Issue 4, 2025

A supramolecular diazapyrene radical assembly with NIR absorption for selective photothermal antibacterial activity

Abstract

A supramolecular radical assembly that can be induced in situ by facultative anaerobic bacteria has been reported and used for selective near-infrared (NIR) photothermal antibacterial action. Herein, we report the synthesis of a water-soluble diazapyrene derivative (DAPNP), which could be in situ initiated into the corresponding radicals by facultative anaerobic bacteria, such as E. coli or S. aureus. The introduction of cucurbit[10]uril (CB[10]) alters the stacking mode of the diazapyrene radical cations, resulting in a redshift of their characteristic absorption peak from the visible region to the NIR region. Under 660 nm laser irradiation, the in situ-induced supramolecular radical assembly exhibits great photothermal conversion properties and achieves highly efficient antibacterial activity (up to 98%). In contrast, with the aerobic B. subtilis it is difficult to induce the formation of diazapyrene radical cations in situ and maintain good activity under light irradiation. In addition, DAPNP@CB[10] exhibits excellent biocompatibility and has great potential as an intelligent photothermal material for antibacterial applications.

Graphical abstract: A supramolecular diazapyrene radical assembly with NIR absorption for selective photothermal antibacterial activity

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Oki 2024
Accepted
28 Nov 2024
First published
10 Des 2024

Org. Biomol. Chem., 2025,23, 908-913

A supramolecular diazapyrene radical assembly with NIR absorption for selective photothermal antibacterial activity

X. Yu, C. Wang, D. Sun and S. Liu, Org. Biomol. Chem., 2025, 23, 908 DOI: 10.1039/D4OB01748J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements