Issue 6, 2022

Electrical and thermal stimulus-responsive nanocarbon-based 3D hydrogel sponge for switchable drug delivery

Abstract

Smart hydrogels that are responsive to various external (e.g. electrical and/or thermal) stimulation have become increasingly popular in recent years for simple, rapid, and precise drug delivery that can be controlled and turned on or off with external stimuli. For such a switchable drug delivery material, highly homogeneous dispersion and distribution of the hydrophobic, electrically conductive nanomaterials throughout a hydrophilic three-dimensional (3D) hydrogel network remains a challenge and is essential for achieving well-connected electrical and thermal conducting paths. Herein we developed electrical and thermal stimulus-responsive 3D hydrogels based on (i) carbon nanotubes (CNTs) as the core unit and an electrical/thermal conductor, (ii) chitosan (Chit) as the shell unit and a hydrophilic dispersant, and (iii) poly(NIPAAm-co-BBVIm) (pNIBBIm) as the drug carrier and a temperature-responsive copolymer. By formulating the CNT-core and Chit-shell units and constructing a CNT sponge framework, uniform distribution and 3D connectivity of the CNTs were improved. The 3D hydrogel based on the CNT sponge, namely the 3D frame CNT–Chit/pNIBBIm hydrogel, delivered approximately 37% of a drug, ketoprofen used for the treatment of musculoskeletal pain, during about 30% shrinkage after electrical and thermal switches on/off and exhibited the best potential for future use in a smart transdermal drug delivery system. The physicochemical, mechanical, electrical, thermal, and biocompatible characteristics of this nanocarbon-based 3D frame hydrogel led to remarkable electrical and thermal stimulus-responsive properties capable of developing an excellent controllable and switchable drug delivery platform for biomedical engineering and medicine applications.

Graphical abstract: Electrical and thermal stimulus-responsive nanocarbon-based 3D hydrogel sponge for switchable drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
13 Oki 2021
Accepted
26 Des 2021
First published
28 Jan 2022

Nanoscale, 2022,14, 2367-2382

Electrical and thermal stimulus-responsive nanocarbon-based 3D hydrogel sponge for switchable drug delivery

S. Park, J. Kang, H. Kim, J. Hwang and U. S. Shin, Nanoscale, 2022, 14, 2367 DOI: 10.1039/D1NR06074K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements