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Beyond the four core effects: revisiting
thermoelectrics with a high-entropy design

Corey Oses, *a Tianhao Li, a Xiao Xu, a Guangshuai Han, a Guotao Qiu a

and Jonathan R. Owens b

Low-exergy waste heat, which constitutes the majority of industrial-scale thermal losses, remains largely

unrecoverable with conventional technologies. Thermoelectrics offer a solid-state solution for converting

this hard-to-access energy into electricity, making them attractive for decentralized power generation and

sensor applications. High-entropy materials (HEMs) have gained traction as a strategy for better-performing

thermoelectrics, but the mechanisms driving their benefits require further exploration. This article highlights

key insights for heat and electronic transport in HEMs. For heat transport, we argue that reduced, and often

ultralow, lattice thermal conductivity in HEMs—with respect to ordered counterparts—can be taken for

granted, emerging naturally as a fifth core effect of high-entropy systems. While band convergence is often

considered beneficial for electronic transport, its impact depends strongly on the electronic structure. We

summarize the scenarios where it can be detrimental to thermoelectric performance. These insights

motivate strategies that align seamlessly with advancements in artificial intelligence and data-driven

approaches, helping accelerate the discovery of next-generation thermoelectric materials.

Thermoelectrics are solid-state materials that can convert heat
to electricity without moving parts, making them attractive for

waste-heat recovery. However, conventional waste-heat recovery
is most effective for high-temperature sources, which possess
substantial exergy—a measure of usable energy relative to the
surroundings.1 High-temperature industrial systems, such as
those in natural-gas combined-cycle power plants, already
operate close to thermodynamic limits, leaving little room for
thermoelectric integration. Instead, thermoelectrics offer a
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promising approach to harnessing low-grade waste heat, the
majority (480%) of which remains below 200 1C in industrial
settings.2,3 While less efficient than high-temperature recovery
technologies, their scalability and reliability make them ideal
for decentralized energy harvesting.

Low-power sensors that need to monitor a power-generation
system hold promise as one useful application. For example,
the combustor in a natural-gas power plant has acoustic
sensors that monitor the combustion process, analyzing the
signal for problematic anomalies.4,5 A sensor attached to the
combustor that is self-powering could be beneficial. Adding a
component to a well-established, hardened system requires
that the sensor exhibit high reliability. Thermoelectric devices
are particularly attractive in this context due to their solid-state
nature and lack of moving parts, making them well-suited for
long-term deployment with minimal maintenance.

Another application proposed by the authors is thermo-
electric integration in semiconductor switches for power con-
version devices, such as high-voltage direct-current (HVDC)
converters. These switches operate at high frequencies and,
despite active cooling, maintain a temperature gradient of
around 100 1C between the semiconductor junction and the
heat sink.6 By placing a thermoelectric device at the base plate,
some of this energy can be recovered. In gigawatt-scale systems,
even modest conversion efficiencies could yield up to a half
megawatt of reclaimed power.

These potential applications underscore the need for con-
tinuous advancements in thermoelectric materials to enhance
their efficiencies and integration feasibility. In this context,
high-entropy strategies have gained attention as a promising
approach to thermoelectric materials design, offering low ther-
mal conductivity and tunable electronic properties. However,
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common assumptions about high-entropy thermoelectrics
often overlook the underlying mechanisms that govern their
transport behavior. This work is structured as follows: it begins
with a brief introduction to high-entropy materials and their
thermoelectric properties. The merits of high-entropy strategies
are then examined through the lens of heat and electronic
transport. Finally, key insights are summarized, motivating
potential directions for future research and materials discovery
(Fig. 1).

Definitions
High-entropy materials (HEMs)

Materials with (near-)equimolar mixing of multiple elements
sharing crystallographic sites are defined as high-entropy mate-
rials (HEMs).10–13 The random distribution of multiple compo-
nents raises configurational entropy, contributing to materials
formation and stabilization.14 Consequently, a stable phase is
obtained that couples long-range structural order with localized
compositional complexity. Entropy stabilization gives rise to
new and sometimes counter–intuitive mixtures that would
otherwise phase separate, providing a flexible platform for
compositional engineering.10 Intriguing properties emerge,
such as high mechanical strength,15,16 enhanced chemical
stability,10,16,17 low thermal conductivity,18–21 and high energy
storage capability.22

Thermoelectrics

Thermoelectrics are remarkable solid-state materials that directly
convert heat into electricity,23–26 offering a unique solution for
growing clean energy demands.27–31 The dimensionless figure
of merit, which is used to evaluate the performance of

thermoelectric materials, is defined as:28,32

zT ¼ S2sT
k
¼ S2sT

kl þ ke
(1)

where S, s, kl, ke and T are the Seebeck coefficient, electrical
conductivity, lattice thermal conductivity, electronic thermal
conductivity, and absolute temperature, respectively. Commer-
cialized thermoelectric materials include alloys such as Cu–Ni33

and semiconductors such as Bi2Te3.34,35 Their maximum zT
value at room temperature is B1.33,34,36,37 According to eqn (1),
a high zT can be obtained by enhancing S and s while decreas-
ing kl and ke. The charge carrier’s mobility, concentration, and
effective mass decide S and s, and the material’s phonon
properties dominate kl. To improve zT, these factors are
manipulated using band engineering,36,38–42 quantum confine-
ment,43–45 defect engineering,46–49 and nano-structuring.50–53

These efforts aim to develop a material that is an excellent
electrical conductor and poor heat conductor, accomplished by
simultaneously promoting phonon scattering and inhibiting
electron scattering. Unfortunately, electronic and thermal con-
ductivities are positively correlated and present an inherent
trade-off for achieving high zT. Therefore, decoupling phonon
thermal conductivity from electronic transport while optimiz-
ing carrier band structures remains the central objective for
thermoelectric materials design.

Understanding phonon transport in
HEMs

HEMs are widely recognized for their low thermal conductiv-
ities, making them promising candidates for thermoelectric
applications.14,22,54 We propose that this advantage can often
be assumed when employing high-entropy design strategies,

Fig. 1 A schematic representation of doping,7 alloying,8 and high-entropy9 approaches in materials design. The transition from doping to alloying to
high-entropy materials corresponds to an increase in configurational entropy (DSconf). As additional elements are incorporated into equivalent lattice
sites, the system’s entropy rises, stabilizing multi-element solid solutions and enhancing chemical disorder. Doping also has context-specific definitions:
e.g., in semiconductors, doping serves the purpose of changing the charge carrier concentrations and shifting energy bands.
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emerging naturally as another core effect of HEMs. In fact, the
four original core effects55,56 can also contribute to enhanced
thermoelectric performance, revealing a powerful platform for
novel high-zT materials:

1. High-entropy effect. The high-entropy effect stabilizes a
simple solid–solution phase rather than decomposing into
multiple intermetallic compounds, a phenomenon attributed
to the entropy-driven lowering of the free energy.15,54 This
enhanced phase stability favors higher lattice-symmetry struc-
tures,57–59 which in turn influences electronic structure by
creating more opportunities for band degeneracy—potentially
augmenting the Seebeck coefficient.60

2. Sluggish diffusion. Sluggish diffusion has been regarded
as a core effect of HEMs, but its validity has been challenged
and remains a topic of debate.56 While it does not directly alter
phonon scattering mechanisms, sluggish diffusion can indirectly
reduce thermal conductivity by stabilizing metastable phases,
restricting grain growth (Fig. 2a (ref. 61 and 62)), and preserving
defect structures, all of which contribute to increased phonon
scattering.18,63,64

3. Severe lattice distortions. Large variations in atomic size,
bonding energy, and electronic character among constituents
induce severe lattice distortions, enhancing phonon scat-
tering.54,66,67 This effect arises due to local strain fields caused
by the heterogeneous atomic environments in HEMs, leading to
fluctuations in interatomic force constants. Such distortions

and their effect on thermal conductivity have been demonstrated
in studies of (YGdHoErYb)2Ti2O7

68 and (HfZrTaNbTi)C,69 among
others.10

4. Cocktail effect. The cocktail effect refers to synergistic
interactions among multiple elements, where their combined
influence and indirect microstructural effects (Fig. 2a (ref. 61
and 62)) also enhance phonon scattering.15,70–72

5. Reduced lattice thermal conductivity. We propose
reduced, and often ultralow, lattice thermal conductivity as
another core effect of HEMs, arising not as a feature of any
particular composition but instead as an emergent property of
(high) chemical disorder. The origin of this behavior is dis-
cussed in detail in subsequent sections.

Computational investigation of HEMs revealed key mecha-
nisms behind the low thermal conductivity of HEMs.19 Phonon
broadening and scattering have been reported and studied in
high-entropy alloys,73 high-entropy oxides,18 and high-entropy
carbides,19 and are driven by mass and force constant disorder
(Fig. 2b). First-principles calculations can isolate these mecha-
nisms by averaging over the masses and force constants sepa-
rately and analyzing their impact on broadening, scattering,
and ultimately the thermal conductivity. Mass disorder plays
the dominant role in the phonon-broadening observed in high-
entropy alloys and carbides. Both studies echo that force
constant disorder also plays an important role in broadening
and cannot be ignored. Computational analyses of high-entropy

Fig. 2 Phonon scattering mechanisms in high-entropy materials. (a) Microstructural complexity in high-entropy materials leading to scattering at the
grain boundaries.61,62 (b) Schematic of the lattice framework illustrating phonon scattering from various types of defects, including atomic mass/size
fluctuations and vacancies.65 DSconf is the configurational entropy. (c) Electron density map depicting charge disorder—stemming from variations in
electronegativity and bonding characteristics among constituent elements—also contributes to localized strain fields and fluctuations in interatomic
force constants. Charge disorder plays an important role in phonon scattering, significantly reducing lattice thermal conductivity.18
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oxides analyzed the impact of different scattering mechanisms
with thermal conductivity directly: they resolved the dominant
effect to be force constant disorder—not mass disorder—which
is induced by local ionic charge variations (Fig. 2b). Experi-
ments confirm that these effects help drive the thermal con-
ductivity toward its theoretical minimum limit.18 In high-
entropy carbides, charge disorder is also found to influence
structural features such as the lattice constants and magni-
tudes of the anion-sublattice distortions accommodating the
different metal cations.19

The influence of force constant disorder—and likewise,
charge disorder—in HEMs is a departure from canonical
phonon-scattering theory of alloys. Klemens theory considers
scattering mechanisms from mass and force constant fluctua-
tions as a function of the differences in atomic mass and
radius, respectively, between the host atom and the substitu-
tional defects.65,74 The mass disorder typically dominants,
capturing most of the compositional-dependence of the ther-
mal conductivity without needing to invoke other scattering
mechanisms.65 The strain effect (per atomic radii differences) is
often ignored, as large volume differences are energetically
unfavorable and its functional form relies on a wide-varying
fitting parameter, making it difficult to estimate. Charge dis-
order—also inducing localized strain fields—is not usually
considered as substitutional disorder typically replaces sites
of one component for another of the same charge. While HEMs
can be seen as related to—and an extreme case of—solid–
solution alloys,75 they constitute a new domain with high
entropy stabilizing traditionally unfavorable mixtures, giving
rise to heterodesmic structures achieving new levels of force
constant disorder. These features, coupled with their core
effects, distinguish HEMs from lower-entropy counterparts,
offering new pathways for high-zT thermoelectrics.

Mass and charge disorder are inherent characteristics of
high-entropy, multi-element systems. Even small variations in
mass (elements within the same period) or charge (elements
from the same group) still increase phonon scattering com-
pared to ordered counterparts. Given that this effect has been
observed across different chemistries, we propose reduced
lattice thermal conductivity as a fifth core effect of high-
entropy materials. We will suggest pathways to leverage this
insight toward the design of a more effective search workflow
for high-zT thermoelectrics.

Band convergence in HEMs:
opportunities and challenges

Given that HEMs inherently exhibit low lattice thermal con-
ductivity, enhancing electronic transport must become the
focus for improving thermoelectric performance. Band conver-
gence offers one of the most effective strategies:76,77 aligning
the energies of multiple electronic-band extrema increases the
density of states near the Fermi level, boosting charge carrier
transport and improving both electrical conductivity and the
Seebeck coefficient.78

Achieving band convergence in conventional materials typi-
cally requires complex band engineering techniques, which can
be difficult to fine-tune.79,80 In contrast, HEMs offer a unique
platform for enhanced band convergence through composi-
tional engineering, as illustrated in Fig. 3a. Compared with
ordered materials, where band extrema tend to be well-
separated, high-entropy systems exhibit band thickening and
new band emergence, creating opportunities for band conver-
gence and contributing to a more favorable electronic structure
for thermoelectric applications. Band thickening occurs due
to the breaking of periodicity in disordered systems, where
spectral broadening results from the coexistence of multiple
local environments.81 Band thickening increases the density of
states, enhancing carrier concentration and transport efficiency.82

New bands emerge with the incorporation of additional com-
ponents (electrons) into the system, promoting degeneracy and
overlap.83

While band convergence can occur in HEMs, its impact on
thermoelectric performance is more complex compared to their
consistently beneficial low lattice thermal conductivity. Park,
Snyder, and Jain systematically challenged the assumption that
band convergence universally enhances thermoelectric proper-
ties.86 Computational analysis of the CaMg2Sb2–CaZn2Sb2 Zintl
system demonstrates that when bands converge to the same
k-point, interband electron–phonon scattering can intensify,
suppressing power factor (S2s in eqn (1)), reducing carrier
mobility, and negating expected benefits of band convergence.
In contrast, band convergence at distant k-points—exemplified
by full-Heusler Sr2 SbAu—minimizes such scattering effects,
preserving high electrical conductivity and improving overall
thermoelectric performance.

As illustrated in Fig. 3b, two primary electron–phonon
scattering mechanisms govern the impact of band convergence
on transport properties.
� Deformation potential scattering (DPS) arises from

phonon-driven lattice distortions that shift electrons to new
states.87,88 While both acoustic (neighbors oscillating in phase)
and optical phonons (out-of-phase oscillations) can induce
DPS, the original theory87 is built on acoustic phonons, which
are assumed to dominant, and is routinely calculated using
first-principles software packages.89–92 When band convergence
occurs at a single k-point, zone–center acoustic phonons can
drive interband transitions, enhancing DPS and thereby redu-
cing carrier mobility and the Seebeck coefficient.86 In contrast,
if convergence occurs at distant k-points, only higher-energy
and sparsely-populated zone–boundary phonons can couple
them; interband DPS thus remains weak, preserving both
mobility and the Seebeck coefficient.86

� Polar–optical scattering (POS) occurs from electrons inter-
acting with the polarization field generated by optical phonons
of ionically-bonded atoms.88,93,94 The general interaction
between a charged particle and a polarizable medium consti-
tutes a polaron.95 This type of scattering is also routinely
calculated using first-principles software packages.89–92 As
bands converge to the same k-point, POS characteristically
intensifies since scattering rates p |k � k0|�2.86 Conversely,
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POS coupling is negligible between states at distant k-points
and transport properties are largely preserved.

Zunger’s work on random alloys provides additional support
for this conclusion,81 as the effective band structure method
revealed that excessive electronic scattering in highly dis-
ordered systems can counteract the benefits of increased
density of states. If band convergence occurs within a highly
disordered HEM, the resulting electronic localization and
enhanced scattering can degrade carrier mobility rather than
enhance it, further reinforcing the need for careful electronic
structure design in high-entropy thermoelectrics. Meanwhile,
experimental studies confirm that high-entropy strategies can
effectively enhance thermoelectric performance, achieving
significant zT improvements through band convergence and
entropy-driven phonon scattering.78,96,97 For instance, Pb- and
Ge-based systems have achieved remarkable zT values as high
as 2.7—a 30% enhancement over low-entropy counter-
parts—demonstrating the potential of entropy engineering in
thermoelectrics.14,39,97,98 However, it remains unclear whether
current designs represent the optimal utilization of high-
entropy features for thermoelectric applications.

Perspectives on future strategies for
high-entropy thermoelectrics

Thermoelectric materials offer promising solutions for
energy harvesting, waste heat recovery, and power generation.

However, low thermoelectric figures of merit remains a funda-
mental challenge. High-entropy strategies introduce a new
design paradigm, offering significant tunability in carrier trans-
port/scattering and band structure.

To further optimize high-entropy thermoelectrics, several
key research directions should be prioritized:
� Quantifying the roles of phonon transport contributions.

Lattice thermal conductivity in HEMs is inherently reduced
with respect to ordered counterparts, arising from the complex
local chemical environments in multi-element systems. It has
been shown that, in high-entropy oxides, charge disorder plays
the dominant role in driving lattice thermal conductivity to
near-theoretical minima.18 This observation is both intriguing
and surprising, given that mass disorder typically dominants in
conventional scattering theory of alloys.65,74 More studies are
needed across other high-entropy chemistries to clarify the
mechanisms responsible for their low thermal conductivities.
Correlations between compositional features and thermal
conductivity can be resolved quantitatively using data-driven
approaches.99–101 Mass disorder is easily captured by the mass-
fluctuation phonon scattering parameter.74 We suggest the
development of similar parameters quantifying local charge
fluctuations, deriving from elemental properties such as elec-
tronegativity, valence electron count, oxidation state, and ionic
radius. Metrics such as the compositionally-weighted stan-
dard deviation and range, along with more complex functional
forms,102,103 can be encoded into compact scalar features
capturing the complex bonding in HEMs.

Fig. 3 Electronic structure features of high-entropy materials (HEMs) and their impact on band convergence. (a) Comparison between ordered
materials and HEMs, where high-entropy effects can induce band thickening, the emergence of new bands, and band convergence at distant k-points
rather than at the same k-point, mitigating detrimental interband scattering. An example of band convergence occurs in the illustration near k = G, where
k is the electron wavevector. The effective band structure illustration is inspired by ref. 78, 81 and 84. (b) Two primary electron–phonon scattering
mechanisms—deformation potential scattering and polar-optical scattering—illustrating how phonon interactions can either enhance or limit carrier
mobility in the event of band convergence. Achieving favorable band convergence in HEMs requires careful control over electronic structure, balancing
enhanced carrier transport with minimized scattering effects. The dispersion illustrations are inspired by Fig. 2.8 in ref. 85. o is the phonon mode
frequency.

Focus Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
M

ee
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

2.
02

.2
6 

22
:3

7:
41

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mh00356c


5952 |  Mater. Horiz., 2025, 12, 5946–5956 This journal is © The Royal Society of Chemistry 2025

� Employing the fifth core effect. Current search workflows
for high- zT thermoelectrics typically calculate and filter by the
lattice thermal conductivity. The challenge is that HEMs
demand high-fidelity modeling frameworks: e.g., the virtual
crystal approximation proved ineffective across studies.18,73

Instead, supercell-based models are required75,104,105 that,
when integrated with phonon-Boltzmann workflows for the
lattice thermal conductivity,106–109 become prohibitively
expensive. A more effective strategy would prioritize enhan-
cing electron transport instead and, among top candidates,
further filter for those that offer the widest ranges of ele-
mental masses and electronegativities to minimize phonon
transport.
� Electronic band structure descriptors. Resolving the HEM

effective band structure81 is computationally expensive and
rarely done in practice.96,110,111 Moreover, the vast chemical
space of HEMs is far too large for rigorous electron-Boltzmann
calculations within a density functional theory frame-
work.89,91,112 This underscores the need for the development
of descriptors enabling rapid screening of new HEM com-
positions. For example, proven computational descriptors
such as the entropy-forming-ability (EFA) and disordered
enthalpy–entropy descriptor (DEED) have validated formabil-
ities of 60+ compositions and delivered 19 new high-entropy
ceramics since 2018.15,113,114 Similar descriptors can be
designed to capture the electronic structure and transport of
HEMs that, when combined with EFA and DEED, form a
uniquely powerful framework for discovery. Such an approach
would map theoretical performance limits to promising
chemical configurations, guiding experimental synthesis and
accelerating the discovery of next-generation thermoelectric
materials.
� Carrier-transport databases. The establishment of large-

scale databases115 focused on phonon and electron transport
properties will facilitate machine learning modeling of thermo-
electric materials. By integrating computational and known
experimental data, these models can significantly accelerate
materials design while also having broader utility beyond
thermoelectrics, benefiting fields such as catalysis, batteries,
and functional ceramics.14

� Synthesis scalability and practical deployment. Experi-
mental validation is essential for the proposed materials design
workflows. Scalable synthesis methods for HEMs—including
co-precipitation, aerosol/spray pyrolysis, electrochemical tech-
niques, and microwave-assisted synthesis—have advantages in
rapid processing, cost-effectiveness, and high yield.116 While
there are also scalable techniques for disordered thermoelectric
materials such as direct sintering, they produce lower zT values
than lab-scale samples, likely due to unwanted oxidation.117

Future research should build on existing scalable and general-
synthesis approaches118 to improve phase homogeneity and
optimize electron transport across grain boundaries. Moreover,
multiscale hierarchical modeling—spanning first-principles
simulations104 to device design117,119—will be crucial for pre-
dicting stable configurations, guiding synthesis strategies, and
ultimately facilitating their practical deployment.
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