the development of air cathodes in Na—air batteries in the last decade.
Here, research on the secondary Na-air batteries are briefly summarized and divided into two categories
based on their electrolyte composition: organic Na—air batteries and hybrid Na—air batteries. The air
cathode materials are reviewed and categorised based on the material type into the following: carbon
materials, transition metals and metal oxides, noble metals, perovskites and spinel oxides, metal—organic
frameworks and their derivatives, pyrochlore oxides, and other cathode materials. Furthermore, work in
previous studies applying in situ spectroelectrochemical techniques, including Infrared spectroscopy,
electron spin resonance, UV/Vis spectroscopy, and Raman spectroscopy, to develop the structure-
performance correlations and redox reaction mechanisms of Na—-air batteries are summarised. Finally,
the challenges faced by Na-air batteries and the prospect of future work are discussed in the conclu-
sions. This review is thus expected to provide a comprehensive understanding of the trends and issues
related to the development of Na—air batteries for practical industrial applications.

of energy distribution mechanisms, and rectification of energy
shortages have become the main global priorities.'* Therefore,

Shortage of energy supply and increased environmental pollu-
tion are major issues currently, posing challenges to the
sustainable development of human society."™ The develop-
ment of green and efficient new energy resources, improvement
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lithium-ion batteries (LIBs) have been gaining increasing atten-
tion due to their excellent stability, high cycle efficiency,
and low electrode potential.’™'® However, their low energy
(<500 W h kg™") and power densities have limited their
large-scale application (Table 1).'"' Even though researchers
continue to rationalize the processes to optimize the materials
and structures, the limited energy density and safety concerns
related to the Li-ion batteries have prevented them from reach-
ing the levels required to meet current energy demands.'?
Therefore, it is imperative that ’green’ chemical power be
developed with high specific energy and energy density in order
to replace existing commercial LIBs. Recently, there has been a
great deal of interest in metal-air batteries as an energy storage
device due to their high theoretical energy density. Metal-air
batteries are secondary batteries in which metal serves as the
anode. Air or oxygen undergoes a reduction reaction at the
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cathode to generate current. The most significant benefit of air
batteries is that the positive active material is oxygen from the
air. This is inexhaustible and does not need to be stored inside
the battery, thus providing a high energy density. In the future,
this technology may be used as an alternative to lithium-ion
batteries since it serves as a power battery with high
specific energy.”>™'® Table 1 compares the characteristics of

LIBs, the lithium-air batteries (LABs) , the Na-ion batteries
(NIBs) and the Na-air batteries (SABs). It can be clearly
seen that the metal-air batteries exhibit higher specific capacity
and energy density compared to the metal-ion batteries, which
is favorable to promote the industrial application of metal-air
batteries.
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LABs were first reported in 1996 and have attracted wide-
spread attention since then owing to their extremely high
specific capacity and outstanding theoretical energy density
(3500 W h kg™ ')."® However, the high overpotential during the
charging/discharging process makes the round-trip efficiency
relatively low, resulting in relatively poor reversible perfor-
mance and cycle stability.’°>> Considering the shortage of
metal lithium resources and the similar physical and chemical
properties of metal sodium and lithium,*** the replacement
of metal lithium with metal sodium has become a hot spot in
battery research and SABs as a future energy storage device have
also attracted the interest of many researchers.”>>° The emer-
gence of SABs is an important step forward in the research on
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LIBs, LABs and SIBs. Replacing lithium with sodium, which is
more abundant on earth, removes a bottleneck in the resource
supply chain and results in lower production costs. Using
oxygen from air instead of solid redox-active materials signifi-
cantly increases the battery’s specific capacity and energy
density. In 2011, Avshalomov et al.*° assembled and operated
the sodium-air battery with liquid-sodium anode at 105 °C.
The successful operation of the high-temperature Na-air bat-
tery shows that it is feasible for this battery to replace the Li-air
battery. However, the assembly and operation of high-
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temperature Na-air batteries are not practical for commercial
use. Later, Fu et al>® developed a novel room-temperature
sodium-air battery with an air electrode exhibiting a high
specific capacity of 1884 mA h g™ ' at a current density of 1/
10C. Due to the very high activity of sodium metal, the SABs had
to be operated in an organic electrolyte and a dry, pure oxygen
environment. During the SAB discharge process, Na' is released
from the sodium metal anode by an oxidation reaction, and Na*
combines with superoxide anion, O,°*", at the cathode to form
the discharge product sodium superoxide (NaO,); the reverse
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occurs during the subsequent charging process.'"*"*> Based
on the discharge product being sodium superoxide (NaO,), the
theoretical energy density of SABs is 1108 W h kg™ *, which is
very attractive in comparison to the limited energy density of
LIBs.*® Interestingly, the formation of NaO, during the dis-
charge process of SABs competes with the precipitation of
sodium peroxide (Na,0,).** Although Na,O, is thermodynami-
cally stable compared to NaO,, Na,O, involves a two-electron
transfer process, which is kinetically slower compared to the
single-electron transfer of NaO,.**** Meanwhile, the SABs with
NaO, as the discharge product have a lower overpotential
compared to those with Na,O, as the discharge product,
thereby favouring both higher energy efficiency and improved
cycle stability.'**3¢ Therefore, to realize long-cycle stability
and low overpotential for Na-O, batteries, it is essential to
conduct an in-depth study on the chemical composition of air
cathodes and electrolytes in order to reduce the side reactions.

Despite their desirable high energy density, research on
SABs is still in its infancy compared to the current state-of-
the-art research on sodium-ion batteries. Many scientific issues
still need to be addressed before SABs can be applied
practically.>”*® These include (i) factors, such as types, physi-
cochemical properties, and microstructures of electrodes, and
their effects on the composition and morphology of sodium-air
battery discharge products, and (ii) careful selection and design
of electrolyte compositions with excellent chemical and elec-
trochemical stability along with appropriate electrochemical
windows that prevent superoxide radical formation and asso-
ciated side reactions and the sudden death of the batteries. In
addition, the protection of the sodium anode from trace water
in the electrolyte and the suppression of the formation of
sodium dendrites also play an important role in ensuring the
high performance of sodium-air batteries. This review will
comprehensively summarize the research progress with regard
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to cathode materials for sodium-air batteries. The first part will
discuss the basic theory and chemical reaction processes of air
battery cathodes, while the next section will summarize the types
and designs of air cathodes consisting of different materials,
including carbon-based, transition metals and metal oxides, noble
metals, chalcogenides and spinels, metal-organic frameworks and
their derivatives, and other materials. This will be followed by a
summatry of the in situ spectroelectrochemical techniques employed
in the research on sodium-air batteries, which are beneficial to
promote the rapid development of sodium-air batteries. Finally, the
strategies to improve the performance of sodium-air batteries and
encourage the practical application of these devices are summarized,
along with prospects for future development.

2. Metal-air batteries: theory and
basic principle

The discharge/charge reaction mechanisms of metal-air bat-
teries differ from that of conventional lithium-ion or sodium-
ion batteries in that the energy density depends primarily on
the type of discharge products. The cathode of metal-air
batteries only provides the location for nucleation and growth
of the discharge products during the discharge process. In
various metal-air battery systems, the difference in their energy
densities depends mainly on the volume and weight of the
discharge products and the redox potentials, regardless of the
battery structure. Due to the physical and chemical properties
of metallic Li and Na, Na-air and Li-air batteries are very
similar in terms of reaction mechanisms and battery config-
urations (Table 1). Taking the organic Li-air batteries as an
example, the lithium metal anode is oxidized to lithium ions
during the discharge process and the O, at the cathode diffuses
into the porous electrode, dissolves in the electrolyte, and is
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Table 1 Comparison of the characteristics of Na—air batteries with Li—ion batteries, Li—air batteries and Na—ion batteries batteries
Abundance
Theoretical Standard  Overpotential/ Energy density/ Cycling  of the Price/
Battery Redox reaction capacity/mA h g~! potential/V mVv W h kg™* life component $T "
Li-ion batteries LiysC00, + 0.5Li — LiCoO, 150 (LiCoO,) ~4.0 — ~500 (LiCo0O,) >500 Li: 0.017 5000
Co: 0.03
Li-air batteries 2Li + O, — Li,O, 1168 (Li,0,) 2.96 >1000 ~3500 (Li,O,) ~500 Li: 0.017 5000
Na-ion NaV,(PO,); + 2Na — 117.6 3.4 — ~180 3000 Na: 2.83 150
batteries NazV,(PO,)3 (NazV,(PO,)3) (NazV,(PO,)3)
Na-air batteries Na + O, — NaO, 488 (NaO,) 2.27 <200 ~1108 (NaO,) ~2000 Na: 2.83 150
reduced during discharge. Li,O, will be produced as the final Cathode electrode: 2Li* + O, + 2~ — Li,0, 2
discharge product and then decomposed during the chargin . .
& b P 5 SIS Overall: 2Li + O, — Li,0, (E, = 2.96 V) (3)

process. This can be explained using the Lewis acid-base
theory: Li" is a hard Lewis acid with small size and low
polarizability, while O, is a soft Lewis base with larger size,
so LiO, is a “soft-hard compound”. This ‘“soft-hard com-
pound” is usually unstable and prone to decomposition,
further resulting in formation of 0,>” from O, and Li,O, as
the final discharge product. When the battery is charged, this
process is reversed. The electrochemical reactions are shown in

eqn (1)—(3).

Anode electrode: Li — Li" + e~

(1)

The most studied Na-air batteries are organic-electrolyte
Na-air batteries and hybrid-electrolyte Na-air batteries, which
differ slightly in terms of their structure (Fig. 1a and b). Fig. 1c
describes the timeline related to the research and development
of Na-air batteries. In the case of the organic electrolyte Na-air
battery, the anode is sodium metal. The cathode is a bifunc-
tional catalyst with a porous structure, while the separator is
immersed in the organic electrolyte to prevent short-
circuiting.*® In early Na-air batteries, carbonate-based electro-
Iytes were used, but the superoxide anion (O,°) would

(a) e €5 (b) o = .
= v e
?;R o RN
— )
[9) Na* ()
°
8 P4 s | -~ 5

8 g == o

< o ==

E £ N © o

5 NaO, = % (% )

8 8 — )
 —
=0

Organic electrolyte Organic Aqueous
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Na ion conductive solid-state electrolyte
C o oo ~ i
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electrolyte at 105 °C of CO, and O, 2 I eres 2
Na-air o
2011 2012 2013 2014 2015 2016 2018
battery
I l l I KO, as phase-
A novel Na-air i(r::t‘:?)IgSZe d g;::tlc N?;i(t)li Protect Na anode in _ transfer medi?tor
battery at room < pia o Na-O, batteries for Na-O, batteries
in  Na-air phase transfer
temperature batte; catalysis I
Ty 4 Electrolyte regulates
the discharge
products of Na-O,
batteries

Fig. 1 Schematic illustration of the operation of: (a) organic Na—air batteries, and (b) hybrid Na-air batteries, (c) the chronology of major events

concerning the development of Na—air batteries in the last decade.
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nucleophilically attack the C atoms within the CH, group, resulting
in by-products such as sodium carbonate (Na,CO3).***° At present,
ethers are often chosen as electrolyte solvents, and these include
dimethyl ether (DME), diethylene glycol dimethyl ether (DEGDME),
and tetraethylene glycol dimethyl ether (TEGDME). Compounds
often selected as electrolyte salts include sodium hexafluoropho-
sphate (NaPFg), sodium perchlorate (NaClO,), sodium trifluoro-
methyl sulfonate (NaSO;CF;), and sodium bis(trifluoromethanesulfonyl)
imide (NaTFSI), but the type and concentration of electrolyte salts
affects the performance of Na-O, batteries. Lutz et al* showed
that the anion in the dimethyl ether solvent had no significant
effect on the formation of discharge products. However, PFs~ forms
a stable solid electrolyte interface (SEI), while the SEI formed by
TFSI™ gradually increases with the cycling process, increasing the
battery impedance. At the same time, increasing the concentration
of electrolyte salt will increase the electrolyte viscosity, resulting in a
decrease in both oxygen solubility and ionic conductivity, which
has a negative impact on the electrochemical performance of the
battery.*” The hybrid electrolyte Na-air batteries contain two elec-
trolytes with the anode and cathode being immersed in organic
and aqueous electrolytes, respectively. The diaphragm in the mid-
dle of the battery is a sodium ion-conductive solid electrolyte
membrane which prevents oxygen and moisture diffusion into
the negative compartment. This allows only the unidirectional
transport of sodium ions to the negative compartment, preventing
the anode from suffering unwanted oxidative reactions.*® The main
component of the solid electrolyte is Na;Zr,Si,PO,, (NASICON).***>
The electrolyte in the positive compartment (anode side) is the
same as that for the organic Na-O, battery, while the negative
compartment (cathode side) typically has aqueous electrolyte with
NaOH as the solute.*® The two energy storage mechanisms are
absorption and gas release at the air cathode during charging and
discharging, corresponding to the oxygen reduction reaction (ORR)
and oxygen evolution reaction (OER), respectively.”>>**"

2.1. Organic Na-air batteries

Because of the similarity in chemical properties of metallic Li
and Na, organic Na-air batteries share the same reaction
mechanism as Li-O, batteries with regard to energy storage.
The Li* produced during the discharge of Li-O, batteries is not
able to stabilize the highly active O, and therefore the lithium
peroxide formed is the main discharge product of Li-O,
batteries.>® This is because Na' is softer and has a higher
polarizability compared to Li*, which can effectively stabilize
O, . Thus, the main discharge product of Na-O, battery is
NaO,. However, a variety of discharge products have been
seen during research under different experimental conditions
and these include Na,0,,°**' Na,0,-2H,0,> or mixtures,’>>*
and their corresponding chemical reactions are shown
in eqn (4)-(9):**

Anode: Na — Na' + e~ (4)
Cathode: Na* + O, + e~ — NaO, (5)
Overall: Na + O, — NaO, (E, = 2.27 V) (6)
or
470 | Energy Adv., 2023, 2, 465-502
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Anode: Na — Na' + e~ (7)
Cathode: 2Na* + O, + e~ — Na,O, (8)
Overall: 2Na + O, — Na,O, (E, = 2.33 V) 9)

where E, is the standard electrode potential.”> The potentials
for the formation of the two sodium oxides are close, so the
competition for forming NaO, and Na,O, during the discharge
of organic Na-O, batteries is fierce. Up to now, the discussion
of the main products formed during the discharge of Na-air
cells has been inconclusive, and this is owing to the close
values for the free enthalpy of formation of these products. At
298 K, the free enthalpy of formation of NaO, (—437.5 k] mol )
is slightly smaller than that of Na,O, (—447.9 k] mol "), with
the latter being thermodynamically more stable than NaO,.”?
However, the free enthalpy difference between the two sodium
oxides is only 12.2 k] mol ™" and it is difficult to distinguish
whether the superoxide and peroxide will be the dominant
discharge product in practice since local compositional inho-
mogeneities are the determining factor.>® Kang et al.>® showed
that the thermodynamic stability of sodium oxides depends on
the material’s particle size, which determines the competition
between bulk and surface energies. NaO, is relatively more
stable as it has lower surface energy at nanoscale sizes due to
the competition between surface and bulk energy. However, to
ensure a long cycle life and excellent electrochemical perfor-
mance of organic Na-O, cells, they should have a low over-
potential and a high OER activity. Therefore, generating NaO,
as the main discharge product of organic Na-air batteries is
necessary. The reason is that the NaO, decomposition process
involves a single electron transfer process, which requires a low
overpotential to complete; however, the peroxide-dominated
discharge product involves a two-electron transfer in the char-
ging process, which requires a higher overpotential.**** Table 2
shows the main discharge products and overpotentials of
different air cathodes and the results show that the overpoten-
tial of the cell is generally less than 1000 mV when NaO, is the
main discharge product, while the overpotential of the cell is
generally greater than 1000 mV when Na,O, is the main
discharge product. In addition, the low solubility of NaO, in
the electrolyte and its poor dissolution ability also result in a
small overpotential during charging.”” Meanwhile, the low
ionic and electronic conductivity of peroxide (ca. 107>° S
cm™ ') leads to slower OER kinetics, resulting in the generation
of higher overpotential.**>”

Two generation mechanisms, known as solution-mediated
and surface-mediated, have been proposed to explain the NaO,
crystal formation process for understanding the reaction
mechanisms in Na-air batteries. In 2015, Janek et al.’® used
theoretical calculations to show that perfect NaO, crystals are
insulating at room temperature with a band gap of 2.0 eV and
their lower electronic conductivity (ca. 10°*° S em ™) was not
sufficient for direct electrochemical deposition. They designed
a two-electrode device to observe NaO, dissolution behaviour
and observed NaO, decomposition during charging at an
electrode that was not in contact with the fully discharged

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Summary of the electrochemical performance of carbon-based electrodes used in Na—-O, batteries
Initial discharge
Current density/  capacity/ Overpotential/  Discharge
Cathode Electrolyte mA g mAhg™ (mv) product Ref.
Carbon thin films 1 M NaPF¢/EC:DMC(1:1) 1/10C 1884 1500 Na,0, 28
Carbon nanotube paper 0.5 M NaSO;CF;/DEGDME 500 7530 200 Na,0, 2H,0 52
Graphene nanosheets 0.25 M NaPFs/DME 300 6208 ~1600 Na,O, 51
Reduced graphene oxide 1.0 M NaSO;CF3;/DEGDME 500 11935.3 ~300 NaO, 14
Porous carbon spheres 0.5 M NaSO;CF3;/DEGDME 500 16 500 ~400 NaO, 76
Vertically aligned carbon 0.5 M NaSO;CF;/TEGDME 67 4100 ~200 NaO, 72
nanotubes
Nitrogen-doped graphene 0.5 M NaSO;CF;/TEGDME 75 8600 — Na,0, 50
Graphene aerogel 0.1 M NaClO,/DME 100 6.61 mA h cm™> ~350 NaO, 77
Nitrogen-doped graphene 0.3 M NaSO;CF;/DEGDME 100 10905 ~1000 Na,0, 78
aerogels
Nitrogen-doped carbon 0.5 M NaSO;CF3;/TEGDME 200 5905 ~1000 Na,O0,, NaO, 79
Nitrogen-doped nanofibers 0.5 M NaSO;CF3;/TEGDME 100 8554.7 500 NaO, 11
Nitrogen doped carbon 0.5 M NaSO;CF3/DEGDME 0.1 mA cm > ~1350 — NaO, 71
nanotubes on carbon
paper
Nitrogen-doped carbon 0.5 M NaSO;CF;/DEGDME 25 1887 ~300 Na,0,, NaO, 54
nanotubes
Boron-doped onion-like 1.0 M NaSO;CF;/TEGDME 0.15 mA cm ™2 10200 ~1300 Na,_,O, 75
carbon
Reduced graphite oxide 1.0 M NaSO;CF5/TEGDME  0.05 mA cm > ~375mAhcem >  ~1700 NaO, 65
Boron-doped reduced gra- 1.0 M NaSO;CF;/TEGDME  0.05 mA cm > ~345mAhem™>  ~1800 NaO, 65
phite oxide
Ordered mesoporous 0.5 M NaSO;CF;/PC 100 7987 ~1500 Na,0,, Na,CO; 53
carbon
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Fig. 2 (a) Schematic illustration of the dual-working electrode in Na—O, batteries. (b) Solution-precipitation route for NaO, growth in Na—-0O, batteries.

(Reproduced from ref. 58 with permission from the American Chemical Society). (c) Schematic illustration of the surface-mediated mechanism of EEG
electrode in Na—O, batteries. (Reproduced from ref. 47 with permission from the Science Press and Dalian Institute of Chemical Physics, Chinese
Academy of Sciences. Published by ELSEVIER B.V. and Science Press.). (d) Schematic illustration of the mechanism using K*-rich electrolyte in Na—O,
batteries. (Reproduced from ref. 61 with permission from the American Chemical Society).

McCloskey’s work>® also showed that precipitation occurs when
the dissolved NaO, reaches its solubility limit, yielding NaO,
crystals of larger size. In 2022, the Ortiz-Vitoriano’ group®’

electrode (Fig. 2a), demonstrating that superoxide dissolution
occurs in the electrolyte and providing strong evidence for a
solution-precipitation mechanism (Fig. 2b). Subsequently,
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observed that discharge products in graphene nanosheets
showed uneven size distribution. At the initial discharge stage,
the nucleating molecules are adsorbed on the graphene sur-
face, which facilitates the nucleation of NaO, through a surface-
mediated mechanism. However, as the discharge process pro-
gresses, the nucleation sites on the air electrode gradually
become saturated, and the NaO, nucleation mechanism
changes from a surface-mediated mechanism to a solution-
mediated mechanism, forming larger NaO, cubes (Fig. 2c). As a
result, discharge products have an uneven size distribution.
Apart from the solution-mediated and surface-mediated
mechanisms described above, there are also solution-
mediated mechanisms based on phase transfer agents. As the
most common phase transfer agent, water provides protons for
the formation of intermediate HO,, which then reacts with Na*
ions to produce precipitated NaO,.®® However, water can cause
irreversible damage to the metal anode and generate a series of
side reactions to increase the overpotential. Therefore, Lee
et al.®" used potassium superoxide (KO,), which is more che-
mically active and stable against NaO, and Na metal compared
to water, as the phase transfer agent (Fig. 2d). At the same time,
the electrochemical stability of KO, was superior to that of HO,.
The air batteries with KO, exhibited higher reversible specific
capacity (more than 6 mA h em™?) and longer cycle life (main-
tained for 25 cycles).

As mentioned earlier, organic sodium-air batteries with
NaO, as the main discharge product usually show lower over-
potential and more prominent cycling stability. To achieve a
higher reversible specific capacity of sodium-air batteries, it is
important to optimize and control the nucleation/growth
mechanism of NaO, during the discharge process. Yang
et al.®® investigated the relationship between the physical
distribution and size of NaO, formed during the discharge
process and the current density used. During a small current
density discharge (10 mA g™ "), nano-sized (~50-500 nm) NaO,
particles could be observed at the top, bottom, and sidewalls of
the carbon nanotube (CNT) aggregate; however, during a high
current density discharge of 1000 mA g™, micron-sized NaO,
(~2 um) appeared only at the top and bottom of the CNT
aggregate. The reason for this difference is due to the higher
local supersaturation of (O, -Na'), agglomerates with low
migration rates during the fast discharge, which nucleate
rapidly at the top and bottom of the CNT aggregate, while
(0,7-Na"), agglomerates nucleate more slowly and diffuse
more uniformly at low discharge rates, yielding more uniformly
sized NaO,. In addition to the current density, the catalytic
activity of the air electrode also has an obvious effect on the
morphology and size of the discharge products. The bimodal
transition metal oxide CaMnO; electrode with excellent cataly-
tic activity precipitated nanoscale cubic particles during the
discharge process, while the cubic particles completely disap-
peared during the subsequent charging process.®® Alexis et al.®*
investigated the effect of different electrodes on the formation
of NaO,. The gas diffusion layer electrode formed discrete
nano/micron NaO, cubes during discharge, whereas the gas
diffusion layer electrode modified with Au formed NaO, flakes
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at the same current density. This is because the strong inter-
actions between Au and 0,/O,  increase the NaO, nucleation
rate, leading to change in the growth process. Such a phenom-
enon was also observed in Chen’s research.®® Here, the boron-
doped reduced graphene electrode covered by micron-scale
RuO, showed a longer cycle life and better electrochemical
performance relative to both the reduced graphene electrode
and the boron-doped reduced graphene electrode; this beha-
viour was attributed the higher affinity between micron-scale
RuO, and oxygen, while the amorphous Na,_,O, is obtained at
the end of the discharge. The RuO,-modified CNT electrode
forms a less crystalline discharge product, NaO,, during the
discharge process, while the morphology of the discharge
product is drastically changed.®® The present results have
shown that nano-sized NaO, appears during the discharge
process, which can be achieved not only by controlling the
magnitude of current density during the discharge process,
but also by selecting a suitable electrode type. Also the results
show that no specific electrode type produces nano-sized NaO,
during discharge; moreover, it seems that the better the elec-
trocatalytic performance of the air electrode, the more likely
nano-sized NaO, particles appear during discharge. There are
two speculative reasons for these observations, on the one
hand, the discharge products nucleate/grow quickly in the
presence of highly catalytic of noble metal, while on the other
hand, the highly active NaO, is easy to decompose during the
ex situ testing process and the results obtained by using in situ
testing technique will be more credible.

2.2. Hybrid Na-air batteries

Fig. 1b shows the schematic illustration of a hybrid Na-air
battery. During the discharge process, sodium metal at the
anode is oxidized to Na', while Na" migrates from the anode to
the air cathode through the solid electrolyte and aqueous
electrolyte, and thus, the ORR reaction occurs at the air cathode
to obtain the discharge product NaOH.*® In the subsequent
charging process, the OER reaction occurs at the air cathode
and electrons move from the cathode to the anode through the
external circuit, while sodium metal is deposited on the anode.
The chemical reaction equations involved in the discharge
process are shown in eqn (10)-(12):

Anode: 4Na — 4Na' + 4e~ (E, = +2.71 V) (10)
Cathode: O, + 2H,0 + 4e~ — 40H™ (E, = +0.40 V) (11)
Overall: 4Na + O, + 2H,0 — 4NaOH (E, =3.11V) (12)

Hybrid Na-air batteries have a relatively simple reaction
during energy storage and only one discharge product (NaOH)
appears, significantly reducing side reactions and improving
the cycle life. Meanwhile, the NaOH generated during discharge
can be dissolved in the electrolyte, avoiding the accumulation
of discharge products on the surface of the air cathode and
improving the cycle efficiency. The cathode compartment elec-
trolyte in the hybrid Na-air battery is NaOH solution, so the
battery’s output voltage can be controlled by adjusting the pH

© 2023 The Author(s). Published by the Royal Society of Chemistry
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of the solution. The output voltage can be obtained from the
Nernst equation, as shown in eqn (13):

RT | [Red]

— o _ " .
E=E - Fn [Ox]

(13)

where E is the battery output voltage, E° is the output voltage of
the battery under standard conditions, R is the gas constant, T’
is the temperature (K), n is the electron transfer number, F is
the Faraday constant, [Red] is the concentration of the reducing
species, [Ox] is the concentration of the oxidized species. When
the pH value changes by one unit, the voltage changes by 59
mV.*® Compared to organic Na-O, batteries that require dry
oxygen to prevent the generation of by-products, hybrid Na-air
batteries can be used without providing pure oxygen. In addi-
tion, hybrid Na-air batteries can provide higher theoretical
voltages®* and involve a four-electron transfer reaction. This
makes them ideal for synthesising high-energy density and
high power-density rechargeable batteries. Nevertheless, the
cycling stability, overpotential, power density, and energy den-
sity of the hybrid Na-air battery are mainly determined by the
strength of NASICON in the electrolyte. Hayashi et al®
assembled a hybrid Na-air battery with NASICON as the
separator, an organic solvent as the anode compartment elec-
trolyte, and 1.0 M NaOH as the cathode compartment electro-
lyte. The morphology of the NASICON ceramic sheets did not
change significantly after soaking in the two electrolytes for two
days. Meanwhile, the X-ray diffraction (XRD) results of NASI-
CON after charge/discharge showed that the NASICON phase
remained stable. In addition, the morphology and phase struc-
ture of NASICON did not change significantly after stable
cycling in 5.0 M NaOH for 750 cycles at a current density of
1.0 A g .% The above results show that NASICON-based
separators are stable in humid environments. However, the
contact between the rigid NASICON separator and the sodium
metal anode is not tight, which increases the battery’s internal
resistance. At the same time, sodium dendrite growth is also a
safety issue during the cycling process. Hui et al.'” prepared
liquid anodes by dissolving sodium metal in TEGDME. In this
case, liquid-to-solid contact was better than solid-to-solid con-
tact, which reduced cell resistance. Hybrid Na-air batteries
based on liquid anodes exhibited lower overpotential (140
mvV) and long cycle life (more than 500 cycles).

In summary, both organic Na-air batteries and hybrid Na-
air batteries show bright application prospects. Sodium alkali
metal reacts very violently with water, and thus organic Na-air
batteries adopt organic electrolytes in both positive and nega-
tive chambers, thus improving the safety of organic sodium-air
batteries. However, organic electrolytes are more expensive and
prone to environmental pollution and have other associated
problems. At the same time, the products formed during the
discharge process of organic Na-air battery will be deposited on
the surface of air electrode and gradually cover the redox active
sites causing the degradation of the overall electrochemical
performance of the battery. Moreover, the application condi-
tions of organic Na-air batteries are relatively harsh, requiring
dry oxygen source and gas purification devices in order to avoid

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the occurrence of side reactions, which will greatly increase the
costs of application. Compared with organic Na-air batteries,
hybrid Na-air batteries can directly use air as the oxygen
source, which greatly reduces the costs. The products formed
during the discharge process of hybrid Na-air batteries can be
dissolved in the electrolyte of the cathode chamber, avoiding
the degradation of battery electrochemical performance due
to the accumulation of discharge products. Therefore, the
hybrid Na-air battery exhibits low overpotential, high energy
density (NaOH: 2090 W h kg™ '; NaO,: 1105 W h kg™, Na,O0,:
1602 W h kg™ ', Na,O: 1687 W h kg™') and long cycle life.
NASICON is an important component of the hybrid Na-air
battery, which mainly separates the anode chamber and the
cathode chamber, but the lower ionic conductivity of NASICON
is not beneficial to the adequate operation of the air battery.
The interfacial interaction between NASICON and the electro-
Iyte needs to be further investigated, as it affects the internal
resistance of the whole cell. For organic Na-air batteries and
hybrid Na-air batteries, the rational design of the air cathode is
the key to increase the comprehensive electrochemical perfor-
mance of the battery. The air cathode is essentially a bifunc-
tional catalyst with good OER/ORR activity. In addition to the
bifunctional catalytic performance, the air electrode should be
porous to facilitate gas diffusion and ion transport, which also
expands the area for electrocatalytic reactions. The rational use
of organic electrolytes and solute salts will promote the for-
mation of stable SEI on the anodic side and thus further
contribute to improving the air battery performance.

3. Air cathode materials

3.1. Carbon materials

An ideal air cathode material should have high surface area and
abundant pore distribution inorder to: (1) maximise the contact
between the electrolyte and the electrode, (2) fully utilize the
active sites during the charging/discharging cycling, and (3)
provide sufficient space to accommodate the discharge pro-
ducts (NaO, and Na,0,). Carbon-based materials are widely
used as cathode materials for Na-O, batteries owing to their
excellent physicochemical properties,""***"*® including (i)
large specific surface area, which exposes abundant redox
active sites and accommodates higher amounts of discharge
products at the same time; (ii) porous structure that facilitates
full electrolyte infiltration and structural stability, while pro-
moting oxygen diffusion; (iii) excellent electronic conductivity
that facilitates electron transport, and (iv) low cost for high-
volume fabrication. Carbon cloth and carbon paper have been
used as cathode materials for metal-O, batteries due to their
low costs, but their poor cycling stability and limited specific
capacity have restricted further applications.” In recent years,
a large number of carbon materials with different dimen-
sions have been elaborately designed, such as two dimensional
(2D) carbon thin film,*® CNT,*"**”"7> carbon nanofiber
(CNF),"7*7* porous carbon spheres,”>’® graphene,***"7778
reduced graphene oxide'® and porous carbon,”>”® and these
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have been widely used as cathode materials for Na-O, batteries.
Detailed information on carbon materials and their electro-
chemical performances are provided in Table 2.

A novel Na-O, battery design based on a carbon film
cathode (Fig. 3a) was reported by Fu et al.”® The carbon thin
film electrode exhibited a high specific capacity of 3600 mA h g~*
at a discharge rate of 1/60C at room temperature (Fig. 3b),
which was significantly higher than the specific capacity exhib-
ited by conventional cell cathode materials. The main dis-
charge product was Na,0O,, with Na,CO; and NaOCO-R found
in the fully discharged electrode, and these resulted from the
decomposition of the electrolyte. Carbonate-based electrolytes
are easily decomposed during cycling, forming many by-
products (nNa" + O, + EC/DEC + ne” = Na,CO; + NaOCO-R +
[side products]), which are known to affect the cycling stability
of Na-0O, batteries. In 2014, Zhou et al.’ used carbon nanotube
paper as cathode material in Na-O, batteries with a discharge-
specific capacity of up to 7530 mA h g '. This reduced the
reaction depth and improved the cycling performance of Na-O,
cells when the cut-off capacity is limited to 1000 mA h g,
while the overpotential was as low as 200 mV (Fig. 3c); the XRD
results showed that Na,0,-2H,0 was the main discharge pro-
duct. Oxygen-containing functional groups on the electrode
material surface play a key role in the electrochemical reaction
mechanism of the metal-O, cell. Sun’s group73 controlled the
air electrode’s surface properties to investigate the effect of
oxygen-containing functional groups on the composition and
morphology of the discharge production (Fig. 3d). Hydrophobic
and hydrophilic (containing a large number of oxygen-
containing functional groups) carbon materials follow different
reaction mechanisms in the discharge processes. During the
discharge process, NaO, crystal particles are formed on the

Capacity (pAh/cm?)
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hydrophobic cathode, but the presence of trace water in the
electrolyte and the instability of NaO, lead to the rapid trans-
formation of NaO, to Na,0,-2H,0 and NaOH (Fig. 3e). Na,0,
2H,0, carbonate and other layered discharged products are
formed on the hydrophilic cathode (Fig. 3f). Therefore, to
ensure that the main discharge product of Na-O, battery is
NaO,, the water content of the battery electrolyte and the
surface chemistry of the air electrode should be strictly con-
trolled. Thus, controlling the discharge product composition
during the discharge of Na-O, battery is critical to improving
the cycling stability.

Carbon nanotubes are a class of widely investigated carbo-
naceous materials which have a very bright prospect for
use as the air cathode of Na-O, batteries. In 2021, Wang
et al.*" directly used CNTs as a cathode of Na-O, batteries with
different concentrations of ether-based electrolytes (NaCF3;SO3/
TEGDME). The results showed that the Na-O, batteries exhib-
ited excellent cycling stability (Fig. 4d) in the saturated electro-
Iyte (1.6 M NaCF;SO;/TEGDME), and the battery cycling
stability increased by four times. Scanning electron microscope
(SEM) imaging was used to observe the morphologies of the
CNT cathode with the same cut-off capacity at different electro-
Iyte concentrations (Fig. 4a-c). The results showed that the
amount of the discharge product increased with the electrolyte
concentration suggesting a gradual decrease in the formation
of the dissolved discharge product. This was confirmed by the
results obtained from the UV/Vis absorption spectra of the
discharge products. On immersing the CNT cathode in TiOSO,
solution after cycling at different electrolyte concentrations, it
was observed that the solution colour and absorbance
increased with the electrolyte concentration (Fig. 4e and f),
suggesting a gradual increase of the discharge product content
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(a) Galvanostatic discharge/charge curves of the carbon thin film/Na cell at the current rate of 0.1C. The inset shows the composition of the Na—

air cell (b) discharge profiles of carbon thin film/Na cell at different current rates. (Reproduced from ref. 28 with permission from the Elsevier). (c) The
discharge/charge curves with a limiting capacity of 1000 mA h g~ in the 0.5 M NaSOsCFs/DEGDME electrolyte with CNT papers as a cathode.
(Reproduced from ref. 52 with permission from the Elsevier). (d) Schematic diagram of the formation of discharge products on the surface of carbon-
based materials with different chemical properties during the discharge process. The XRD results for hydrophobic (e) and hydrophilic (f) air electrodes
discharge in Na—-O, cells. (Reproduced from ref. 73 with permission from the American Chemical Society).
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Fig. 4 SEM images of (a) the pristine CNT cathode and the discharged CNT cathodes under the same discharge capacity in NaCF3SOs/TEGDME
electrolyte at concentrations of (b) 0.1 M and (c) 1.6 M. (d) The long-term cycling performance of Na—-O, battery using CNT cathode in different
concentrations of NaCF3SOs/TEGDME electrolyte. (e) Optical image of the dry CNT cathodes soaking in TiOSO,4 solution after discharge to the same
capacity in different NaCF3SOs/TEGDME electrolyte concentrations, and (f) the corresponding absorbance as a function of concentration. (Reproduced

from ref. 31 with permission from Elsevier).

on the CNT cathode. At the same time, the oxygen content in
the saturated electrolyte solution decreased dramatically, effec-
tively reducing the Na electrode’s oxidation level. Shao-Horn
et al®® observed that the size and distribution of Na-O,
batteries discharge products were highly dependent on the
discharge rate. Both micron-sized and nano-sized NaO, were
formed at low discharge rates and were uniformly distributed
inside and outside the carbon nanotubes; however, at a high
discharge rate, micron-sized NaO, was only distributed at the
ends of the carbon nanotubes. This is due to the fact that
sodium ions will firstly form O, -Na' small molecules during
the discharge process, and then these small molecules will
relocate in the electrode material. The O, -Na* small mole-
cules will diffuse uniformly inside the anode material at low
current densities instead of gathering rapidly to form NaO, and
the discharge products will grow slowly and be distributed
more uniformly. However, O, -Na" small molecules will gra-
dually gather to form 0, -Na' aggregates, which have weaker
migration ability compared to O, -Na" small molecules and
thus will not be able to diffuse rapidly under high current
density. This reduces the utilization of the active material and
the battery capacity decay is more significant. The structure of
the active material of the battery electrode has a remarkable
influence on the electrochemical performance, particularly in
the case of structurally diverse graphene-based carbon materi-
als. At the same time, the electrochemical reactions, structural
transformations and kinetics relevant to the charging and
discharging of the materials should be explored in detail, which
is necessary for the construction of high energy density Na-O,
batteries.

Graphene is another widely used electrode material for
rechargeable batteries. In 2013, Fu et al>" used graphene
nanosheets as Na-O, battery cathodes for the first time and

© 2023 The Author(s). Published by the Royal Society of Chemistry

this led to an ultra-high discharge capacity of 6208 mA h g~ ' at
a current density of 300 mA g~ ', which was three times higher
than that of carbon electrode (2030 mA h g~'). At the same
time, the graphene nanosheet electrode exhibited a lower
overpotential compared to the thin film electrode. The above
results indicate that graphene nanosheets are a promising
candidate as cathodes for Na-air batteries. Air cathodes
undergo gas transport and substance exchange during the
charging/discharging process, so the porosity of the air cathode
plays a critical role in the performance. The main technical
challenge with graphene is the stacking of the nanosheets,
which causes a considerable reduction of active sites and
hindersoxygen gas diffusion, leading to rapid capacity decay.
Ortiz-Vitoriano et al.”” investigated the electrochemical beha-
viour of reduced graphene aerogels with different porosities.
The ArGO-N (randomly 3D oriented sheets) electrode exhibited
a high discharge capacity of 6.61 mA h cm > at a current
density of 100 mA g~ ', which is higher than that of the ArGO-
U (3D oriented sheets) cathode (1.72 mA h ¢cm™?) and film
(stacked sheets) cathode (0.06 mA h cm™?) (Fig. 5a). The
disordered arrangement of nanosheets in ArGO-N exhibits
more active sites providing large pore volumes and a suitable
pore size distribution, which enhances material diffusion and
exchange and promotes redox reactions (Fig. 5c). As a result,
the ArGO-N electrode showed high stability after 39 cycles at a
cut-off discharge capacity of 0.5 mA h cm 2 with a low over-
potential of 250 mV (Fig. 5b). In addition, Sun et al.** prepared
a hierarchically porous reduced graphene oxide air battery
cathode (Fig. 5d). This air electrode has a continuous
network-like framework and suitably sized open pores, which
facilitates fluent gas transport and ensures efficient utilization
of the active sites (Fig. 5e). The small open pore-containing
electrode (3DP-SP) exhibited a high discharge-specific capacity
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Fig. 5 (a) Discharge curves of three different electrodes at the current density of 100 mA g~*. (b) The evolution of discharge capacity and Coulombic
efficiency with the number of cycles for the three different electrodes. (c) Schematic illustration of the proposed mechanism for the three different
electrodes. (Reproduced from ref. 77 with permission from the Royal Society of Chemistry). (d) Schematic illustration of the 3D-rGO air electrodes for
Na-O battery. (e) SEM image of the 3DP-SP sample. (f) The initial discharge/charge curves of 3DP-SP cathodes at current density. (Reproduced from ref.

14 with permission from the American Chemical Society).

of 13 484.6 mA h g~ ' at a current density of 200 mA g * (Fig. 5f).
SEM images demonstrate that the discharge product NaO, was
uniformly distributed on the inner and outer sides of the 3DP-
SP electrode due to the open pore channels on the electrode.
The electrode also exhibited excellent cycling stability with
a cut-off capacity of 500 mA h g~ at a current density of
500 mA g~ for 120 stable cycles. This work also suggests that
the pore size in the air electrode has a significant effect on the
performance of the air battery and that an oversized pore
channel can reduce the effective mass of the electrode active
material, leading to a degradation of the battery performance.

In addition to various graphene-based electrode materials,
porous carbon spheres (PCS) with high specific surface area
have also been applied for use in Na-O, batteries. Fig. 6a shows
a schematic illustration of the synthesis of hierarchical PCS.”®
The porosity of PCS can be precisely modulated and the pores
inside and outside of PCS facilitate the diffusion of oxygen and
the infiltration of electrolytes (Fig. 6b). The PCS cathode has a
high specific capacity of 16 500 mA h ¢~ in the initial cycle at a
current density of 500 mA g, while it can be stably cycled for
150 cycles at a high current density of 2.0 A g~ * (Fig. 6c). More
interestingly, the discharge product NaO, is not precipitated in
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the form of cubic particles but was deposited on the surface of
PCS in the form of a conformal film (Fig. 6d).

The catalytic activity of the material is mainly measured by
the overpotential and stability of the catalyst. The carbon films
show excellent catalytic activity, but the restricted specific sur-
face area and active sites are not conducive to achievement of
high catalytic activity. The development of carbon materials
such as CNT, graphene oxide (GO), PCS with high specific
surface area, abundant active sites and pores, have resulted
in the materials showing higher reversible specific capacity and
cycle life compared to carbon films. However, pure carbon
materials show poor catalytic activity, with both experimental
work and theoretical calculations proving that nitrogen doping
can improve the electronic conductivity and catalytic activity of
carbon materials leading to these electrodes exhibiting higher
capacity, lower overpotential and longer cycle life."* In addi-
tion, the presence of nitrogen heteroatoms is conducive to the
uniform deposition of discharge products on the electrode
surface, preventing pores from being blocked by granular
products, and improving the long cycle life of the
electrode.'*>""% In 2013, Sun et al>® introduced nitrogen
atoms into graphene nanosheets, which resulted in superior
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