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solid-state electrolytes

Vinamr Jain, a Zhilong Wang a and Fengqi You *abc

The development of solid-state electrolytes (SSEs) is critical for enabling safer, high-energy-density batteries.

However, the discovery of new inorganic SSEs is hindered by vast chemical search spaces, complex multi-

property requirements, and limited experimental data, especially for multivalent systems. This review presents

the first systematic framework mapping five interconnected challenges in SSE discovery to emerging AI

solutions, providing a strategic roadmap for practitioners. We comprehensively survey machine learning

pipelines from data resources and feature engineering to classical models, deep learning architectures, and

cutting-edge generative approaches. Key breakthroughs include: (1) machine learning interatomic potentials

enabling microsecond-scale molecular dynamics simulations at near-DFT accuracy, revealing non-Arrhenius

transport behavior and overturning established transport mechanisms; (2) advanced neural network

architectures achieving unprecedented accuracy in ionic conductivity prediction across diverse chemical

spaces, including transformer-based and graph neural network approaches; (3) generative models successfully

proposing and experimentally validating novel SSE compositions through diffusion-based design frameworks;

and (4) autonomous closed-loop discovery platforms integrating ML predictions with experimental synthesis,

achieving order-of-magnitude efficiency gains over traditional approaches. Unlike previous reviews focused on

Li-ion systems, we explicitly address the critical data gap for multivalent conductors (Mg2+, Ca2+, Zn2+, Al3+)

and provide concrete strategies through transfer learning and active learning frameworks. We bridge

conventional computational methods (DFT, molecular dynamics) with modern ML techniques, demonstrating

hybrid workflows that overcome individual limitations. The review concludes with actionable recommen-

dations for multi-objective optimization, explainable AI implementation, and physics-informed model develop-

ment, establishing a comprehensive roadmap for the next generation of AI-accelerated solid-state battery

materials discovery.

Wider impact
This review addresses the critical intersection of machine learning and solid-state electrolyte development, a field experiencing unprecedented growth with
hundreds of publications emerging in recent years. Key developments discussed include the evolution from classical ML screening approaches to sophisticated
deep learning architectures like graph neural networks, the emergence of ML interatomic potentials enabling large-scale dynamics simulations, and the
transition toward generative models for de novo materials design. The field’s significance extends beyond academic interest: solid-state electrolytes are essential
for next-generation batteries that promise enhanced safety, energy density, and sustainability for electric vehicles and grid storage applications. The rapid pace
of innovation has created both opportunities and challenges: while ML has accelerated SSE discovery timelines from decades to years, the proliferation of
disparate approaches, limited data availability for non-lithium systems, and lack of standardized evaluation metrics have hindered systematic progress. This
review’s forward-looking perspective on autonomous discovery platforms, physics-informed generative models, and integrated experimental-computational
workflows will shape the field’s trajectory toward predictive materials design. By providing strategic directions for addressing current limitations, from
developing universal descriptors to establishing closed-loop discovery systems, this work positions the materials science community to realize the
transformative potential of AI-driven SSE innovation, ultimately accelerating sustainable energy storage technology development.

1. Introduction

Renewable energy growth and electrified transportation are
creating an urgent demand for efficient and safe energy
storage.1,2 Rechargeable lithium-ion batteries (LIBs) have domi-
nated portable electronics and electric vehicles due to their
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high energy density and long cycle life.3 However, conventional
LIBs rely on liquid electrolytes that are flammable and volatile,
raising serious safety concerns (fires and leakage) especially in
large-scale applications.4,5 These liquid electrolytes also have
limited electrochemical stability windows, effectively capping
the LIB energy density by constraining high-voltage cathodes
and prohibiting the use of lithium metal anodes.6–8 Dendritic
lithium growth and side reactions in liquid electrolytes pose
risks of short-circuit and cell failure, highlighting the need for
alternative electrolyte technologies to enable safer, higher-
energy batteries.9

All-solid-state electrolytes are being intensively explored as a
next-generation solution to overcome the limitations of liquid
electrolytes.10–12 By replacing the flammable liquid with a non-
combustible solid, SSE-based batteries promise vastly improved
safety and thermal stability.13 Moreover, the mechanical rigid-
ity of inorganic SSEs can suppress dendrite propagation, poten-
tially allowing the pairing of high-capacity lithium metal
anodes with high-voltage cathodes for higher energy density
cells.14 SSE materials fall into two broad classes: inorganic
crystalline or glassy ceramics (oxide or sulfide based) and solid
polymers (or polymer–ceramic hybrids).15,16 Inorganic SSEs
such as oxide ‘‘garnet’’ Li7La3Zr2O12 and sulfide Li10GeP2S12

have achieved room-temperature Li+ conductivities on the
order of 10�3–10�2 S cm�1,17–19 approaching those of liquid
electrolytes. Polymer SSEs (e.g., PEO-based systems) offer flex-
ibility and facile processing, but typically display lower ionic
conductivities (B10�8–10�6 S cm�1 at ambient temperature)
and often require heating to 60–80 1C to reach optimal
conduction.20–22 Each SSE family has its own challenges: cera-
mic electrolytes can suffer from grain-boundary resistance and
brittle interfaces, whereas polymer electrolytes tend to have
narrower electrochemical stability windows and lower transfer-
ence numbers.23,24 Ongoing research is addressing these issues
(e.g., novel glassy sulfide compositions and composite electro-
lytes) to realize the full safety and performance advantages of
SSEs.25,26

Prior to the rise of ML, researchers relied on first-principles
computations and atomistic methods have been widely used to
predict phase stability and Li+ chemical potentials, and to
calculate migration barriers via nudged elastic band (NEB)
pathways for candidate electrolytes.27,28 These calculations
yield valuable atomistic insights – for example, clarifying ion
conduction mechanisms in fast-ion conductors and screening
thermodynamically stable electrolyte/electrode simulations to
guide SSE discovery and optimization.29–31 DFT calculations
combined with other computational approaches have proven
valuable for materials discovery.32,33 Molecular dynamics (MD)
simulations (both classical and ab initio (AIMD)) are another
important tool, enabling the computation of ionic diffusivities
and conductivities in SSE frameworks.34 Indeed, AIMD simula-
tions on prototypical superionic solids like Li10GeP2S12 and
cubic Li7La3Zr2O12 have reproduced experimental ionic con-
ductivities, confirming the capability of simulations to evaluate
candidate SSE performance.35 However, DFT and MD are
computationally intensive and scale poorly to the enormous

compositional space of solid materials.36 High-throughput DFT
screening is typically limited to evaluating hundreds of candi-
dates at best, after preliminary filtering by simpler models.37

This bottleneck has motivated the emergence of ML
approaches in electrolyte research, which can learn complex
composition–structure–property relationships from data and
make rapid property predictions.38 For instance, ML intera-
tomic potentials trained on DFT data can act as surrogates to
rapidly estimate ion migration barriers or perform MD simula-
tions at a fraction of the cost.39,40 More broadly, regression and
classification models have been trained to predict SSE ionic
conductivity or stability from compositions and structures,
enabling fast screening of thousands of unexplored
chemistries.41,42 Early studies using data-driven models have
already identified new Li-ion conductors that were missed by
intuition or limited DFT searches,43,44 underscoring the pro-
mise of ML in accelerating materials discovery.

Despite this progress, several key research gaps and chal-
lenges remain, which form the motivation for this review. A
fundamental hurdle is the limited availability of comprehen-
sive datasets, particularly for solid conductors beyond well-
studied Li+ systems, such as those for multivalent ions (Mg2+,
Ca2+, Zn2+, Al3+).45,46 This scarcity impedes the ability of super-
vised ML models to generalize effectively.47,48 Relatedly, a
significant concern is the limited transferability of models, as
those trained on known compounds, may perform poorly when
extrapolated to novel crystal structures or to different ion
chemistries.47 Furthermore, designing practical materials
requires a holistic, multi-objective approach. While most stu-
dies have focused on optimizing a single property like ionic
conductivity,49–51 practical SSEs must simultaneously satisfy
multiple criteria, including a wide electrochemical stability
window and sufficient mechanical strength to suppress den-
drite formation.

Another challenge is the ‘‘black-box’’ nature of many
advanced ML models, which limits their utility when they
cannot provide insights into the underlying factors governing
material properties.52,53 Finally, there is a pressing need to
move beyond the passive screening of predefined candidate
materials toward proactive, generative design. This requires
employing generative algorithms to propose novel electrolyte
compositions and structures54–56 and developing closed-loop
‘‘predictive synthesis’’ pipelines, which iteratively couple ML
predictions with DFT validation and experimental feedback to
accelerate the discovery of new materials.57,58 Addressing these
five interconnected challenges – data limitations, multi-criteria
optimization, interpretability, model generalization, and gen-
erative design – is crucial for unlocking the next wave of
breakthroughs in solid-state electrolyte development.

This review addresses several critical gaps that distinguish it
from existing literature on ML-driven SSE discovery. While
previous reviews have largely focused on cataloguing ML tech-
niques applied to battery materials broadly or examining
specific electrolyte systems59 within traditional experimental
and computational frameworks, we provide the first systematic
framework that maps specific challenges in SSE discovery to
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emerging AI solutions, offering a strategic roadmap for practi-
tioners. Most existing reviews emphasize Li-ion systems exclu-
sively, whereas we explicitly address the critical data scarcity for
multivalent ion conductors and provide concrete strategies for
extending ML approaches to these underexplored but techno-
logically important systems. Importantly, we bridge the gap
between traditional computational methods (DFT, MD, KMC)
and modern ML techniques, demonstrating how hybrid work-
flows can overcome individual limitations while leveraging
complementary strengths. Rather than merely surveying avail-
able techniques, we provide actionable guidance for data
collection priorities, validation strategies, and implementation
of explainable AI methods specifically tailored to solid-state
electrolyte discovery. Finally, we emphasize emerging para-
digms like autonomous discovery platforms and physics-
informed machine learning that represent the next frontier in
AI-accelerated materials discovery, going beyond conventional
property prediction to enable true generative design of novel
SSE materials.

We begin by examining the traditional computational meth-
ods that have historically guided SSE discovery, including NEB,
molecular dynamics, and kinetic Monte Carlo simulations. We
then detail the data resources and feature engineering strate-
gies critical to enabling ML in this domain, followed by a survey
of classical and deep learning models, including graph neural
networks and ML-based interatomic potentials. We explore how
these models have been applied to predict key properties (such
as ionic conductivity, phase stability, and electrochemical
compatibility), perform high-throughput screening to discover
promising SSE candidates, and model ion diffusion mechan-
isms. Next, we address key challenges in ML-driven SSE dis-
covery, including data scarcity, limited model transferability,
and multi-objective optimization. We then discuss emerging
solutions such as active and transfer learning, explainable AI,
and physics-informed models. Finally, we highlight opportu-
nities for autonomous discovery through generative design, ML
interatomic potentials, and closed-loop pipelines integrating
computation and experiments. Through this synthesis, we aim
to clarify the evolving role of machine learning in SSE develop-
ment and highlight strategic directions for the field’s contin-
ued advancement.

2. Conventional computational
methods

Before the rise of ML, computational approaches including
nudged elastic band (NEB) calculations, kinetic Monte Carlo
(KMC) simulations, and molecular dynamics (MD) have been
instrumental in SSE discovery. These methods provide the
foundational data and physical insights that now enable ML-
driven discovery. Understanding their capabilities and limita-
tions is essential for designing effective hybrid computational
workflows that combine traditional physics-based methods
with modern ML techniques. A comparative summary of all
computational methods discussed in this section is provided in

Table S1 (SI), highlighting their primary applications, advan-
tages, limitations, and typical system sizes for SSE design.

2.1. Nudged elastic band (NEB) method

NEB is an algorithm designed to find the minimum energy path
(MEP) and the associated saddle point (transition state)
between known initial and final states on a potential energy
surface. Its primary benefit is the direct calculation of the
activation energy barrier (Ea) for specific atomic or ionic hops,
providing crucial atomistic details of migration mechanisms. A
crucial refinement, climbing image NEB (CI-NEB), addresses
the challenge of accurately locating the true saddle point by
driving one image uphill to converge precisely onto the saddle
point.60 This is vital for screening materials and dopants based
on ion mobility. The Ea values derived from NEB calculations
are also essential inputs for higher-scale simulations like KMC.

The method has evolved from characterizing single materi-
als to enabling high-throughput discovery. Early work mapped
anisotropic Li-ion diffusion pathways in b-Li3PS4,61 while auto-
mated path search methods have efficiently evaluated activa-
tion energies.62 Automated high-throughput DFT workflows
integrated with materials databases like the Materials Project,
AFLOW, OQMD, and NIST-JARVIS have transformed materials
discovery, allowing systematic exploration of thousands of
potential SSE compositions with standardized protocols for
convergence and property extraction.63 Recent integration of
NEB into high-throughput workflows enables screening
of entire material classes like antiperovskites.64 Modern
implementations incorporate ML-guided path initialization
using graph neural networks to generate superior initial
guesses, dramatically improving convergence rates and redu-
cing spurious local minima,65 alongside adaptive sampling
techniques with Gaussian process regression for efficient
high-dimensional configuration space exploration. NEB can
be combined with different levels of theory. DFT-NEB provides
high accuracy but is computationally expensive, while classical
NEB using empirical potentials offers computational efficiency
at the cost of accuracy dependent on force field quality. Critical
implementation challenges are discussed in detail in the SI,
Section S1.1.

2.2. Kinetic Monte Carlo (KMC) simulations

KMC is a stochastic simulation technique modeling system
evolution through discrete events with known rate constants.
KMC excels at accessing experimentally relevant timescales
(microseconds to seconds or longer), far exceeding typical MD
simulations. This enables the study of slow diffusion phenom-
ena, SEI layer growth, or defect kinetics while efficiently brid-
ging atomistic event rates to macroscopic properties like
diffusion coefficients and ionic conductivity.

Recent methodological advances have significantly
enhanced KMC capabilities for materials simulations. Adaptive
kinetic Monte Carlo (aKMC) methods such as the kinetic
activation-relaxation technique (k-ART)66 and self-evolving ato-
mistic kinetic Monte Carlo (SEAKMC)67 eliminate the need for
pre-defined event catalogs by identifying transitions on-the-fly,
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enabling simulations of complex disordered systems. Acceler-
ated techniques including the mean rate method and first
passage time analysis have been developed to overcome kinetic
trapping in superbasins,68 extending the accessible timescales
for materials with complex energy landscapes. Applications
include active learning integration with KMC to explore SEI
formation reaction barriers69 and ab initio-based KMC investi-
gating polyanion mixing effects on Na-ion transport in NASI-
CON electrolytes.70 Implementation considerations are
discussed in the SI, Section S1.2.

2.3. Molecular dynamics (MD) simulations

2.3.1. Classical MD simulations. Classical MD simulates
the atomic-scale motion of particles by numerically integrating
Newton’s equations of motion and allows for the simulation of
significantly larger systems (103–106 + atoms) and longer time-
scales (nanoseconds to microseconds) compared to ab initio
methods. It directly simulates ion dynamics at finite tempera-
tures, enabling the calculation of transport properties (diffu-
sion coefficients D, ionic conductivity s, activation energies Ea),
structural analysis via RDFs and coordination numbers, and
prediction of mechanical properties.

The primary limitation is that accuracy hinges entirely on
force field quality and transferability—the ‘‘force field bottle-
neck’’. Classical force fields do not explicitly treat electrons,
precluding description of electronic phenomena like charge
transfer or bond breaking/formation unless specialized reactive
force fields are used. Applications include studying ion trans-
port in polymer–argyrodite interfaces using newly developed
OPLS-AA based force fields,71 analyzing how Li vacancies or
interstitials in b-Li3PS4 enhance conductivity by facilitating
three-dimensional diffusion pathways,72 and examining Li+

transport in dilithium ethylene dicarbonate (Li2EDC), a primary
SEI component.73 Software packages and implementation con-
siderations are provided in the SI, Sections S1.3–S1.5.

2.3.2. AIMD for ionic conductivity validation. AIMD com-
bines molecular dynamics with quantum mechanical calcula-
tions (typically DFT) to determine interatomic forces on-the-fly
at each simulation time step. This avoids empirical force field
requirements, making AIMD particularly useful for novel or
complex materials. It can implicitly account for electronic
effects like dynamic polarization and charge distribution dur-
ing ion motion, potentially offering higher accuracy than
classical MD where these are prominent. AIMD serves as a
crucial tool for benchmarking and parameterizing classical
force fields or machine learning potentials.

However, AIMD is extremely computationally expensive.
This restricts simulations to small system sizes (typically a
few hundred atoms) and very short physical timescales (pico-
seconds to a few nanoseconds). Consequently, to observe
sufficient diffusion events for calculating transport properties,
AIMD simulations of SSEs are often run at very high tempera-
tures, with room-temperature properties extrapolated via the
Arrhenius relation, which can be unreliable if diffusion
mechanisms change, or phase transitions occur. The accuracy
of AIMD also remains dependent on the approximations within

the underlying DFT calculation (e.g., the exchange–correlation
functional). Applications include investigating lithium-ion dif-
fusion in garnet-type materials74 and studying chemical pro-
cesses at the Li/Li6PS5Cl interface at different temperatures.75

Sampling considerations are discussed in the SI, Section S1.6.

3. Machine learning algorithms and
model architectures for SSEs

In recent years, ML has emerged as a powerful paradigm to
accelerate the design and discovery of novel SSEs. By learning
complex relationships between material features and target
properties, ML techniques can efficiently screen vast numbers
of candidate materials, predict key performance metrics, and
guide experimental synthesis efforts. An ML pipeline for the
design and discovery of SSEs is shown in Fig. 1. This section
reviews the key ML algorithms, model architectures, and
essential data resources that underpin the application of ML
in the search for high-performance inorganic SSEs.

3.1. Data resources for SSE machine learning

The efficacy and reliability of any ML model are inextricably
linked to the quality, quantity, and relevance of the underlying
data used for training and validation. In the context of SSE
discovery, acquiring sufficient high-quality data presents a
significant challenge, particularly for experimentally measured
properties like ionic conductivity. This data scarcity can limit
the predictive power and generalizability of ML models. SSE
research leverages data from diverse sources, broadly categor-
ized into large-scale computational databases and smaller,
curated experimental datasets.

Fig. 1 Overview of a machine learning pipeline for the design and
discovery of SSEs. (a) The pipeline begins with data resources such as
the Materials Project, ICSD, and JARVIS, which provide structural and
property data for a wide range of inorganic materials. (b) These data are
transformed into meaningful descriptors: composition-based, structural,
and electronic, using tools such as Matminer and pymatgen. (c) Machine
learning models, organized by learning paradigm (supervised, unsuper-
vised, deep learning), are then trained on these descriptors. Classical
models (e.g., random forests, SVMs) and deep learning architectures
(e.g., CGCNN, MEGNet, CrabNet) are (d) employed to predict key proper-
ties such as ionic conductivity, electrochemical stability, and mechanical
robustness. These models also enable applications including ML-based
interatomic potentials and high-throughput virtual screening for novel
multivalent SSEs.
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3.1.1. Computational databases. These repositories pri-
marily contain material properties derived from computational
methods, most notably DFT and MD simulations. They serve as
invaluable resources for high-throughput computational
screening (HTS), allowing researchers to filter vast numbers
of candidate materials based on predicted fundamental proper-
ties such as thermodynamic stability, electronic structure (e.g.,
band gap), crystal structure, and mechanical properties. While
these databases contain diverse materials beyond SSEs, they
serve as critical sources for identifying promising SSE candi-
dates and training predictive models.

Materials project (MP): the most prominent open-source
database with DFT-calculated properties for hundreds of thou-
sands of inorganic compounds.63 MP provides formation ener-
gies, band gaps, elastic tensors, and crystal structures—all
accessible via the web interface and API. Its integration with
pymatgen76 and matminer77 facilitates automated data retrie-
val and feature generation for ML workflows. MP is frequently
used to identify Li-containing structures as initial SSE
candidates.

Inorganic crystal structure database (ICSD): contains over
300 000 experimentally determined crystal structures,78 provid-
ing reliable crystallographic information that serves as a start-
ing point for DFT calculations or structural descriptor
generation.

AFLOW, OQMD, and NIST-JARVIS: these repositories offer
additional DFT-calculated properties across millions of materi-
als. AFLOW provides extensive electronic, thermodynamic, and
mechanical properties via its REST API (AFLOWLIB).79 OQMD
focuses on thermodynamic stability through formation ener-
gies relative to the convex hull.80 JARVIS offers comprehensive
properties including elastic tensors, dielectric constants, and
phonon properties for tens of thousands of materials.81

Other computational repositories: additional databases con-
tribute to the materials data ecosystem. The computational
materials repository (CMR) aggregates electronic structure data
from various projects, including C2DB and QPOD.82 Materials
cloud supports reproducible computational workflows and
integrates with AiiDA for provenance tracking.83 The crystal-
lography open database (COD) aggregates over 520 000
crystal structures of organic, inorganic, and metal-organic
compounds.84 GNoME, developed by DeepMind, has used deep
learning to predict the stability of over 2 million inorganic
crystals.85 The Alexandria database provides DFT-calculated
properties for millions of materials and is used to train large-
scale ML models.86

3.1.2. Experimental and curated datasets. While computa-
tional databases offer breadth, datasets containing experimen-
tally measured properties, particularly ionic conductivity, are
essential for training models to predict real-world performance.
These datasets are often smaller, compiled through painstak-
ing literature surveys or expert curation.
� LiIon dataset: an expert-curated collection focusing on

lithium-ion conductors, containing 820 entries from 214 litera-
ture sources.87 Each entry includes chemical composition,
an assigned structural label (e.g., garnet, LISICON), and AC

impedance-measured ionic conductivity at specific tempera-
tures. With 403 unique compositions having near-
room-temperature conductivity data, it has been instrumental
in training ML classifiers (like CrabNet) to distinguish between
high and low conductivity compositions.87

� OBELiX dataset: a more recent effort specifically designed
for benchmarking ML models for SSE conductivity prediction.
It comprises approximately 600 synthesized solid electrolyte
materials with experimentally measured room-temperature
ionic conductivity, along with composition, space group, lattice
parameters, and, for about half the entries, full crystallographic
information files (CIFs).88

� Literature-mined datasets: several studies have employed
natural language processing (NLP) and text mining techniques
to automatically extract relevant data (e.g., ionic conductivity
values, synthesis parameters, structural types) directly from the
vast body of scientific literature. While powerful for data
aggregation, these approaches face challenges related to the
heterogeneity of reported data, inconsistencies in experimental
conditions, and the accuracy of automated extraction.89 An
example includes the work by Shon and Min (2023), which
extracted over 4000 conductivity measurements from nearly
1500 papers.90

3.1.3. Data challenges. The effective application of ML in
SSE discovery is often hampered by several data-related chal-
lenges. As mentioned, experimental data, especially reliable
room-temperature ionic conductivity measurements, remain
relatively scarce compared to the vastness of the chemical space
being explored. Data heterogeneity is another issue, arising
from differences between computational predictions and
experimental realities, variations in experimental protocols
and measurement conditions across different studies, and the
diverse formats used for data reporting. Furthermore, both
computational and experimental data contain inherent uncer-
tainties and potential errors as DFT calculations rely on
approximations, while experimental measurements are subject
to synthesis variations and characterization limitations.91

These issues often result in datasets with missing values and
significant class imbalance, where high-performing electrolytes
are severely underrepresented. To mitigate these challenges,
researchers employ various strategies, including data imputa-
tion to estimate missing entries and resampling techniques
such as the synthetic minority over-sampling technique
(SMOTE) to create more balanced training sets.92 Finally, data
accessibility varies, with some key databases requiring sub-
scriptions while others are open access.

The landscape of data resources reveals a complementary
relationship between large-scale computational databases and
smaller, targeted experimental datasets. Computational data-
bases like MP, AFLOW, OQMD, and JARVIS provide the neces-
sary breadth for initial high-throughput screening, enabling the
filtering of millions of hypothetical compounds based on
fundamental properties like thermodynamic stability (for-
mation energy, energy above hull), electronic insulation (band
gap), and potentially relevant structural or mechanical charac-
teristics. However, accurately predicting ionic conductivity, the
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key performance metric for an SSE, directly from first principles
is computationally demanding, often requiring expensive MD
simulations. This is where curated experimental datasets like
LiIon and OBELiX become critical. Although smaller in size,
they contain the direct experimental measurements needed to
train and validate ML models specifically designed to predict
ionic conductivity. This often leads to a multi-stage ML work-
flow: initial screening using models trained on large computa-
tional datasets to identify stable and electronically suitable
candidates, followed by conductivity prediction for the down-
selected candidates using models trained on experimental data.
Table S2 provides a summary of prominent datasets commonly
used in machine learning studies for solid-state electrolyte
research, including their primary data sources, key material
properties covered, accessibility, and relevant references. The
development of accurate and efficient machine learning intera-
tomic potentials (MLIPs, discussed in Section 3.4) represents a
significant effort to bridge this gap, aiming to enable faster
calculation of dynamic properties like ionic conductivity for the
vast number of candidates identified through computational
screening.

3.2. Classical machine learning algorithms and descriptors

Before the widespread adoption of deep learning, classical
machine learning algorithms formed the backbone of data-
driven materials discovery efforts, including the search for
novel SSEs. These methods remain valuable tools for establish-
ing baseline models, interpreting feature importance, and
tackling problems with limited data. They typically operate on
a set of pre-defined features, known as descriptors, which
numerically encode relevant material characteristics.

3.2.1. Descriptors (features): the language of materials for
ML. Descriptors translate the chemical and physical nature of a
material into a numerical format that ML algorithms can
process. The selection, generation, and quality of these descrip-
tors are paramount, directly influencing model accuracy, inter-
pretability, and generalizability. A significant challenge in the
field is the development of descriptors that are both universally
applicable across different material classes and accurately
capture the underlying physics governing the target property.
Descriptors used in SSE research can be grouped into several
categories:
� Compositional descriptors: these features are derived

solely from the material’s chemical formula (stoichiometry)
and the intrinsic properties of its constituent elements. Exam-
ples include average atomic mass, mean electronegativity,
variance of atomic radii, elemental fractions, and specific
stoichiometric ratios. They are computationally inexpensive to
generate but ignore the crucial influence of atomic arrange-
ment and bonding. For instance, one study utilized a set of 145
‘‘Chemical Descriptor’’ features based on stoichiometry and
elemental properties.93 While simple, compositional descrip-
tors alone can sometimes yield reasonable predictive perfor-
mance, particularly for classification tasks or when combined
with more sophisticated algorithms.

� Structural descriptors: these capture information about
the geometric arrangement of atoms in the crystal lattice. They
can range from simple parameters like lattice constants, cell
volume, space group number, and packing fraction to more
complex representations like radial distribution functions
(RDFs), coordination numbers, bond angles, polyhedral
volumes, local atomic environment motifs (e.g., using Voronoi
analysis), and topological indices. Structural descriptors are
vital as many key SSE properties, including ionic conductivity
pathways and mechanical stability, are intimately linked to
the crystal structure. Generating these features typically
requires crystallographic information (e.g., from CIF files
obtained via ICSD or MP) and specialized analysis tools.
Examples include employing Voronoi tessellation features to
improve graph neural networks,94 or using smooth overlap of
atomic positions (SOAP) descriptors to represent local atomic
environments.95

� Electronic descriptors: these features quantify aspects of
the material’s electronic structure, which governs electrical
conductivity, electrochemical stability, and chemical bonding.
Common examples include the electronic band gap (Eg), posi-
tion of the valence and conduction band edges, density of states
near the Fermi level, work function, electron affinity, ionization
potential, and measures of bond ionicity or covalency. Electro-
nic descriptors are crucial for screening potential SSEs, as ideal
candidates must be good ionic conductors but poor electronic
conductors (i.e., possess a wide band gap) and exhibit stability
within the battery’s operating voltage window. These descrip-
tors are often derived from computationally intensive DFT
calculations.
� Physicochemical/thermodynamic descriptors: this broad

category includes various calculated or tabulated physical and
chemical properties. Examples relevant to SSEs include for-
mation energy, energy above the convex hull (Ehull) for thermo-
dynamic stability assessment, density, ionic radii, melting
point, and mechanical properties like bulk modulus (K) and
shear modulus (G). These descriptors relate to a material’s
stability, processability, and mechanical robustness against
issues like dendrite penetration. Formation energy and Ehull

are standard outputs from DFT databases (MP, OQMD) used for
initial stability screening, while mechanical moduli, predicted
using ML or DFT, are critical for assessing dendrite suppres-
sion capabilities.
� Kinetic/dynamic descriptors: these features aim to capture

aspects related to ion transport dynamics. Examples include
activation energy barriers for ion migration (Eb or Ea), diffusion
coefficients (D), attempt frequencies, and properties derived
from phonon calculations (e.g., vibrational density of states,
phonon band structure features). These descriptors are most
directly related to ionic conductivity (s), often following an

Arrhenius-type relationship s / exp
Ea

kbT

� �
. However, they are

typically challenging and computationally expensive to obtain,
requiring methods like NEB calculations for migration barriers
or extensive MD simulations for diffusion coefficients. Recent
work has shown that phonon-related features derived from DFT
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phonon calculations can be important predictors for ionic
conductivity in ML models.96

The different categories of descriptors, along with their
generation methods and significance, are summarized in
Table 1.

Libraries and tools for featurization. The automated genera-
tion of descriptors, or ‘‘featurization’’, is facilitated by an
ecosystem of open-source Python libraries. Pymatgen76 pro-
vides the core data structures and tools for materials analysis.
Built upon this, Matminer77 offers a high-level interface for
computing a comprehensive suite of compositional, structural,
and electronic descriptors from standard material representa-
tions. For more advanced models, libraries such as
DeepChem97 are valuable for generating the graph-based repre-
sentations required by architectures like graph neural net-
works. These toolkits are instrumental for automating the
creation of robust and reproducible feature sets for machine
learning.

3.2.2. Classical ML algorithms in SSE research. Various
classical ML algorithms have been applied to SSE research for
tasks including property prediction, classification, and unsu-
pervised exploration of materials space.
� Regression: used to predict continuous target variables.
� Algorithms: simple linear regression, polynomial regres-

sion, kernel ridge regression (KRR), support vector regression
(SVR), Gaussian process regression (GPR).
� Applications: predicting ionic conductivity (log s), activa-

tion energies, elastic moduli (K, G) for mechanical stability

assessment, and formation energies. For example, Ahmad et al.
used gradient boosting regressor (GBR) and KRR, trained on
structural features, to predict shear and bulk moduli for over
12 000 inorganic solids in a screening study for dendrite
suppression.98 Zhao et al. used GPR-based Bayesian optimiza-
tion to guide the experimental synthesis of LATP electrolytes
towards optimal ionic conductivity.99

� Classification: used to assign materials to discrete
categories.
� Algorithms: logistic regression (LR), naive bayes (NB),

support vector machines (SVM), decision trees (DT).
� Applications: Xu et al. (2020) used logistic regression to

classify SICON compounds as poor or good superionic con-
ductors based on elemental descriptors.47 Chen et al. (2021)
employed support vector machines to analyze relationships
between manufacturing conditions and solid-state electrolyte
film performance for evaluation and optimization.100

Adhyatma et al. (2022) applied a tree-based LightGBM model
to classify doped LLZO compounds by their ionic conductivity
levels (high or low).101

� Ensemble methods: these techniques combine predictions
from multiple individual models (base learners) to improve
overall performance and robustness, and reduce overfitting.
They often achieve state-of-the-art results on tabular data.
� Algorithms: random forest (RF), gradient boosting machines

(GBM, including variants like XGBoost and LightGBM).
� Applications: RF and GB variants are frequently employed

for both regression (predicting conductivity, formation energy)
and classification (high/low conductivity, stability) in SSE

Table 1 Common descriptors used in machine learning for solid-state electrolytes

Descriptor category Specific descriptor example Information encoded Generation method Pros/cons

Compositional Average electronegativity Elemental chemical bonding
tendency

Formula-based Simple; ignores structure

Elemental fractions Stoichiometry Formula-based Simple; basic composition info
Structural Volume per atom Packing density, free volume Structure analysis (CIF) Relates to ion mobility/stiffness;

Requires structure
Space group number Crystal symmetry Structure analysis (CIF) Captures overall symmetry; coarse

descriptor
Radial distribution func-
tion (RDF)

Average local atomic density
around a central atom

Structure analysis (CIF) Detailed local structure; compu-
tationally more intensive

Coordination number Number of nearest neighbours Structure analysis (CIF) Local bonding environment: defi-
nition can vary

Electronic structure Band gap (Eg) Energy required to excite an
electron

DFT Key for electronic conductivity;
Computationally expensive

Formation energy Thermodynamic stability relative
to elemental phases

DFT Fundamental stability metric;
requires calculation

Energy above hull (Ehull) Thermodynamic stability relative
to competing phases

DFT Better stability indicator than for-
mation energy; requires phase
diagram data

Physicochemical Ionic radii Effective size of ions Tabulated/formula Relates to packing and channel
size; simple approximation

Shear/bulk modulus (G, K) Resistance to shear/volume
deformation

DFT/ML prediction Key for mechanical stability (den-
drites); requires calculation/
prediction

Kinetic/dynamic Migration barrier (Ea, Eb) Energy barrier for ion hopping DFT (NEB)/MD Directly relates to conductivity;
computationally very expensive

Phonon properties Lattice vibrational characteristics DFT (phonon Calc.) Relates to ion dynamics/stability;
computationally expensive

Note: CIF = crystallographic information file; DFT = density functional theory; MD = molecular dynamics; NEB = nudged elastic band; ML =
machine learning.
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research. For instance, Pereznieto et al. (2023) utilized a ran-
dom forest algorithm to analyze experimental data and discover
new potential Na-ion solid electrolytes exhibiting high ionic
conductivity.102 Kim et al. (2023) implemented an ensemble
model of gradient boosting algorithms to classify over 3500
NASICON structures, successfully identifying promising Na
superionic conductor candidates with high accuracy.103 Tang
et al. (2024) applied an XGBoost algorithm to predict key
properties such as band structure and stability, which enabled
the screening and identification of 194 ideal solid-state electro-
lyte candidates from over 6000 structures.104 Zhang et al. (2024)
developed random forest models alongside neural networks to
predict ionic conductivity in NASICON materials and to identify
influential factors, highlighting the role of Na stoichiometric
count.105

� Clustering: unsupervised learning algorithms group simi-
lar data points together without relying on predefined labels.
� Algorithms: k-means, agglomerative clustering, hierarchi-

cal density-based spatial clustering of applications with noise
(HDBSCAN).
� Applications: Park et al. (2024) used HDBSCAN to cluster

over 12 000 Na-containing materials based on structural proper-
ties, identifying 12 groups and revealing shared characteristics
in high-conductivity clusters.106 Laskowski et al. (2023) applied
agglomerative clustering to B26 000 Li-containing structures to
identify promising superionic conductor candidates for further
screening.95 Gallo-Bueno et al. (2022) used unsupervised
outlier detection models to automatically classify computed
Li-argyrodite crystal structures based on their structural
distortion.107

The successful application of classical ML algorithms is
heavily dependent on the process of ‘‘feature engineering’’ –
the careful selection, transformation, and combination of
descriptors to best represent the underlying material physics
relevant to the target property. The frequent high performance
reported for ensemble methods like random forest and gradi-
ent boosting variants (XGBoost, LightGBM)108–111 underscores
the difficulty in capturing the complex, often non-linear,
structure-property relationships in SSEs using single, simpler
models acting on these hand-crafted features. Ensemble meth-
ods offer robustness by averaging out errors from individual
base learners (like decision trees) and implicitly handling
feature interactions, making them well-suited to the high-
dimensional and potentially noisy descriptor spaces common
in materials informatics. However, their complexity can some-
times make direct physical interpretation of the learned rela-
tionships challenging compared to simpler models like linear
regression.

Despite these interpretability challenges, classical ensemble
methods remain preferable in scenarios with limited training
data where deep learning models would overfit, or when
transparent decision-making is critical for materials design
insights. For instance, Decision tree models can readily
identify feature importance rankings,106 while XGBoost pro-
vides built-in interpretability tools that can reveal which struc-
tural descriptors most strongly influence ionic conductivity

predictions.112–114 These advantages make classical approaches
particularly valuable in early-stage SSE discovery when datasets
are small or when researchers need to understand and com-
municate the physical basis underlying model predictions to
experimental collaborators. Unsupervised clustering techni-
ques, such as HDBSCAN, provide a valuable alternative or
complementary approach.106 By grouping materials based on
similarities in their descriptor vectors (often structural features
derived from large computational databases), clustering can
reveal inherent patterns and identify promising material
families even when labeled target data (like experimental con-
ductivity) is sparse. This capability allows researchers to lever-
age the vastness of computational datasets to guide exploration
before focusing on more data-intensive supervised prediction
tasks. This reliance on feature engineering and the success of
complex ensembles sets the stage for deep learning approaches
(Section 3.3), which aim to automate the feature learning
process itself.

3.3. Neural network architectures and deep learning models

While classical ML methods have proven valuable, their reli-
ance on hand-crafted descriptors limits their ability to capture
complex, non-linear interactions and spatial correlations
within crystal structures that govern SSE properties. Deep
learning (DL), characterized by artificial neural networks
with multiple layers, enables hierarchical feature learning
directly from raw data, reducing the need for manual feature
engineering.

The simplest deep learning architecture, feedforward neural
networks (FNNs) or multi-layer perceptrons (MLPs), consists of
an input layer, one or more hidden layers, and an output layer,
processing information in one direction. They operate on pre-
defined descriptors similar to classical algorithms (Fig. 2a) and
have been used as components within ensemble models, base-
line comparisons, or for property prediction based on manually
selected features in SSE research.88,105,115

Graph neural networks (GNNs) represent a more sophisti-
cated approach, naturally operating on graph representations
of materials where atoms are nodes and bonds or interatomic
proximity define edges. This allows GNNs to learn representa-
tions that explicitly incorporate atomic connectivity and local
chemical environments, automatically identifying features rele-
vant to predicting material properties. Capturing crystal struc-
ture nuances, such as periodicity and 3D geometry (SE(3)
invariance/equivariance), is crucial for effective GNN design.
Crystal graph convolutional neural network (CGCNN) repre-
sents crystals as graphs and uses convolutional layers to
aggregate information from neighboring atoms and bonds to
learn atom-level features, which are then pooled to predict
material properties (Fig. 2b). It has been applied to predict
thermodynamic stability and mechanical properties of
SSEs.116,117 Improved versions like iCGCNN incorporate Voro-
noi tessellation information and explicit many-body interac-
tions to enhance performance.118 Materials graph network
(MEGNet) extends the graph network concept by including
global state variables (like temperature or pressure) alongside
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atomic (node), bond (edge), and global features, allowing for
more versatile property predictions (Fig. 2b). MEGNet and
related architectures like M3GNet119 have been trained on large
datasets (e.g., Materials Project) for broad applicability in
materials property prediction and can be applied to predict
SSE stability or mechanical properties.120 SchNet employs
continuous-filter convolutional layers to model quantum inter-
actions in atomistic systems without using explicit graph
representations, and has been used to predict formation ener-
gies of bulk crystals and potential energy surfaces.121 The field
continues to evolve rapidly, with newer architectures like
ALIGNN (atomistic line graph neural network),122 k-NAGCN
(k-nearest atom graph neural network),123 and transformer-
based models like CrystalFramer (which introduces dynamic,
attention-based coordinate frames)124 continuously advancing
accuracy and representational power for crystal structures.

Distinct from structure-based approaches, some deep learning
models prioritize elemental composition, offering advantages
when structural information is unavailable, computationally
expensive to obtain, or for rapid initial screening across
vast chemical spaces. ElemNet learns material properties directly
from elemental compositions represented as fractional counts,
bypassing structural information for rapid composition-based
screening.125 CrabNet, a transformer-based model using attention
mechanisms, operates primarily on compositional data but impli-
citly learns interactions between elements126 (Fig. 2c). It demon-
strated success when trained on the LiIon dataset for classifying
compositions by their likelihood of exhibiting high lithium-ion
conductivity.87 More broadly, transformer architectures—inspired

by their success in natural language processing and relying heavily
on self-attention mechanisms—can capture long-range interac-
tions within crystal graphs or learn complex relationships
between constituent elements, as seen in CrabNet126 and
CrystalFramer.124 Transformer architectures are also being used
to develop powerful interatomic potentials like GPTFF.127

While most ML models predict properties of given materials
(forward problem), generative models solve the inverse pro-
blem: generating novel material structures likely to possess
desired properties. Techniques like generative adversarial net-
works (GANs), variational autoencoders (VAEs), and diffusion
models are being explored for materials discovery.55,128 These
models learn the underlying distribution of known stable
materials and can sample this distribution or be conditioned
to generate new candidates meeting specific criteria (e.g., high
stability, target band gap, specific crystal structure). MatterGen, a
diffusion model operating on 3D crystal geometry, has demon-
strated the ability to generate novel, stable materials with target
properties by learning from large databases like MP and
Alexandria.56 Such approaches hold significant promise for gen-
erating entirely new SSE candidates beyond modifications of
known structures. Other generative approaches like SHAFT utilize
hierarchical generation based on symmetry constraints.129

3.4. Machine learning interatomic potentials (MLIPs) for
dynamics (MLMD)

A major breakthrough enabled by deep learning is the devel-
opment of highly accurate machine learning interatomic poten-
tials (MLIPs), also known as ML force fields. These models
learn the complex relationship between atomic configurations
and the potential energy surface (PES) – including energies,
forces on atoms, and stresses on the simulation cell – directly
from large datasets generated by high-fidelity quantum
mechanical calculations (typically DFT). Once trained, MLIPs
can perform MD simulations, termed MLMD, with an accuracy
approaching that of DFT but at a computational cost orders of
magnitude lower (closer to classical force fields).

This capability is particularly transformative for SSE
research. Simulating ion transport dynamics – the diffusion
pathways, diffusion coefficients (D), activation energies (Ea),
and ultimately ionic conductivity (s) – requires tracking atomic
motion over long timescales (nanoseconds or more) and large
system sizes (thousands of atoms) to capture statistically rele-
vant events and collective motion. Ion transport in SSEs
involves rare events such as defect formation, migration, and
collective rearrangements that occur over vastly different time-
scales: while individual atomic hops happen on picosecond
timescales, macroscopic diffusion processes and phase trans-
formations relevant to battery operation occur over seconds to
minutes. Such simulations are often computationally prohibi-
tive using traditional AIMD. MLIPs overcome this limitation,
enabling routine MLMD simulations that provide direct
insights into the mechanisms governing ionic conductivity in
complex SSE materials.

Several MLIP frameworks have been applied to study SSEs:

Fig. 2 Schematic overview of representative deep learning architectures
for SSE property prediction. (a) FFN or MLP, which maps a fixed-length
vector of engineered features to a target property. (b) GNN architectures
that operate on graph representations of crystal structures. (i) The CGCNN
updates atom features (vi) by aggregating information from its local atomic
neighborhood. (ii) The MEGNet framework, which iteratively updates atom
(vi), bond (ek), and global state (u) attributes to learn a comprehensive
representation of the material. (c) The CrabNet architecture, a
transformer-based model that uses a self-attention mechanism on
elemental composition to predict properties and quantify aleatoric
uncertainty.
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� Gaussian process regression and sparse GPR (SGPR)
approaches: traditional GPR methods provide a Bayesian fra-
mework for learning interatomic potentials with built-in uncer-
tainty quantification, but their O(n3) computational scaling
with dataset size becomes prohibitive for large training sets.
SGPR addresses this limitation through low-rank approxima-
tions using reduced ‘‘inducing sets’’ of representative local
environments, achieving computational scaling comparable
to linear methods while retaining the probabilistic advantages
of GPR.130 SGPR has been successfully applied to survey Li
diffusivity across hundreds of ternary crystals and create trans-
ferable universal potentials for complex electrolytes like
Li10GeP2S12.131,132

� Gaussian approximation potential (GAP): based on Gaus-
sian process regression. A near-universal GAP was developed
for the Li–P–S (LPS) material class, enabling studies of con-
ductivity in both crystalline (e.g., Li3PS4, Li7P3S11) and glassy
phases and revealing the importance of anion dynamics.133

� Deep potential molecular dynamics (DeePMD/DeePMD-
kit): a deep neural network-based potential that has seen wide
application.134 It has been used to model Li diffusion in
amorphous Li3PO4,135 superionic conductors like Li10GeP2S12

(LGPS) and Nb-doped garnets, and importantly, to perform
microsecond-long simulations revealing the lack of a signifi-
cant ‘‘paddle-wheel’’ effect from polyanion rotations on Li
diffusion in crystalline Li7P3S11 and Li2B12H12 at room
temperature.136

� Crystal Hamiltonian graph network (CHGNet): a GNN-
based universal MLIP pre-trained on the extensive Materials
Project trajectory dataset, uniquely incorporating electronic
charge and magnetic moment information.106 It has been
demonstrated for charge-informed MD simulations of Li inter-
calation (LixMnO2) and Li diffusion in garnet SSEs.137

� M3GNet (materials 3-body graph network): another GNN-
based universal potential trained on the Materials Project
database, designed for broad applicability in structural relaxa-
tion and dynamics simulations.119

� GPTFF (graph-based pre-trained transformer force field): a
recent transformer-based force field trained on a massive
dataset (billions of force components), aiming for high accu-
racy and generalizability across diverse inorganic systems.127

MLMD simulations driven by these potentials have provided
crucial insights, such as identifying non-Arrhenius diffusion
behavior in LGPS,135 elucidating specific diffusion pathways,137

and quantifying the impact of structural features like defects or
anion dynamics on conductivity.133 The significant speed-up
factors highlight the potential of MLIPs to dramatically accel-
erate the computational assessment of ionic transport.138

The progression from classical ML to deep learning marks a
significant evolution in the computational toolkit for SSE
discovery. GNNs, in particular, represent a paradigm shift away
from manual feature engineering towards automated learning
of structure–property relationships directly from the atomic
graph representation. This allows models to potentially uncover
more complex and subtle correlations than might be captured
by human-designed descriptors. However, these advances come

with important practical considerations. GNN architectures like
CGCNN and MEGNet require high-quality crystal structure files
(CIFs) with precise atomic positions as inputs, as they construct
graph representations directly from atomic arrangements and
bonding information.117,120 The incorporation of both atomic
and bond-level descriptors introduces numerous hyperpara-
meters, necessitating larger training datasets (typically 4103

samples) and substantial computational resources compared to
classical ML approaches that rely on pre-computed scalar
descriptors.139 In contrast, SGPR-based approaches can achieve
comparable accuracy with smaller training datasets due to their
efficient use of training data and adaptive sampling strategies,
making them particularly suitable for data-scarce regimes
where generating extensive DFT training sets is computation-
ally expensive.130,140

Perhaps even more impactful is the development and appli-
cation of MLIPs. While classical ML and standard GNNs often
focus on predicting static properties (stability, band gap, mod-
uli) or rely on computationally expensive methods (AIMD, NEB)
to infer dynamics, MLIPs provide a computationally tractable
route to directly simulate the crucial dynamic processes govern-
ing ionic conductivity. This enables the field to move beyond
predicting prerequisites for good conductivity towards simulat-
ing and understanding the transport phenomenon itself over
timescales reaching microseconds—a significant computa-
tional achievement.141 However, MLIPs require careful valida-
tion to ensure transferability across different thermodynamic
conditions and structural motifs, as their accuracy is funda-
mentally limited by the quality and coverage of the underlying
DFT training set. Additionally, the computational overhead of
generating sufficient training data for MLIPs can be substan-
tial, particularly for complex multi-component systems. Despite
these advances, current MLMD simulations still remain far
from capturing the experimentally relevant timescales (seconds
to minutes) over which macroscopic ionic transport and device-
relevant processes occur, and bridging to true experimental
scales may require hybrid approaches combining MLMD with
adaptive KMC methods.

Models trained predominantly on computational data face
inherent challenges when predicting experimentally observed
ionic conductivities due to systematic discrepancies between
DFT calculations and experimental measurements. Effective
validation strategies require testing against independent
experimental datasets rather than computational holdouts,
implementing cross-validation with available experimental
data, and developing calibration methods that account for
temperature-dependent Arrhenius behavior and experimental
measurement uncertainties.142 For SGPR-based approaches,
the inherent uncertainty quantification provides additional
validation capabilities by identifying regions where model
predictions may be unreliable, enabling more robust assess-
ment of model confidence and guiding iterative improvement
through active learning protocols.140 Furthermore, hybrid train-
ing approaches that incorporate both computational and
experimental data during model development can significantly
improve predictive accuracy for experimental properties. As
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computational materials discovery matures, adopting rigorous
experimental validation protocols will be critical for establish-
ing ML models as reliable tools for guiding experimental
synthesis efforts. Generative models represent a further step,
shifting the focus from predicting properties of existing or
hypothetical materials to designing entirely new structures
optimized for target performance.

Furthermore, the emergence of large-scale, pre-trained
models signifies a trend towards developing more universal
and transferable tools in materials informatics. Models like
MEGNet, M3GNet, CHGNet, and GPTFF, trained on vast and
diverse datasets such as the Materials Project calculation
database, encapsulate a broad understanding of chemical
bonding and structural stability across the periodic table. This
pre-training allows these foundational models to be potentially
fine-tuned for specific downstream tasks, such as predicting
properties within a particular class of SSEs, using smaller, task-
specific datasets. This strategy leverages the massive amounts
of existing computational data to build general knowledge,
which can then accelerate research on specific material systems
by reducing the burden of generating extensive training data
for every new problem. Nevertheless, practitioners should be
aware that even pre-trained universal models may require
domain-specific fine-tuning and validation, particularly when
applied to novel chemistries or extreme conditions not well-
represented in the original training data. The success of these
approaches ultimately depends on careful consideration of data
quality, model selection criteria, and rigorous benchmarking
against experimental observations. This approach promises to
significantly enhance the efficiency of ML-driven materials
discovery pipelines.

4. ML-guided applications in SSE
discovery and design
4.1. Prediction of key material properties

A primary application of ML in SSE research is the rapid and
accurate prediction of crucial material properties. By learning
from existing data, ML models can establish correlations
between easily obtainable features (e.g., composition, crystal
structure) and target properties that are typically expensive or
slow to determine. Ideal SSEs should possess a suite of desir-
able characteristics, including high ionic conductivity (often
targeting 41 mS cm�1 at room temperature), a wide electro-
chemical window to ensure stability against high-voltage
cathodes and low-voltage anodes (like Li metal), and suffi-
cient mechanical strength to suppress lithium dendrite
penetration.

4.1.1. Ionic conductivity. Ionic conductivity is arguably the
most critical performance metric for an SSE. ML models have
been developed to predict this property, often by correlating
structural and chemical descriptors with experimentally mea-
sured or computationally derived conductivity values. These
models can significantly expedite the identification of promis-
ing high-conductivity candidates from large databases.

The foundational work by Sendek et al. (2017) established
the viability of ML-driven conductivity screening through a
logistic regression classifier trained on 40 lithium-containing
compounds.143 Despite the limited training set, their model
effectively distinguished fast from slow Li-ion conductors using
atomistic descriptors including Li–Li coordination numbers,
sublattice bond ionicity, and anion coordination environments.
The practical validation of this approach emerged when high-
throughput screening of 12 000 Materials Project compounds
identified 21 fast-conductor candidates, with subsequent DFT-
MD simulations confirming superionic behavior in several
materials, notably Li3InCl6, which achieved experimental
verification.143,144 This early success demonstrated that even
simple ML models, when coupled with physically meaningful
features, could effectively navigate vast chemical spaces.

Building on these classification successes, recent efforts
have focused on regression-based conductivity prediction with
enhanced accuracy. The comparative analysis by Mishra et al.
(2023) systematically evaluated eight predictor models includ-
ing random forest regressor, support vector machine, and
shallow neural networks using activation energy, operating
temperature, and lattice parameters as features.110 Their find-
ings highlighted the superior robustness of ensemble methods
like random forest, while demonstrating that model stacking
prevents overfitting, a critical insight for conductivity predic-
tion where data scarcity remains a persistent challenge.

The transition toward more sophisticated approaches is
exemplified by studies targeting specific electrolyte chemistries
with optimized algorithms and novel descriptors. Jaafreh et al.
(2024) developed a targeted framework for Mg-ion electrolytes
by leveraging phonon density of states (PhDOS) data to calcu-
late ‘‘total phonon band center’’ as a conductivity proxy.145

Their systematic comparison of Extra Random Trees, Gradient
Boosting, and Extreme Gradient Boosting algorithms revealed
that extra random trees achieved superior performance (R2 =
0.964), enabling predictions across B9000 Mg compounds.
The chemical insights derived from this model, particularly
the identification of Mg–Se systems as exhibiting the lowest
median band centers (27.5 meV) compared to Mg–S (40.5 meV)
and Mg–O (55.5 meV), demonstrate how ML can simulta-
neously accelerate screening and provide mechanistic
understanding.145

Addressing the critical data gap for multivalent systems,
Dong et al. developed a generalizable ML framework specifi-
cally designed for screening Na, Mg, and Al garnet
electrolytes.146 Utilizing carefully designed chemical descrip-
tors, their XGBoost models achieved 94% accuracy for thermal
stability and 89% for band gap prediction across 43 732 com-
pounds. The framework identified 1764 compounds meeting
both thermal stability and electronic criteria, which were
further filtered to yield 44 economically viable candidates with
high performance potential. Interpretability analysis revealed
that mean electronegativity is the most critical factor for
thermal stability, while atomic radius range governs band gap
properties, providing actionable design principles for multi-
valent conductor development.
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Kharbouch et al. (2024) achieved exceptional accuracy for
ionic conductivity prediction (R2 = 0.85) for LLZO-type garnets
through meticulous data curation and hyperparameter optimi-
zation using CatBoostRegressor with Optuna framework
tuning.147 Their emphasis on rigorous preprocessing, including
stoichiometric verification and KNN imputation, underscores
the critical importance of data quality in achieving reliable
conductivity predictions.

Recent developments have integrated pre-trained graph
neural network potentials to generate physics-informed
descriptors. Maevskiy et al. (2025) employed M3GNet to analyze
potential energy surfaces under frozen framework approxi-
mation, deriving heuristic descriptors correlated with lithium
mobility.148 This approach achieved efficiency gains of approxi-
mately 50� faster than MLIP-driven MD and 43000� faster
than AIMD, with eight out of ten highest-ranked materials
confirmed as superionic conductors through first-principles
calculations.148 The significance of this work lies in its demon-
stration of how powerful, pre-trained ‘‘foundation’’ models can
be adapted to generate specialized, physically meaningful
features for predicting properties like ionic conductivity,
enabling rapid and reliable large-scale screening.

Models trained predominantly on computational data face
inherent challenges when predicting experimentally observed
ionic conductivities due to systematic discrepancies between
DFT calculations and experimental measurements. Effective
validation strategies require testing against independent
experimental datasets rather than computational holdouts,
implementing cross-validation with available experimental
data, and developing calibration methods that account for
temperature-dependent Arrhenius behavior and experimental
measurement uncertainties.142 Furthermore, hybrid training
approaches that incorporate both computational and experi-
mental data during model development can significantly
improve predictive accuracy for experimental properties.149 As
computational materials discovery matures, adopting rigorous
experimental validation protocols will be critical for establish-
ing ML models as reliable tools for guiding experimental
synthesis efforts.

4.1.2. Electrochemical stability. Electrochemical stability is
vital for the practical application of SSEs, ensuring that they do
not decompose when in contact with highly reactive electrodes
(e.g., Li metal anode) or at the operating voltages of the battery.
ML models contribute by predicting properties indicative of
stability, such as formation energy (a proxy for thermodynamic
stability against decomposition into competing phases) and
band gap (often correlated with the electrochemical window).

The critical importance of accurate structural sampling for
stability predictions is demonstrated by Ataya et al., who
revealed that conventional Coulomb methods fail to identify
the most stable, low-energy LLTO configurations after DFT
geometry relaxation.150 This structural misrepresentation led
to overestimated electrochemical stability windows (3.1 V versus
the correct 2.5 V), with prediction errors reaching 0.67 eV. To
address this sampling challenge, the authors developed a
SOAP-KRR machine learning model trained on only 40 DFT-

relaxed structures that accurately predicts energy rankings,
providing a computationally efficient alternative for sampling
disordered materials.150

Complementing these structural considerations, compre-
hensive screening approaches have emerged that integrate
stability assessments within broader materials discovery pipe-
lines. Chen et al. (2025) developed a hierarchical screening
strategy starting with 20 717 Li-containing compounds from
the Materials Project database.51 Their multi-stage process
applied thermodynamic stability and electronic band gap pre-
screening, followed by ML classification and regression models
trained on 468 samples to identify high-conductivity candi-
dates. After electrochemical stability window assessment and
AIMD validation, this approach identified three promising
candidates (Li3BiS3, Li5BiS4, and Li10ZnP4S16) with high room-
temperature ionic conductivities, low activation energies, and
favorable interfacial compatibility with common cathodes.51

The relationship between composition, structure, and elec-
trochemical performance has been further elucidated through
targeted studies of specific electrolyte families. Kireeva et al.
investigated garnet-structured solid electrolytes by combining
experimental data analysis with machine learning, identifying
an optimal lattice constant range of 12.950–12.965 Å for max-
imum ionic conductivity in LLZO-type garnets.151 Their quanti-
tative regression models using SVM, LSTM, GP, and XGBoost
algorithms revealed that Li and La content, atomic scattering
factors at the C site, and Shannon ionic radii of dopants
were the most influential parameters affecting ionic conduc-
tivity, providing quantitative guidance for compositional
optimization.151

4.1.3. Mechanical stability. The mechanical properties of
SSEs are critical, particularly for their ability to suppress the
growth of lithium dendrites, which can cause short circuits and
battery failure, especially when using Li metal anodes. ML
models have been developed to predict mechanical properties
such as bulk modulus (K) and shear modulus (G), which are key
inputs for theories of dendrite suppression.

Early applications of graph neural networks for mechanical
property prediction established the feasibility of high-
throughput screening approaches. Ahmad et al. employed a
CGCNN trained on 2041 crystal structures with DFT-calculated
elastic moduli to predict mechanical properties for over 12 000
inorganic solids.98 These ML-predicted moduli were then inte-
grated with the Monroe-Newman stability parameter (w) frame-
work to assess dendrite initiation propensity at Li metal/SSE
interfaces, identifying over 20 mechanically anisotropic inter-
faces involving six solid electrolytes predicted to suppress
dendrite growth.98

The challenge of limited training data has been system-
atically addressed through active learning strategies that opti-
mize data acquisition. Choi et al. trained a LightGBM model on
14 238 elasticity structures, initially achieving modest perfor-
mance (R2 = 0.633 for shear modulus prediction).152 However,
their active learning approach, which iteratively added materi-
als with high prediction uncertainty to the training set,
improved the R2 score to 0.802 with only 1600 strategic
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additions compared to 2800 required for random selection.152

This efficiency gain highlights the critical importance of intel-
ligent data acquisition strategies, particularly given the compu-
tational expense of DFT elasticity calculations.

Building on these methodological advances, comprehensive
screening workflows have emerged that integrate mechanical
property prediction with other critical SSE characteristics. Sun
et al. developed a two-stage ML workflow starting with LGBM-
based mechanical property screening of 5329 LLZO-derived
candidates, followed by superionic conductor classification
and AIMD validation.50 This hierarchical approach successfully
identified 10 new tetragonal-phase materials combining super-
ior mechanical properties with high ionic conductivity.50

The interpretability of mechanical property predictions has
been enhanced through feature analysis techniques that pro-
vide physical insight into structure-property relationships.
Wang et al. developed an optimized LGBM model achieving
R2 E 0.86–0.87 for both shear and bulk modulus prediction
using 8920 Materials Project samples.153 Their integration of
SHAP analysis revealed that volume per atom and valence band
maximum are critical predictors, while extrapolation experi-
ments to datasets containing elements (Mg, Al, K, Ni) absent
from training demonstrated that model transferability to new
chemical spaces can be significantly improved with strategic
addition of diverse samples.153

4.2. High-throughput virtual screening (HTVS)

HTVS leverages computational power to rapidly evaluate vast
numbers of candidate materials for desired properties, signifi-
cantly accelerating the materials discovery cycle. ML plays a
crucial role in making HTVS more efficient and intelligent by
acting as fast and inexpensive filters, prioritizing the most
promising materials for further, more accurate investigation
rather than relying solely on brute-force first-principles calcula-
tions. The integration of ML transforms HTVS from a poten-
tially exhaustive search into a more guided exploration,
employing classifiers to identify materials belonging to desired
classes (e.g., ‘‘superionic conductor’’), regression models to
predict continuous property values, and active learning
approaches that iteratively suggest the most informative candi-
dates to evaluate next. Fig. 3 shows a schematic of a typical ML-
driven HVTS workflow.

The scale and sophistication of modern HTVS campaigns
are exemplified by ultra-large screening efforts that combine
multiple ML models in hierarchical filtering approaches. Chen
et al. (2024) demonstrated this approach by screening over 32
million candidates for solid-state electrolytes.154 Structure can-
didates generated via iso-valent substitutions were reduced
to B589 000 stable materials using ML potentials (M3GNet)
for thermodynamic phase stability assessment. Subsequent
funnel-based screening applied ML models for band gap
(43 eV) and electrochemical stability filters, followed by
higher-accuracy DFT calculations, yielding 18 final candidates
with new compositions. The top candidates, the NaxLi3�xYCl6

series, were synthesized and experimentally validated, confirm-
ing both structure and conductivity predictions.154

Complementing these massive screening approaches, tar-
geted studies of specific material families have employed
sophisticated multi-property optimization strategies. Lee et al.
(2025) computationally screened 4375 hypothetical Na-based
argyrodites using DFT calculations to evaluate energy above
hull, formation energy, band gap, and electrochemical stability
window.155 Their 4-dimensional Pareto sorting technique nar-
rowed the field to 15 top candidates, with AIMD simulations
ultimately identifying five promising virtual compositions,
including Na6SiS4Cl2 and Na7.75SiS5.75Cl0.25.155 This approach
demonstrates how multi-objective optimization can efficiently
navigate complex property trade-offs in materials design. Simi-
larly employing multi-dimensional optimization, Lee et al.
(2024) combined genetic algorithms with Bayesian optimiza-
tion using GPR surrogate models to screen 18 133 hypothetical
antiperovskite electrolytes. Their active learning framework
reduced the computational burden to just 144 strategically
selected DFT calculations while constructing a 4-dimensional
Pareto frontier for thermodynamic stability, band gap, electro-
chemical window, and ionic conductivity, ultimately identifying
22 promising candidates with seven exhibiting superior room-
temperature conductivity (44 mS cm�1).156

The integration of experimental insights with computational
screening has enabled more targeted materials design strate-
gies. Sewak et al. trained a logistic regression model on 170
experimental NASICON materials, using PCA to identify 9 key
features governing ionic conductivity.157 The model revealed
that low dopant electronegativity and increased Li occupancy at
M2 sites are critical for high conductivity, insights that guided
dopant selection for the LiGe2(PO4)3 system. Bond valence
sum energy calculations further screened dopants by migration

Fig. 3 Schematic illustration of a HTVS workflow for the discovery and
evaluation of SSEs. (a) The chemical space is generated via systematic
elemental substitutions and defect engineering within known crystal
structure prototypes. (b) ML models trained on precomputed datasets
are employed to rapidly predict key properties such as ionic conductivity,
formation energy, and shear modulus. (c) Candidate materials are filtered
through a sequential funnel based on physical criteria including thermo-
dynamic, electronic, electrochemical, and mechanical stability, followed
by ionic conductivity thresholds. The most promising candidates undergo
final validation using first-principles calculations (DFT and/or AIMD).
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barrier estimation, leading to the design of Li2Mg0.5Ge1.5(PO4)3

with a DFT-validated migration barrier of 0.261 eV.157

Advanced ML architectures have been developed specifically
for ionic conductivity screening, leveraging physics-informed
descriptors to enhance prediction accuracy. Xie et al. performed
high-throughput screening of nearly 50 000 Li-containing com-
pounds using bond-valence kinetic Monte Carlo simulations,
identifying 329 materials meeting stability and conductivity
thresholds.158 Their graph convolutional network, trained to
predict conductivity directly from bond valence energy land-
scapes, outperformed models learning from atomic structure
alone and accelerated screening of 979 additional candidates
generated via isovalent substitution, identifying 239 potential
superionic conductors.158

Specialized neural network architectures have also emerged
for targeted chemical space exploration. Wan et al. (2024)
developed DopNetFC, which outperformed conventional ML
approaches including random forest and GBDT for screening
atom substitution schemes.159 Applied to over 2208 potential
substitutions in Li10GeP2S12, the most promising ML-identified
candidates were validated through multi-step DFT calcula-
tions assessing thermodynamic, electronic, and mechanical
stability.159 This approach demonstrates the effectiveness of
task-specific neural architectures for exploring well-defined
chemical modification spaces.

Multivalent conductor screening has been advanced
through comprehensive ML platforms addressing critical data
gaps beyond Li-ion systems. Wang et al. developed AI-IMAE
based on CGCNN, a platform providing real-time activation
energy predictions across nine ionic species (Li+, Na+, Mg2+,
Zn2+, Al3+, Ag+, Cu2+, F�, O2�) with B105� speedup over
traditional methods.160 Screening 144 595 compounds identi-
fied 316 SSE candidates and 129 cathode materials across the
different ionic species. Similarly, Cai et al. used XGBoost
algorithms to screen spinel structures for Mg/Zn cathodes,
achieving 91.2% prediction accuracy and identifying six candi-
dates (MgNi2O4, MgMo2S4, MgCu2S4, ZnCa2S4, ZnCu2O4,
ZnNi2O4) with ionic diffusion coefficients 41 � 10�9 cm2 s�1

and volume expansions o22%.161 These targeted approaches
demonstrate ML’s potential for accelerating discovery in under-
explored multivalent systems.

4.3. Elucidating ion dynamics via ML interatomic potentials
(MLIPs)

Understanding the atomistic mechanisms of ion diffusion is
fundamental to designing SSEs with high ionic conductivity.
Traditional methods like AIMD provide high accuracy but are
computationally expensive, limiting simulations to small sys-
tem sizes (hundreds of atoms) and short timescales (picose-
conds to nanoseconds). Classical empirical potentials are much
faster but often lack the accuracy and transferability needed for
complex SSE chemistries or reactive environments. MLIPs have
emerged as a transformative technology, bridging this
accuracy-cost gap. Trained on extensive datasets of energies
and forces generated by DFT calculations, MLIPs can reproduce
the potential energy surface with near-DFT accuracy but at a

computational cost an order of magnitude lower, enabling
large-scale (thousands to millions of atoms) and long-
timescale (nanoseconds to microseconds) MD simulations.

This capability has profound implications. MLIPs allow for
the simulation of complex SSE systems, such as amorphous
phases, grain boundaries, and interfaces, which are often
intractable with AIMD due to their size and disorder. Further-
more, the extended simulation times accessible with MLIPs are
crucial for capturing rare diffusion events, accurately calculat-
ing diffusion coefficients, and observing collective ionic
motion, leading to unprecedented insights into ion transport
pathways and the role of structural dynamics. Beyond these
mechanistic studies, MLIPs also enable the high-throughput
computational screening of vast design spaces to accelerate the
discovery of entirely new SSE materials (Fig. 4).

The theoretical foundation for this field was established by
Behler and Parrinello (2007), who introduced high-dimensional
neural network potentials using symmetry functions to describe
local chemical environments in a rotationally and translationally
invariant manner.162 This pioneering approach laid the ground-
work for modern MLIPs that enable DFT-accuracy simulations at
significantly reduced computational cost.

Applications of MLIPs in SSE research have progressed from
validating known properties to discovering new transport phe-
nomena and challenging established mechanisms. Gigli et al.
(2024) exemplified this evolution by investigating charge trans-
port in all known phases (a, b, and g) of Li3PS4 using three
separate potentials trained on different DFT reference levels
(PBEsol, r2SCAN, and PBE0).163 Their large-scale (768-atom)
and long-timescale (up to 6 ns) simulations revealed that

Fig. 4 A schematic of the machine learning interatomic potential (MLIP)
driven workflow for accelerated discovery of solid-state electrolytes
(SSEs). (a) The process begins with generating a dataset of energies and
forces from ab initio calculations (e.g., DFT). (b) This data is used to train a
machine learning model, such as a neural network, to create an MLIP. (c)
The trained MLIP rapidly predicts the potential energy surface (PES),
enabling large-scale and long-timescale molecular dynamics simulations.
These simulations allow for (d) the systematic exploration of the vast SSE
design space, which is constructed by varying elemental compositions,
introducing dopants, and considering diverse crystalline and amorphous
structures. (e) From these simulations, promising candidates are identified
through a screening funnel. (f) The most promising materials are then
validated with targeted, high-fidelity DFT calculations or experimental
synthesis. This framework can operate as a closed loop, where new data
from the validation step is used to further refine the MLIP.
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superionic behavior results from a structural transition from g
to mixed a-b phases, driven by thermal activation of correlated
PS4 flips that reduce Li-ion diffusion activation energy by up to
6-fold.163 Crucially, they refuted the ‘‘paddle-wheel’’ mecha-
nism by demonstrating that PS4 flip timescales (nanoseconds)
and Li-ion hopping (picoseconds) are separated by orders of
magnitude, while also showing that the commonly used
Nernst-Einstein approximation underestimates conductivity
by more than a factor of two.163

The power of MLIPs in elucidating complex transport beha-
viors extends to understanding non-Arrhenius temperature
dependence in garnet systems. Dai et al. (2022) studied Lix-

La3Zrx�5Ta7�xO12 garnets using MLIPs trained on DFT-MD
trajectories, achieving superior accuracy compared to other
computational models.164 Their simulations revealed that ionic
conductivity follows Vogel–Tammann–Fulcher rather than
Arrhenius behavior, with maximum conductivity occurring at
Li content between 6.6 and 6.8.164 This work demonstrates how
MLIPs can capture subtle temperature-dependent transport
phenomena that require extensive sampling.

MLIPs have proven particularly valuable for studying amor-
phous systems and interfaces, where structural disorder
demands large simulation cells and long equilibration times.
Seth et al. (2025) investigated Li+ transport in amorphous
LiPON and at Li||LiPON interfaces using a neural equivariant
interatomic potential (NequIP) trained on over 13 000 DFT
structures.165 Their simulations accurately reproduced experi-
mental room-temperature conductivity in bulk LiPON while
revealing that interfacial transport is one order of magnitude
slower than bulk transport.165 Similarly, Yang et al. (2025)
combined AIMD with DeePMD MLIPs to study amorphous
LixAlOgCl3+x�2y electrolytes, revealing that Li+ transport is facili-
tated by Cl atom rotation within tetrahedral frameworks and
that oxygen doping enhances glass-forming ability while redu-
cing mobile Cl atoms, requiring optimization of the O/Cl ratio
for maximum conductivity.166

The integration of MLIPs with materials discovery workflows
has enabled the exploration of composition–structure–property
relationships across extended chemical spaces. Guo et al. (2022)
demonstrated this approach by mapping the phase diagram of
glass-ceramic lithium thiophosphate electrolytes using neural
network potentials coupled with genetic algorithms to explore
amorphous structures along the (Li2S)x(P2S5)1�x composition
line.167 Through unsupervised structure-similarity analysis,
they identified that local Li environments resembling super-
ionic b-Li3PS4 are energetically favorable around x E 0.725,
leading to the design of a new candidate composition with
predicted ionic conductivity exceeding 10�2 S cm�1.167

Beyond solid-state electrolytes, MLIPs have also provided
valuable insights into ionic transport mechanisms in battery
electrode materials. Ha et al. (2022) demonstrated the applica-
tion of SGPR-accelerated molecular dynamics to investigate the
effect of aluminium doping on Li-ion transport in Li-excess
layered oxide cathodes.168 Their nanosecond-timescale simula-
tions of Li1.22Ru0.61Ni0.11Al0.06O2 revealed that Al-doping
reduces the Li-ion diffusion activation energy from 0.48 eV to

0.40 eV, demonstrating enhanced ionic transport alongside
improved structural stability. This reduction in activation
energy resulted in approximately twice the Li-ion diffusion
coefficient at elevated temperatures. The study showed how
strategic dopant selection can simultaneously optimize both
transport properties and electrochemical stability, with
strengthened Al–O bonding suppressing oxygen oxidation
while facilitating Li-ion mobility.

Despite their transformative potential, MLIP-based MD
simulations require careful validation to ensure reliable pre-
dictions, particularly given inherent uncertainties in force
predictions and energy errors.169 Best-practice validation stra-
tegies extend beyond simple energy and force comparisons to
include systematic benchmarking against AIMD for key proper-
ties such as diffusion coefficients, phase stability, and thermal
transport.170 Uncertainty quantification through ensemble
methods, gradient-based approaches, or committee models
provides essential error estimates during simulations, enabling
active learning protocols that iteratively improve MLIP
reliability.171,172 Furthermore, domain-specific validation tests,
including rare event prediction and long-timescale dynamical
properties, are crucial for establishing confidence in MLIP
extrapolation beyond training domains.173 As the field matures,
standardized validation protocols and uncertainty reporting
will be essential for establishing MLIP credibility in high-
stakes materials discovery applications.

Table 2 summarizes these seminal contributions, illustrat-
ing how MLIPs have advanced our understanding of ion
dynamics in SSEs.

5. Navigating the frontiers of solid-
state electrolyte discovery: addressing
key challenges

Despite the considerable enthusiasm and initial successes, the
application of ML in SSE research is confronted by several
deeply ingrained challenges that currently limit its full
potential. These research gaps, which form the central motiva-
tion for this review, include pervasive data scarcity, particularly
for emerging material systems; the complex demands of multi-
objective optimization for practical applications; the often-
opaque nature of ML models, which hinders scientific under-
standing and trust; issues with the transferability and general-
ization of models to new chemical domains; and the need to
move beyond simple screening towards generative design fra-
meworks capable of proposing entirely novel materials. These
challenges are not merely isolated obstacles but are often
interconnected, where, for instance, a lack of sufficient high-
quality data directly impedes the development of generalizable
models capable of robust multi-objective optimization. Addres-
sing these interconnected hurdles is paramount for ML to truly
catalyze a paradigm shift in materials discovery, transitioning
from serendipitous discovery to a more predictive, efficient,
and accelerated design cycle for SSEs and, by extension, other
advanced functional materials. Fig. 5 provides a schematic
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overview of the key machine learning methodologies that have
emerged to address these core challenges.

5.1. Challenge 1: navigating data deficiencies in ML-driven
SSE discovery

The fundamental challenge limiting ML-driven SSE discovery is
the pervasive scarcity of high-quality training data, particularly
for multivalent ion conductors. This data deficit manifests in
three critical dimensions: insufficient quantity, poor quality
heterogeneity, and severe chemical imbalance across ion types.

The non-lithium data crisis. While Li+ systems benefit from
decades of intensive research generating relatively substantial
datasets, non-lithium ion conductors including Na+ and multi-
valent systems (Mg2+, Ca2+, Zn2+, Al3+) remain critically
underrepresented.174–176 This disparity is not merely quantita-
tive. Non-lithium ions exhibit fundamentally different trans-
port mechanisms characterized by varying ionic radii,

coordination preferences, and in the case of multivalent sys-
tems, stronger Coulombic lattice interactions and sluggish
diffusion kinetics.177 Consequently, ML models trained on Li+

data cannot reliably extrapolate to these alternate systems, as
evidenced by uMLIPs failing to generalize beyond their
chemical training space.178 The fundamental differences in
transport mechanisms, optimization priorities, and critical
descriptors across Li, Na, Mg, and Al systems (summarized in
Table S3) necessitate system-specific ML framework design.

The data quality problem compounds this scarcity. SSE
datasets aggregate information from disparate experimental
protocols, computational methods with varying theoretical
rigor, and literature reports lacking standardized metrics.179

This heterogeneity introduces systematic noise, missing values,
and conflicting measurements that undermine model reliabil-
ity. The absence of centralized, standardized databases for
multivalent SSE properties forces fragmented, redundant

Table 2 Seminal contributions of ML interatomic potentials to understanding ion dynamics in SSEs

Study/MLIP
development
(primary
citation) MLIP type/focus

SSE system(s)
investigated

Key insights into ion dynamics/
mechanisms Significance/impact

Behler and
Parrinello
(2007)162

HDNNPs using atom-
centered symmetry
functions

Bulk silicon (as proof-
of-concept for general
condensed matter
systems)

Decomposes total energy into local
atomic contributions, enabling simula-
tions of arbitrarily sized systems with
DFT accuracy by learning the potential
energy surface (PES)

Foundational theoretical and methodo-
logical work that established the modern
framework for atomistic MLIPs, making
large-scale, long-timescale simulations
of SSEs feasible

Guo et al.
(2022)167

ANN potential com-
bined with a genetic
algorithm (GA) for AI-
aided sampling

Glass-ceramic lithium
thiophosphate (LPS)
systems: (Li2S)x(P2S5)1�x

Discovered that local Li environments
similar to the superionic b-Li3PS4 phase
are energetically favored around compo-
sition x E 0.725. Mapped the amor-
phous phase diagram and identified
miscibility gaps

Demonstrated a powerful workflow
combining MLIP-accelerated sampling
and structural analysis to design novel,
high-conductivity amorphous SSE
compositions

Gigli et al.
(2024)163

GAPs trained on mul-
tiple DFT levels (PBE-
sol, r2SCAN, and
PBE0)

All known polymorphs
(a, b, g) of lithium
thiophosphate (Li3PS4)

Showed superionic behavior is driven by
a structural transition activated by cor-
related PS4 flips, not a ‘‘paddle-wheel’’
effect. The Nernst-Einstein approxi-
mation underestimates conductivity by
over a factor of 2 due to strong ionic
correlations

Resolved a long-standing controversy
over the transport mechanism in Li3PS4
and highlighted the necessity of using
higher-accuracy functionals (PBE0) and
correlation-aware analysis for predictive
simulations

Dai et al.
(2022)164

Artificial neural net-
work (SIMPLE-NN)
using atom-centered
symmetry functions

Lithium garnet oxides:
LixLa3Zrx�5Ta7�xO12

Revealed that ionic conduction in gar-
nets follows a non-Arrhenius tempera-
ture dependence, better described by the
VTF equation. Calculated Haven ratio of
0.1–0.4 indicates strong concerted
motion of Li-ions

Provided a highly accurate potential for
the garnet family, resolving ambiguity
around the optimal composition for
conductivity (x = 6.6 to 6.8) by combining
simulations with experimental data

Seth et al.
(2024)165

NequIP, an E(3)-
equivariant GNN

Amorphous lithium
phosphorus oxynitride
(LiPON) and Li

LiPON interface Accurately modelled the amorphous
LiPON structure and bulk Li+ con-
ductivity. Found that Li+ transport across
the Li

Yang et al.
(2025)166

DeePMD Amorphous oxychloride
electrolytes:
LixAlOgCl3+x�2y

Uncovered that Li+ transport is facili-
tated by the rotation of Cl atoms within a
structural skeleton of Al-chains. Found
that O-doping enhances amorphization
(enabling Cl rotation) but reduces
mobile Cl atoms, creating an optimal O/
Cl ratio for conductivity

Elucidated a novel transport mechanism
in an emerging class of amorphous oxy-
chloride SSEs and provided a clear
design principle based on balancing
glass-forming ability with mobile anion
concentration

Ha et al.
(2022)168

SGPR with on-the-fly
training

Al-doped Li-excess
layered oxide cathodes:
Li1.22Ru0.61Ni0.11Al0.06O2

Demonstrated that Al-doping reduces Li-
ion diffusion activation energy from 0.48
eV to 0.40 eV, enhancing ionic transport
while strengthened Al–O bonding sup-
presses oxygen oxidation and improves
structural stability

Demonstrated how dopant-induced
electronic structure modifications can
simultaneously enhance ionic transport
and suppress degradation mechanisms,
providing design principles for stable
high-energy-density electrode materials
with improved Li-ion mobility
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curation efforts across research groups,87 impeding collabora-
tive progress.

Solution 1: leveraging existing scarce data through advanced
learning paradigms

Unsupervised learning for pattern discovery. When labeled
data is scarce, unsupervised learning methods like clustering,
dimensionality reduction, and representation learning can
extract meaningful structural patterns from abundant unla-
beled datasets. This approach is particularly useful for

hypothesizing which features might transfer from data-rich
systems (e.g., Li+, Na+) to data-scarce ones (e.g., multivalents).
For example, Park et al. successfully applied clustering to over
12 000 Na-containing materials, revealing that high-
conductivity candidates consistently shared specific structural
characteristics, such as the abundance of certain polyhedral
motifs (XO4 tetrahedra), and the presence of spacious ion
channels.106 This finding suggests a path for methodological
transfer to beyond-lithium systems. While the optimal struc-
tural features for a Mg2+ conductor will differ from those for
Na+, the types of descriptors identified as critical such as
coordination environments, polyhedral packing, and frame-
work connectivity, are likely to be fundamentally important
across different ion systems. An effective strategy, therefore,
involves using unsupervised learning on large Li+ or Na+

datasets to identify these critical feature classes, which can
then guide the engineering of more targeted descriptors for the
subsequent supervised modeling of multivalent systems.

Transfer learning for cross-domain knowledge. Transfer learn-
ing offers a strategic pathway to leverage knowledge from data-
rich domains (e.g., Li+ systems, general materials databases) for
data-scarce targets (multivalent conductors). A compelling
demonstration showed successful cross-domain ionic conduc-
tivity classification, where models trained exclusively on Na+-
based NASICON compounds accurately predicted Li+-based
materials.47 However, the chemical similarity between Na+

and Li+ likely enabled this success. Extending transfer learning
to multivalent systems with fundamentally different coordina-
tion preferences and transport mechanisms may require
sophisticated domain adaptation techniques or physics-
informed constraints to bridge the mechanistic gap.

Semi-supervised learning for hybrid data exploitation. Semi-
supervised learning provides a middle ground between fully
supervised and unsupervised approaches by leveraging both
labeled and unlabeled data simultaneously. This paradigm is
particularly valuable for SSE discovery where experimental
conductivity measurements are sparse but structural databases
are abundant. The methodology typically involves clustering a
large, unlabeled dataset based on descriptor similarity and
then labeling the resulting clusters with the few available
experimental data points to identify promising regions of the
materials space. This strategy was exemplified by Laskowski
et al., who applied unsupervised agglomerative clustering to
approximately 26 000 lithium-containing compounds and sub-
sequently annotated the resulting clusters using a limited set of
experimental conductivity measurements.95

This methodology successfully identified a cluster exhibiting
high probability for superionic conduction, which led to the
experimental confirmation of Li3BS3 as a novel ionic conductor.
The success of this approach provides a template for a targeted
discovery pipeline in underexplored chemical spaces, such as
those for multivalent conductors. Such a workflow would
involve first clustering the vast space of hypothetical multi-
valent host structures using reliable structural descriptors.

Fig. 5 Key machine learning strategies to accelerate solid-state electro-
lyte (SSE) discovery. This figure illustrates five classes of ML methods used
to address critical challenges in SSE research, from data scarcity to de novo
design. (a) Data scarcity: to combat data scarcity, (i) active learning based
iterative loops are used to intelligently guide expensive data acquisition, (ii)
transfer learning mitigates the need for a large dataset in a target domain
by leveraging knowledge gained from a related, data-rich source domain
and (iii) unsupervised learning to identify patterns and promising candi-
dates in unlabeled data. (b) Multi-objective optimization (MOO): to recon-
cile competing material properties, techniques like (i) evolutionary
algorithms and (ii) Bayesian Optimization navigate design trade-offs (e.g.,
ionic conductivity vs. stability) to identify Pareto-optimal materials. (c)
Explainable AI (XAI): to overcome the ‘‘black-box’’ nature of ML models,
methods like (i) SHAP (Shapley values) and (ii) LIME are applied to quantify
feature importance, providing human-understandable insights into
structure-property relationships. (d) Transfer learning: to improve model
generalization across different chemical families, knowledge from a data-
rich source (e.g., Li-ion systems) is transferred to a data-scarce target (e.g.,
multivalent conductors) using methods like (i) domain adaptation or (ii)
physics informed neural networks. (e) Generative and hybrid frameworks:
for de novo material design, generative models like (i) VAEs, (ii) GANs, and
(iii) diffusion models propose novel compositions and crystal structures,
which are then validated in a (iv) closed-loop with DFT/AIMD simulations
to enable rapid, autonomous discovery.
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Following this, a small and diverse set of compounds from
different clusters could be strategically synthesized to serve as
initial ‘‘seed’’ labels. Subsequent experimental efforts could
then be prioritized on the unlabeled materials within or
adjacent to clusters containing the most promising initial
results, thereby maximizing the value of each experiment and
accelerating the identification of novel beyond-lithium SSEs.

Solution 2: targeted data generation through computational
high-throughput screening. High-throughput density func-
tional theory (HTP-DFT) calculations provide a systematic
approach to generate large, internally consistent datasets for
intrinsic material properties.180 This computational pipeline
can systematically evaluate thousands of candidate materials,
creating valuable training data while maintaining theoretical
consistency. Furthermore, ML models can be trained to predict
expensive DFT results, enabling large-scale screening by cir-
cumventing first-principles calculations for every candidate.98

Successful liquid electrolyte platforms like the Electrolyte
Genome181 demonstrate the value of systematic property corre-
lation mapping and automated screening workflows beyond
simple high-throughput calculation. These liquid-phase sys-
tems also offer opportunities for cross-domain learning: ion
transport patterns in liquid and polymer electrolytes including
solvation dynamics, coordination environment effects, and
structure-transport correlations can inform descriptor engi-
neering and mechanistic understanding for solid electrolytes,
particularly for data-scarce multivalent systems where liquid-
phase computational studies are more prevalent. Adapting
these methodologies to solid-state systems could establish
not only standardized data specifications but also automated
multi-property optimization pipelines that integrate atomic-
scale MLIP predictions with mesoscale grain boundary and
interface modelling.

The synergy between HTP-DFT and ML creates a self-
reinforcing cycle: computational data trains ML models, which
subsequently accelerate screening by reducing computational
bottlenecks.

Solution 3: active learning for intelligent data acquisition.
Active learning addresses the resource constraints of both
experimental synthesis and computational simulations by

strategically selecting the most informative data points for
generation.182 In this iterative framework, ML models identify
candidates where they exhibit maximum uncertainty or where
new data would optimally improve performance. These selec-
tions are then prioritized for experimental characterization or
DFT calculation.

This approach has demonstrated practical success in opti-
mizing doping strategies for LLZO electrolytes.57 By combining
ML models with uncertainty quantification, the active learning
framework efficiently navigated the vast compositional space,
identifying promising dopant combinations while minimizing
required simulations and experiments.57

However, the effectiveness of these data-centric approaches
depends critically on establishing clear prioritization criteria
for data collection efforts. Future experimental and computa-
tional campaigns should prioritize: (1) multivalent systems
with intermediate ionic radii (Mg2+, Zn2+) that bridge the gap
between monovalent and highly charged species, (2) materials
exhibiting mixed ionic-electronic conductivity where transport
mechanisms remain poorly understood, and (3) interfacial
properties and degradation pathways that are systematically
underrepresented in current databases. Computationally,
emphasis should be placed on generating temperature-
dependent transport data and correlated ionic motion descrip-
tors, as these are essential for capturing the non-Arrhenius
behavior observed in many superionic conductors yet remain
scarce in existing datasets. The choice among these strategies
or, more likely, a combination thereof will depend critically on
the specific SSE system under investigation, the target property,
and the nature of the available data. For instance, while
transfer learning might be effective for predicting properties
of Na-ion conductors based on Li-ion data due to their chemical
similarities, discovering novel multivalent conductors might
necessitate more extensive de novo data generation via HTP-
DFT, guided by active learning, to capture their unique physics.
A universal solution to data scarcity is improbable; instead, a
versatile toolkit of these data-centric approaches is essential
for continued progress. Table 3 summarizes the key data
challenges encountered in the application of ML to SSE dis-
covery and outlines potential mitigation strategies.

Table 3 Summary of data challenges in ML for SSEs and mitigation strategies

Data challenge Impact on ML model development
Key mitigation strategies and supporting
evidence

Overall scarcity for SSEs Poor generalization, difficulty modelling
complex phenomena, bias towards well-
studied systems

HTP-DFT data generation,180 development
of curated databases,87 active learning,57

semi-supervised learning95

Specific scarcity for multivalent ion
conductors

Inability to model distinct physics (e.g.,
stronger coulombic interactions, sluggish
diffusion) accurately, poor extrapolation
from Li-ion systems

Targeted HTP-DFT for multivalents, transfer
learning,47 physics-informed ML,183,184

unsupervised learning for feature
discovery106,185

Data heterogeneity/quality (multi-source,
noise, missing values)

Reduced model reliability, inconsistent pre-
dictions, difficulty in training robust models

Rigorous data curation & preprocessing,179

standardized data reporting protocols,
Robust ML algorithms tolerant to noise

Small sample sizes for truly novel
chemistries

High risk of overfitting, poor predictive
power for unexplored chemical spaces

Generative models for candidate
proposal,186 transfer learning from broader
chemical domains,187 LOGO-CV for realistic
performance assessment188
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5.2. Challenge 2: multi-objective optimization: balancing
performance metrics in SSE design

Commercially viable SSEs require concurrent optimization of
multiple, often conflicting properties rather than maximizing a
single parameter. Practical SSEs must satisfy stringent require-
ments including:
� High ionic conductivity (s): typically targeted to be Z10�4

S cm�1 at room temperature, approaching or exceeding that of
liquid electrolytes, to enable high power densities.
� Wide electrochemical stability window (ESW): the electro-

lyte must remain stable against both highly reducing (anode)
and highly oxidizing (cathode) potentials, ideally 45.5 V vs. Li/
Li+ for high-voltage applications.
� Good electrode compatibility: minimal chemical and

electrochemical reactivity with both anode (especially Li metal)
and cathode materials to prevent detrimental interfacial layer
growth and impedance rise.
� Sufficient mechanical strength and appropriate moduli:

the SSE should possess adequate mechanical robustness to
suppress lithium dendrite penetration and withstand the stres-
ses induced by electrode volume changes during cycling, while
also maintaining good interfacial contact.
� High Li+ transference number (tLi+): ideally close to unity,

indicating that Li+ ions are the primary charge carriers, which
minimizes concentration polarization and improves rate
capability.
� Other considerations: factors such as ease of processing,

scalability, low cost, and environmental impact also play crucial
roles in practical viability.

These requirements, however, must be contextualized
within the distinct challenges posed by different battery che-
mistries. Li-ion systems prioritize dendrite suppression and
require stable solid electrolyte interphases (SEI) compatible
with graphite anodes, necessitating optimization for both
mechanical strength and interfacial stability.189 Na-ion systems
face fundamentally different constraints, requiring compatibil-
ity with hard carbon anodes due to graphite’s incompatibility
with Na+ ions, which shifts the optimization focus toward
different voltage windows and interfacial chemistries.190 Mg-
ion systems naturally avoid dendrite formation due to the
divalent nature of Mg2+, but face critical challenges from
sluggish ion transport kinetics caused by strong solvation
effects and higher activation energies, requiring optimization
strategies that prioritize conductivity enhancement over
mechanical dendrite suppression.191 Al-ion systems present
additional complexity, demanding electrolytes compatible with
limited cathode options while managing the high charge
density effects of trivalent Al3+ ions.192 Silicon-based Li systems
introduce further complications through large volume changes
(4300%) that destabilize conventional SEIs, requiring electro-
lytes optimized for mechanical flexibility and stable interfacial
reformation rather than static interfacial stability.193

The interplay between these properties is complex; materials
with very high ionic conductivity might exhibit poor mechan-
ical properties or a narrow electrochemical stability window.

Traditional single-objective ML approaches, predominantly
focused on maximizing ionic conductivity,101,109,194 fail to
capture these trade-offs and produce materials unsuitable for
practical applications. A critical limitation lies in the lack of
frameworks that account for the distinct physics governing
different ionic species and their corresponding electrode
compatibility requirements. Additionally, the computational
expense of evaluating multiple properties for every candidate
material during multi-objective optimization searches can be
substantial, even when using ML-based surrogate models for
property prediction.

Solution 1: Bayesian optimization for multi-objective mate-
rials discovery. Bayesian optimization (BO) frameworks effi-
ciently navigate high-dimensional design spaces by
constructing probabilistic surrogate models (typically Gaussian
Processes) for each objective property. Specialized acquisition
functions can incorporate system-specific constraints and prop-
erty weightings that reflect the distinct requirements of differ-
ent battery systems. Harada et al. demonstrated this approach
by optimizing NASICON-type LiZr2(PO4)3 composition co-doped
with Ca and Y, simultaneously enhancing Li-ion conductivity,
phase stability, and densification.195 Similarly, BO has been
applied to maximize lithium diffusivity while incorporating
computational checks for electronic bandgap and stability at
lithium metal interfaces, effectively handling multiple criteria
through sequential, guided evaluation.58 Future implementa-
tions should incorporate tailored objective weightings—
prioritizing mechanical properties for Li systems prone to
dendrite formation while emphasizing transport kinetics for
Mg systems where sluggish diffusion dominates performance.

Solution 2: evolutionary algorithms for Pareto-optimal solu-
tions. Evolutionary algorithms (EAs), including genetic algo-
rithms (GAs), inherently support multi-objective optimization
through population-based approaches. These algorithms can
be enhanced with tailored fitness functions that reflect the
distinct physical constraints and performance priorities of
different ionic systems. These algorithms apply bio-inspired
operators (selection, crossover, mutation) to iteratively improve
candidate populations against multiple fitness criteria, gener-
ating Pareto-optimal solution sets representing optimal trade-
offs where no objective can be improved without degrading
others. While direct applications to comprehensive inorganic
SSE discovery remain limited, frameworks like evolutionary
variational autoencoders (EVAPD) developed for perovskite
discovery196 demonstrate adaptability to SSE applications
through suitable multi-objective fitness function definitions.

Solution 3: collaborative framework development and
physics-informed search strategies. Effective multi-objective
optimization requires enhanced collaboration between ML
specialists and battery application experts to define meaningful
optimization targets with application-specific weighting schemes
and constraint hierarchies. Electric vehicle batteries might prior-
itize safety-related mechanical strength and electrochemical sta-
bility alongside cycle life, accepting reduced peak ionic
conductivity, while high-power portable devices might emphasize
maximizing ionic conductivity above other metrics. For Na-ion
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systems, optimization frameworks should prioritize compatibility
with hard carbon anodes and appropriate voltage windows, while
Mg-ion systems require frameworks emphasizing transport
enhancement strategies such as optimized coordination environ-
ments. Advanced strategies can leverage physical understanding
to focus searches on design space regions where multiple desir-
able properties are more likely to be co-optimized, reducing
computational requirements while maintaining search effective-
ness by incorporating fundamental materials science principles
into the optimization process. This approach addresses both the
challenge of defining quantitative targets and minimizing expen-
sive multi-property evaluations through intelligent, system-
specific search space reduction.

5.3. Challenge 3: illuminating the ‘‘black box’’: enhancing
interpretability in ML for SSEs

Complex ML models, particularly deep neural networks,
achieve remarkable predictive accuracy but function as ‘‘black
boxes’’ that obscure the reasoning behind their predictions. For
materials scientists, this lack of transparency presents a sig-
nificant barrier to trust and adoption, limiting the potential for
extracting new scientific understanding. Simply predicting
high-performing SSE candidates is insufficient; scientists
require insights into why particular materials exhibit desirable
properties and what underlying structural features or chemical
principles drive performance. Black-box predictions, devoid of
such explanations, offer limited utility for advancing funda-
mental knowledge or formulating new design hypotheses. This
interpretability challenge is particularly acute for multivalent
systems, where the distinct physics governing Mg2+, Zn2+, and
Al3+ transport requires understanding of system-specific
structure-property relationships that may differ fundamentally
from well-studied Li-ion systems.

Solution 1: model-agnostic explainability methods. Model-
agnostic explainability techniques provide insights into ML
model behavior without requiring modifications to the under-
lying algorithms. SHAP (SHapley Additive exPlanations) values,
based on game theory, quantify each feature’s contribution to
specific predictions, while LIME (Local Interpretable Model-
agnostic Explanations) explains individual predictions by
learning simpler, interpretable models locally around the
prediction.197 The XpertAI framework exemplifies advanced
implementation by integrating XAI methods with Large Lan-
guage Models (LLMs) to automatically generate human-
understandable natural language explanations of structure–
property relationships.198 This framework identifies crucial
features using XAI and draws upon scientific literature to
articulate connections, providing a methodology highly perti-
nent to understanding ML models for SSEs. A key application is
the direct comparison of feature importance, for example,
using SHAP values to contrast the governing principles in
lithium-based SSEs with those in multivalent systems, identify-
ing which structural motifs (e.g., tetrahedral coordination
environments, face-centered lattice arrangements, radial dis-
tribution patterns between mobile ions and framework anions)
and compositional parameters (e.g., cation electronegativity

differences, framework atom ionization energies, anion polar-
izability) are universal versus cation-specific descriptors.

Solution 2: interpretable algorithm design and physics-
informed architectures. Interpretable tree-based ensemble
learning methods and graph neural network approaches spe-
cifically designed for SSE applications focus on learning and
explaining relationships between crystal structures and their
corresponding thermodynamic and kinetic properties.199,200

For multivalent systems, this approach is particularly powerful
for extracting explicit design rules from classification models;
for instance, a decision tree trained to identify stable hosts
could yield a human-readable rule like, ‘IF the cation coordina-
tion number is 46 AND the anion framework has a specific
void volume, THEN the material is likely to be stable,’ directly
guiding experimental efforts. Chemistry-informed ML models
enhance interpretability by incorporating known physical rela-
tionships directly into model architectures. For example, a
model for solid polymer electrolytes explicitly encoded the
Arrhenius equation in its readout layer, enabling prediction
of physically meaningful parameters like activation energy (Ea)
and pre-exponential factor (A), making temperature-dependent
conductivity predictions directly interpretable in terms of fun-
damental parameters.201

Solution 3: extraction of scientific insights and design
principles. XAI applications in SSE research have successfully
extracted human-understandable insights that translate into
actionable design principles. Studies examining factors affect-
ing dendrite suppression revealed that material stiffness
increases with mass density and the ratio of Li to sublattice
bond ionicity while decreasing with increasing volume per
atom and sublattice electronegativity.202 Universal machine
learning interatomic potentials have uncovered how crystal
structure, anion disorder levels, and mobile ion arrangement
influence ionic transport. Simulations demonstrated that
appropriate S/Cl disorder in Li6PS5Cl enhances diffusion path-
way connectivity, improving ionic conductivity.178 Extending
this approach, XAI can help answer related questions in multi-
valent systems by revealing how system-specific descriptors,
such as the migrating cation’s ionic radius and charge density,
supplant or interact with the framework properties that are
dominant in lithium conductors. Heuristic structure descrip-
tors derived from universal interatomic potential analysis rank
materials by expected ionic mobility, reflecting potential energy
surface properties that correlate with ion hopping.203

Solution 4: iterative model refinement through explainabil-
ity. XAI insights create a virtuous cycle by informing future
feature engineering efforts and model development. When XAI
consistently highlights specific structural motifs (coordination
environments for Li+ ions, framework topologies) or chemical
attributes as critical for high performance across diverse SSE
candidates, this leads to the formulation of new, generalizable
scientific knowledge and design principles. For example, if XAI
consistently identifies cation coordination environments as
critical for multivalent ion mobility, this insight can be used
to engineer more sophisticated features for the next generation
of models, thereby accelerating the discovery cycle for novel
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battery chemistries. Complex derived features identified as
highly predictive (combinations of bond angles and lengths
defining specific local environments) can be explicitly calcu-
lated and incorporated into subsequent, potentially simpler
and more robust ML models.

Emerging approaches promise to advance beyond feature
importance quantification toward mechanistic discovery. Cau-
sal machine learning methods can distinguish genuine causal
relationships from spurious correlations in structure–property
data, revealing which structural modifications directly influ-
ence ionic conductivity versus those that merely correlate.204

Symbolic regression techniques, which search for explicit
mathematical equations governing material properties,
offer an alternative path to interpretability by automatically
discovering closed-form expressions that relate compositional
and structural descriptors to transport properties or redis-
cover interatomic potentials.205 These physics-discovering
approaches could uncover governing equations analogous to
how the Arrhenius relation describes temperature-dependent
conductivity, potentially revealing universal scaling laws across
different ionic systems.

This iterative refinement, guided by explainability, produces
models that are both accurate and grounded in scientifically
meaningful parameters, representing a shift from ML merely
predicting outcomes to actively contributing to fundamental
understanding of solid-state ionics.

Despite these promising developments, successful imple-
mentation of XAI in SSE research requires awareness of
key methodological limitations. SHAP values exhibit instability
in highly correlated feature spaces typical of materials
datasets, where structural descriptors often show strong
interdependencies.206 LIME’s local approximations may inade-
quately represent global model behavior, particularly proble-
matic for complex structure-property relationships.207 Both
approaches assume feature independence, which conflicts with
the intrinsically coupled nature of atomic positions, coordina-
tion environments, and bonding in crystalline materials.
Best practices include validating XAI outputs through multiple
complementary methods, examining feature correlation
matrices before interpretation, and systematically cross-
checking computational insights against experimental observa-
tions and established physical principles.

5.4. Challenge 4: bridging chemical spaces: enhancing model
transferability and generalization

A significant hurdle for the practical application of ML in SSE
discovery is the ability of models to generalize from known
materials to novel chemical compositions and crystal struc-
tures. Models trained on specific datasets, often limited to well-
explored Li-based compounds, frequently exhibit poor perfor-
mance when tasked with extrapolating to uncharted territories,
such as Na+-based systems or, more drastically, multivalent ion
conductors.

The core issue is that ML models excel at interpol-
ation within their training data domain but struggle with
extrapolation to chemically distinct regions. Conventional

cross-validation techniques, which randomly split data into
training and test sets, often overestimate a model’s true extra-
polative power because test sets usually contain materials
chemically similar to training data. More rigorous ‘‘leave-one-
group-out cross-validation’’ (LOGO-CV), where entire chemical
families are held out for testing, has demonstrated that con-
ventional ML methods can fail when predicting properties of
completely novel compound classes.188 This presents a critical
concern for SSE discovery, where the goal is often to identify
entirely new material families with breakthrough properties.
While universal interatomic potentials like M3GNet are trained
on vast databases (e.g., the Materials Project) and aim for broad
applicability across diverse chemical spaces,208 achieving reli-
able extrapolation remains a frontier challenge.

Solution 1: domain adaptation techniques. Domain adapta-
tion encompasses ML techniques designed to leverage knowl-
edge from a ‘‘source’’ domain, where data may be abundant, to
improve model performance on a ‘‘target’’ domain that might
be data-scarce or have different underlying data distributions.
In SSE contexts, this involves adapting models trained on Li-ion
conductors to predict properties for Na-ion or K-ion conduc-
tors, or transferring knowledge from computational data to
guide experimental outcome predictions. A multi-stage ML
approach for electrocatalyst discovery successfully integrated
domain adaptation to enhance theoretical simulations and
align them with experimental findings,209 demonstrating a
concept directly transferable to SSE research. However, the
effectiveness of domain adaptation is intrinsically linked to
the relevance of incorporated knowledge; if source and target
domains are too disparate in their underlying physics or
chemistry, transferred knowledge may be of limited value or
even detrimental.

Solution 2: physics-informed machine learning (PIML).
PIML improves model generalization and physical consistency,
especially in data-limited scenarios, by embedding known
physical laws, constraints, or symmetries directly into ML
model architectures, loss functions, or feature representations.
By constraining models to adhere to fundamental physics,
PIML can lead to more robust and interpretable predictions
that extrapolate better to unseen data. Universal ML potentials
for liquid electrolytes, trained via iterative DFT calculations,
accurately predict physical properties like density, viscosity,
and ionic conductivity, implying that models have learned
underlying physical consistencies.210 The DiffMix model, a
differentiable geometric deep learning approach for chemical
mixtures, explicitly extends thermodynamic and transport laws
(e.g., Vogel–Fulcher–Tammann for ionic conductivity) with
GDL-learnable physical coefficients, demonstrating improved
accuracy and robustness for predicting liquid electrolyte
properties.211 Nevertheless, PIML success hinges on the accu-
racy and completeness of embedded physical laws; overly
simplified or incomplete physical constraints can restrict a
model’s ability to learn complex phenomena and generalize
correctly.

Solution 3: advanced universal representation learning.
Achieving truly ‘‘universal’’ ML models that can reliably
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extrapolate across vastly different chemical spaces and discover
entirely new material classes remains a formidable scientific
challenge. This likely necessitates a paradigm shift towards
models that can learn or infer fundamental physical laws more
directly from data, rather than relying solely on statistical
correlations or pre-defined explicit constraints. Promising
approaches include more sophisticated PIML frameworks,
integration of ML with symbolic regression techniques to dis-
cover governing equations, or development of AI systems cap-
able of formulating and testing new physical hypotheses. Such
advanced approaches could potentially overcome the limita-
tions of current transferability strategies by learning more
fundamental representations of chemical and physical relation-
ships that generalize across diverse material systems.

5.5. Challenge 5: beyond screening: generative and hybrid
frameworks for novel SSE design

Traditional computational materials discovery, even when aug-
mented by ML, relies on screening predefined candidate lists
derived from existing databases or combinatorial variations of
known crystal structures. While efficient for exploring local
chemical space, these methods are less effective at proposing
radically new compositions or structural archetypes that lie
outside the initial search parameters. They are fundamentally
tools for evaluation rather than de novo creation, inherently
limiting the scope of discovery to variations of known materials
rather than truly novel SSEs with unprecedented properties.

Solution 1: deep generative models for novel material
design. Deep generative models offer a paradigm shift by
learning underlying patterns and design rules from existing
materials data and using this knowledge to propose entirely
new candidate compositions or crystal structures from scratch,
often guided by desired performance criteria.
� VAEs learn a compressed, continuous latent representa-

tion of materials, from which new candidates can be generated
by sampling points in this latent space and decoding them back
into material structures or compositions. Noh et al. applied a
VAE-based framework to the inverse design of solid-state mate-
rials, efficiently exploring chemical compositional spaces to
generate novel candidates with desired properties.55

� GANs employ a two-network architecture: a generator that
creates new material candidates and a discriminator that tries
to distinguish these synthetic candidates from real materials in
a training dataset. Through this adversarial training, the gen-
erator learns to produce increasingly realistic and potentially
novel materials.
� Diffusion models are an emerging class of powerful

generative models that operate by learning to reverse a gradual
noise-adding process. They have shown significant promise for
generating high-quality samples in various domains, like crys-
tal structure generation.212 The MatterGen model, for example,
can generate stable, diverse inorganic materials and can be
fine-tuned to steer generation towards specific property con-
straints, including chemistry, symmetry, and various physical
properties, with one generated structure successfully synthe-
sized and validated.213

Solution 2: evolutionary algorithms and hybrid generative
approaches. Evolutionary algorithms serve as powerful genera-
tive tools, particularly for crystal structure prediction and
compositional optimization. EAs maintain a population of
candidate solutions (materials) and iteratively apply evolution-
ary operators like mutation (small changes to composition or
structure) and crossover (combining features of good candi-
dates) to generate new candidates. A fitness function incorpor-
ating predicted stability, ionic conductivity, and other desired
properties guides the selection of candidates for subsequent
generations. XtalOpt exemplifies an open-source EA for crystal
structure prediction.214 Unsupervised ML has also guided the
prioritization of elemental phase fields for synthetic explora-
tion, leading to the discovery of a novel quaternary lithium
solid electrolyte in a collaborative workflow resembling evolu-
tionary search.215

A hybrid approach combining a VAE with a genetic algo-
rithm, termed the evolutionary variational autoencoder for
perovskite discovery (EVAPD), has been developed to discover
new perovskite materials.196 This framework leverages the
VAE’s ability to generate diverse candidates from a learned
latent space and the GA’s strength in optimizing these candi-
dates based on a defined fitness function (e.g., predicted
stability). Such hybrid generative approaches hold considerable
potential for SSE discovery if adapted with relevant property
targets.

The success of these generative models is critically depen-
dent on the quality and relevance of the design rules or
property targets they are given. If these targets are ill-defined,
incomplete (focusing only on ionic conductivity without con-
sidering stability or synthesizability), or do not capture all
essential practical constraints, the generated candidates may
be theoretically interesting but practically irrelevant or impos-
sible to realize. The ability of models like MatterGen to be fine-
tuned for a broad range of property constraints, and its sub-
sequent experimental validation, underscores the importance
of multi-faceted and accurate guidance for generative design.213

Solution 3: integrated closed-loop experimental-computa-
tional frameworks. The true acceleration in SSE discovery is
anticipated from hybrid design frameworks that tightly inte-
grate ML predictions with DFT calculations for validation and,
crucially, with experimental synthesis and characterization in a
closed-loop or active learning fashion. These ‘‘predictive synth-
esis’’ pipelines allow ML models to propose candidate materi-
als, which are then computationally validated (e.g., by DFT for
stability and preliminary property estimates) and/or experimen-
tally synthesized and tested. The results feed back into the ML
model, refining its predictions and guiding the next iteration of
discovery.

Several pioneering efforts exemplify this approach:
� The CAMEO system is a real-time, closed-loop autonomous

materials exploration platform that uses Bayesian active learn-
ing integrated with synchrotron beamline experiments for on-
the-fly phase mapping and property optimization.216

� The ‘‘Electrolytomics’’ initiative describes an AI-guided
approach that combines data science, robotic experimentation
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for validation, and computation, leading to the discovery and
experimental confirmation of novel high-performance liquid
electrolytes.217

� A computational-experimental pipeline successfully com-
bined AI models, physics-based simulations on cloud HPC for
large-scale screening, and subsequent experimental synthesis
and characterization to discover promising new SSE composi-
tions like NaxLi3�xYCl6.218

� The DiffMix model, a differentiable GDL model, has been
used to guide robotic experimentation for optimizing fast-
charging liquid battery electrolytes, achieving significant con-
ductivity improvements in a few experimental steps.211

� An integrated high-throughput robotic platform combined
with active learning has been developed to accelerate the
discovery of optimal liquid electrolyte formulations. This
approach efficiently identifies high-solubility redox-active mole-
cules by evaluating a small fraction of candidates, demonstrat-
ing the effectiveness of closed-loop frameworks in materials
discovery.219

� Iterative training of universal MLPs, where DFT calcula-
tions are performed on structures where the MLP shows high
uncertainty, also represents a form of closed-loop learning to
refine the potential across a wide chemical space.210

Fully autonomous closed-loop systems, often termed ‘‘self-
driving laboratories’’, represent the apex of accelerated materi-
als discovery. However, their widespread adoption for SSE
research faces significant hurdles. Beyond the continued
advancement of ML algorithms and robotic platforms, a major

challenge lies in the development of standardized, automata-
ble, and rapid synthesis and characterization protocols suitable
for a diverse range of solid-state chemistries. The synthesis of
inorganic solids often involves high temperatures, controlled
atmospheres, and multi-step processes that are not as easily
automated as liquid-phase formulations. Furthermore, critical
to the success of these frameworks is the implementation of
robust validation workflows that prevent costly experimental
efforts on unfeasible materials. Effective validation protocols
should include thermodynamic stability screening via DFT hull
distance calculations, with chemistry-dependent thresholds
based on the metastability scales established for different
material classes,220 kinetic accessibility assessment through
thermodynamic upper bounds such as the amorphous limit
for polymorph synthesizability,221 and rapid experimental vali-
dation using automated characterization techniques222 such as
XRD phase identification and impedance spectroscopy.223,224

These multi-tier filters ensure that generative models guide
experimental efforts toward genuinely promising candidates
rather than thermodynamically unstable or synthetically inac-
cessible compositions.

The cost and complexity of establishing and maintaining such
highly integrated experimental and computational platforms,
combined with the need for standardized validation protocols,
require substantial investment and interdisciplinary expertise.

Table 4 provides a comparative overview of different gen-
erative model approaches and their potential in the context of
novel SSE discovery.

Table 4 Comparison of generative model approaches for novel SSE discovery

Generative
model type Core working principle Strengths for SSE design

Limitations/challenges in SSE
context Key examples/potential

Variational
autoencoders
(VAEs)

Learns a continuous latent repre-
sentation of data; new samples
generated by decoding points
from this latent space

Smooth latent space allows for
interpolation and generation of
similar but novel structures/com-
positions; can be conditioned on
properties

Quality of reconstructed/generated
materials can be an issue; ensuring
chemical validity and stability of
generated crystal structures

Inverse material design55

Generative
adversarial
networks
(GANs)

A generator network creates can-
didates, and a discriminator net-
work tries to distinguish them
from real data; adversarial train-
ing improves generator

Capable of generating highly
novel and diverse candidates; can
learn complex data distributions

Training can be unstable (mode
collapse); ensuring generated crys-
tal structures are physically realis-
tic and stable is challenging

Crystal structure predic-
tion;128 Inverse design of
materials (MatGAN)54

Evolutionary
algorithms
(EAs)/genetic
algorithms
(GAs)

Population-based search; applies
operators (mutation, crossover,
selection) guided by a fitness
function (target properties)

Robust global search capabilities;
can explicitly handle multiple
objectives and complex con-
straints (e.g., stability,
synthesizability)

Can be computationally expensive
if fitness evaluation (e.g., DFT cal-
culation) is slow for each candi-
date; defining effective
representations and evolutionary
operators for crystal structures

Crystal structure predic-
tion (XtalOpt);214 Guid-
ing phase field
exploration for Li-ion
conductors215

Diffusion
models

Learns to reverse a noise-adding
process; new samples generated
by iterative denoising from a ran-
dom starting point

Can generate very high-quality,
realistic samples; emerging as
state-of-the-art in many generative
tasks

Can be computationally intensive
for sampling; developing effective
conditioning mechanisms for spe-
cific material properties and crys-
tal symmetries

General crystal structure
generation;212 Matter-
Gen (fine-tuneable gen-
erative model)213

Hybrid
models (e.g.,
VAE-GA)

Combines strengths of different
generative approaches, e.g., VAE
for generation and GA for
optimization

Potential to overcome limitations
of individual methods; e.g., VAE
explores broadly, GA refines pro-
mising candidates

Increased model complexity;
requires careful integration of
components

EVAPD for perovskites196

Integrated
closed-loop
frameworks

ML proposes candidates - com-
putational validation (DFT) -
experimental synthesis/character-
ization - feedback to refine ML
models in iterative cycles.

Combines theoretical prediction
with experimental validation;
continuous model improvement;
reduces experimental waste
through guided exploration

Requires substantial infrastructure
investment; standardized synth-
esis protocols needed; complex
integration of computational and
experimental platforms; slower
iteration cycles

CAMEO system;216 Elec-
trolytomics;217 Nax-
Li3�xYCl6 discovery;218

DiffMix for electrolyte
optimization211
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6. Conclusion: charting the path
forward for AI-accelerated SSE
innovation

The journey towards high-performance, safe, and commercially
viable solid-state electrolytes is complex, yet the integration of
machine learning offers unprecedented opportunities to accel-
erate progress. This review has highlighted several critical
research gaps and challenges that currently temper the full
impact of ML in this domain: the persistent scarcity of diverse,
high-quality data, especially for multivalent ion systems and
interfacial phenomena; the necessity for multi-objective opti-
mization to balance competing performance metrics; the
demand for interpretable ML models that provide scientific
insights rather than just black-box predictions; the crucial need
for models that can generalize and transfer knowledge across
diverse chemical spaces and novel material classes; and the
imperative to move beyond screening predefined candidates
towards generative design of entirely new materials within
hybrid, closed-loop discovery frameworks.

The data scarcity challenge is particularly acute for multi-
valent systems (Mg2+, Ca2+, Zn2+, Al3+), where solid-state battery
research remains in its early stages both experimentally and
computationally. Beyond the stark quantitative disparity with
Li-ion SSE databases containing thousands of compounds
while Mg2+, Ca2+, Zn2+, and Al3+ conductors each number in
the tens to low hundreds,225 these systems exhibit fundamen-
tally different physics that cannot be addressed through simple
data augmentation. Multivalent ions face stronger Coulombic
interactions with the host lattice due to their higher charge
densities, leading to sluggish diffusion kinetics and signifi-
cantly higher activation energies compared to monovalent
systems.177 The migration mechanisms differ qualitatively:
while Li+ transport often proceeds via direct hopping between
tetrahedral sites, Mg2+ migration typically requires concerted
structural relaxation or even temporary coordination changes
to overcome the strong cation-anion binding. Additionally,
defect chemistry and strain accommodation mechanisms vary
substantially—multivalent dopants introduce different charge
compensation schemes and elastic distortions that alter migra-
tion pathways in ways not captured by Li-based training data.
These mechanistic distinctions mean that ML models trained
predominantly on Li-ion data lack the physical descriptors and
feature representations necessary to capture the governing
principles in multivalent systems, creating a critical bottleneck
for advancing beyond lithium-ion technologies that cannot be
resolved by transfer learning alone without substantial new
data generation and physics-informed constraints.

Encouragingly, the research landscape is actively addressing
these challenges. Strategies such as transfer learning, unsuper-
vised learning, and advanced data augmentation techniques
are being developed to combat data limitations. Physics-
informed machine learning and the pursuit of universal
descriptors and interatomic potentials aim to enhance model
transferability and generalization. Explainable AI methods are

beginning to shed light on the complex structure-property
relationships learned by ML models, fostering trust and
guiding scientific intuition. Furthermore, generative models,
including VAEs, GANs, EAs, and diffusion models, are showing
increasing promise in proposing novel SSE candidates from
scratch, while sophisticated multi-objective optimization algo-
rithms are helping to navigate the intricate trade-offs inherent
in materials design. The most transformative advances, how-
ever, are emerging from hybrid frameworks that tightly inte-
grate ML predictions with high-fidelity computations (like DFT)
and, crucially, experimental validation, often within auto-
mated, closed-loop ‘‘predictive synthesis’’ pipelines.

This review provides several distinctive contributions that
advance the field beyond existing literature. We present the
first systematic mapping of five interconnected challenges with
corresponding emerging solutions, providing a strategic road-
map for practitioners. Unlike previous reviews that predomi-
nantly focus on Li-ion systems, we emphasize the critical data
gap for multivalent systems and provide specific strategies for
addressing this limitation through transfer learning and
physics-informed approaches. We uniquely bridge conven-
tional computational methods with cutting-edge ML techni-
ques, demonstrating how hybrid workflows can overcome
individual limitations while leveraging complementary
strengths. Rather than merely surveying techniques, we provide
actionable recommendations for data collection priorities,
validation strategies, and best practices for applying explain-
able AI methods to materials discovery.

To further propel AI-accelerated SSE innovation, future
research should prioritize several key directions. The develop-
ment of next-generation multi-objective optimization algo-
rithms that can simultaneously optimize ionic conductivity,
electrochemical stability, mechanical properties, and synthesiz-
ability while incorporating real-world constraints represents
a critical need. Physics-informed universal models that
embed fundamental physical laws governing ionic transport
and electrochemical stability directly into model architecture
require immediate attention. These must learn temperature-
dependent behavior, incorporate many-body interactions,
and predict interfacial stability through first-principles
constraints.

Robust uncertainty quantification methods for ML predic-
tions, particularly when extrapolating to novel chemical spaces,
represent another urgent priority. Cross-domain transfer learn-
ing protocols must be established to enable knowledge transfer
between different ion types and between computational and
experimental domains. Several fundamental research ques-
tions require immediate investigation: How can we system-
atically quantify and improve model transferability across
different crystal structure families and ionic species? What
are optimal strategies for incorporating experimental uncer-
tainty into ML training datasets? How can we develop models
that predict long-term degradation and interfacial evolution
beyond static property prediction?

The practical implementation of these advances requires
immediate action across multiple fronts. A concerted
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community-wide effort is essential to build FAIR226 databases
that encompass multivalent systems and include comprehen-
sive interfacial property data with standardized metadata. The
integration of automated synthesis platforms specifically
designed for SSE discovery represents a transformative oppor-
tunity, requiring real-time characterization capabilities and
automated feedback loops. Comprehensive validation work-
flows for generative models must include thermodynamic
stability screening, kinetic accessibility assessment, and rapid
experimental validation using automated characterization
techniques.

Future experimental and computational campaigns should
prioritize multivalent systems with intermediate ionic radii,
materials exhibiting mixed ionic-electronic conductivity, and
interfacial properties that remain underrepresented in current
databases. The establishment of industry-academic partner-
ships will be crucial for scaling promising discoveries to
commercial applications, while advanced generative models
must be refined to ensure chemical validity, thermodynamic
stability, and practical synthesizability of the proposed
candidates.

The path forward for revolutionizing SSE development lies
in a deeply synergistic approach where machine learning
realizes its transformative potential through intimate integra-
tion with fundamental domain knowledge from physics and
chemistry, rigorous computational modeling, and iterative
experimental validation. As these integrated intelligence frame-
works mature, particularly those enabling autonomous closed-
loop discovery, the pace of innovation in solid-state electrolytes
is poised for significant acceleration, bringing the promise of
safer, more energy-dense, and longer-lasting battery technolo-
gies closer to reality.
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