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The prediction of new compounds via crystal structure prediction may transform how the
materials chemistry community discovers new compounds. In the prediction of inorganic
crystal structures there are three distinct classes of prediction: performing crystal structure
prediction via heuristic algorithms, using a range of established crystal structure prediction
codes, an emerging community using generative machine learning models to predict
crystal structures directly and the use of mathematical optimisation to solve crystal
structures exactly. In this work, we demonstrate the combination of heuristic and
generative machine learning, the use of a generative machine learning model to
produce the starting population of crystal structures for a heuristic algorithm and
discuss the benefits, demonstrating the method on eight known compounds with
reported crystal structures and three hypothetical compounds. We show that the
integration of machine learning structure generation with heuristic structure prediction
results in both faster compute times per structure and lower energies. This work
provides to the community a set of eleven compounds with varying chemistry and
complexity that can be used as a benchmark for new crystal structure prediction
methods as they emerge.

1 Introduction

In inorganic materials chemistry, the discovery of new materials can be guided by
crystal structure prediction (CSP). The use of CSP in the discovery of new
compounds allows for experimental researchers to focus their efforts only on
those compositions which are likely to yield new crystalline phases, greatly
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accelerating the speed with which they can be found."” There are three main
approaches to the crystal structure prediction problem. Firstly, well established
codes based on heuristic algorithms which evolve crystal structures from a start-
ing point, such as FUSE,* which is based on a basin hopping algorithm, or USPEX*
based upon genetic algorithms. Also within this class of structure search is the
particle swarm optimisation method CALYPSO.®> Related to this are random
structure search methods which use randomly generated structures, constrained
with a set of chemical rules, such as the code AIRSS.®

A second, recently emerging approach to the prediction of crystal is through
the use of machine learning (ML) models. ML structure generation making use of
now well-curated structure databases, such as the Materials Project” or ICSD,® to
train models to rapidly generate plausible crystal structures for inorganic solids.
These models include the use of graph neural networks,® diffusion models' or
large language models."* ML models have reached the point where they can
efficiently generate large numbers of plausible crystal structures for a target
composition. However, when such models are used far from their training data,
or for non-trivial compositions they frequently fail to produce the correct struc-
ture, or a structure which can be relaxed into the ground state with a conventional
chemistry calculation, for example with density functional theory (DFT). A final,
newly emerging approach is that of mathematical optimisation, where the
structure prediction problem is constructed as a series of linear equations, which
can then be solved. Within the constraints of how the problem is formulated, this
then provides a guarantee that the global minimum structure has been located.**

The types of heuristic methods for crystal structure prediction mentioned
above are all dependent on an algorithm to generate initial structure(s) with an
element of randomness that then evolve in some specified way. The initial
structures can be produced using simple rules, for example randomly selecting
a unit cell then populating it with atoms with minimum inter-atomic distance
constraints, or with more complex rule sets based upon knowledge of inorganic
chemistry, as used, e.g., in FUSE having structures assembled from randomly
generated blocks using rules based on how such blocks connect in known
compounds. Hereafter, we refer to all of these methods to generate trial crystal
structures as “random structure generation”, in contrast to structures generated
by ML models. Once structures are generated, they are optimised into their
nearest energy minimum according to the forces acting on the atoms calculated
using well-established chemistry methods, such as the Density Functional Theory
(DFT) code VASP,* referred to here as local optimisation. The vast majority of the
computational costs of heuristic crystal structure prediction methods lie in these
local optimisation steps, with the total cost very closely aligned with how close the
initially generated structures are to local minima on the potential energy surface.

In this work we demonstrate a new hybrid approach to CSP: to use ML models
to generate initial crystal structures for a given composition in place of the
conventional random structure generation. We integrate this ML model into the
heuristic CSP code FUSE, and demonstrate usage across eleven compounds: eight
known compounds, and three hypothetical. We hypothesise that the inclusion of
ML generated crystal structures can yield two potential benefits to CSP:

1. As ML generated structures should be close to plausible crystal structures,
they should be closer to minima on potential energy surfaces and so reduce the
computational cost per structure.
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2. ML generation models will on average produce structures which are closer to
ground state structures and so will reduce the energy of the global minimum
structure located by FUSE within a similar amount of compute time when
compared to using random structure generation.

2 Methods

2.1 Generative machine learning model

In this section, we delve into the intricacies of the retrained machine learning
model, adapted from the original paper,” specifically designed for crystal struc-
ture prediction utilizing a graph network (GN) in conjunction with an optimiza-
tion algorithm (OA). The original framework comprised three essential
components: a database, a GN model, and an OA for accelerated crystal structure
search.

The crystal graph used in the original GN was defined by nodes (v;), edges
connecting nodes (e;), and global attributes (u), representing atoms, pairs, and
macroscopic attributes, respectively. The crystal graph was numerically repre-
sented by G({v;}i—1 m{€xtr=1:nes1), where v; and e, are elemental and pair attributes,
and nv and ne are the number of atoms and pairs in the cell. The GN model is
equipped with elemental embeddings and pair features, which are learned during
the training process on two benchmark databases: the open quantum materials
database (OQMD)**** and Matbench (MatB)."* An embedding layer and a matrix
were added to accommodate atomic attributes and pair connectivity, respectively.
The GN model consisted of MEGNet'” layers and set2set layers to update the
elemental and pair matrices. The GN model, trained separately on OQMD and
MatB, resulted in two models, GN(OQMD) and GN(MatB), with the latter
demonstrating superior performance in CSP despite having slightly higher mean
absolute error (MAE) during training.

Two benchmark datasets, OQMD and MatB, were employed for GN model
training and evaluation. Data cleaning was performed to ensure reliability and
comparability, and the datasets were split into training, validation, and test sets
following a consistent ratio. The trained GN models, GN(OQMD) and GN(MatB),
were selected based on hyperparameter optimization to minimize errors between
GN-predicted and density functional theory (DFT)-calculated formation
enthalpies (AH) on the test set.

To enhance the efficiency of CSP, a symmetry constraint was incorporated,
taking into account the observed prevalence of symmetry in experimental crystal
structures, particularly at low temperatures. Additional structural features, crystal
symmetry S and the occupancy of Wyckoff position W; were incorporated,
allowing for CSP with symmetry constraints. Symmetry operations were chosen
from the 229 space groups after P;, and Wyckoff positions were selected
accordingly. The procedure ensured the generation of symmetrical crystal struc-
tures during CSP.

Three optimization algorithms (OAs) - random searching (RAS), particle-
swarm optimization (PSO), and Bayesian optimization (BO) — were adopted for
CSP. BO, specifically implemented with a Gaussian mixture model based on the
tree of Parzen estimators, demonstrated superior performance in efficiently
exploring the structural space. The GN-OA approach iteratively generated and
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evaluated crystal structures until convergence, with BO demonstrating superior
performance due to its effective balance between exploitation and exploration.

Given its superior performance, we opted to retrain the GN(MatB)-BO model
specifically for our use case. An illustration of the model architecture that was
chosen to be trained is shown in Fig. 1. The retraining process involved the direct
adoption of the GN model from the original paper, with no hyperparameter
tuning. The training, conducted on a “Tesla A100” GPU with 2 GPU devices per
node and utilizing 80 GB global memory, proceeded until the 479th iteration step,
achieving a validation MAE of 0.034786 eV per atom. The original model was
directly adopted without additional evaluation, aligning with the reported results
from the original paper.

In the next section, we discuss the integration of this ML model with FUSE,
elucidating how this combination enhances overall performance.

2.2 New implementation of the FUSE method

For clarity, we refer to version 1 of the code as the original implementation, which
functions as detailed in ref. 3. FUSE predicts crystal structures by assembling
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Fig. 1 (a) The GN model was trained using the MatBench benchmark dataset. The input
atomic feature for the crystal graph is (b) embedded atomic number (1 to N,) for each
compositional atom (1 to nv) and the input pair feature is (c) Gaussian-expanded distance
(1 to Ng) for each pair connecting atom i (1 to nv) and atom j (1 to nv). (d) The structural
generation phase encompasses adding symmetry constraints, generating structures, and
converting them into crystal graphs. (e) The GN model integrates embedded atomic
numbers, Gaussian-expanded pair distances, MEGNet blocks, set2set layers for atomic
numbers and pair distances, a concatenation layer, and a fully connected layer to derive
the correlation model between a crystal and its formation enthalpy. (f) A Bayesian Opti-
mization block is included. This figure was adapted from ref. 9.
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them from small blocks containing 0-4 atoms, which are in turn assembled into
layers (referred to as modules), that are stacked to construct a full crystal struc-
ture. In the original implementation of the code, the sub-modules are generated
according to a pre-designed set of eight possible motifs, with defined options for
the angles of the sub-module, which are dependent on the Bravais lattice type for
the assembled structure (itself, selected at random), allowing FUSE to assemble
sub-modules and therefore whole structures with flexible unit cell angles. The size
of the sub-module in Angstroms is based upon the sum of the atomic radii of the
elements in the system: I, = 2(Rca¢ + Ran) Where Rc, is the mean cation radii and
Ran is the mean anion radii. If oxidation states are not supplied, the code uses I, =
4R, where R, is the mean atomic radius. The size of the sub-module is then set to
be equal to {Ip,lp7 %p]

For FUSE to be able to use the output of generative ML models in place of
randomly generated structures, the code required altering such that it is possible
to decompose any arbitrary crystal structure into a set of constituent sub-modules
that can then be used in the code's basin hopping routine. The ability to do this
for any arbitrary crystal structure will greatly increase the flexibility of the sub-
modules that FUSE is able to use.

The new implementation of the code (written in python 3) starts by computing
the size of a sub-module based upon the atomic radii within the composition as
described above. Then along each of the three unit cell axes, FUSE calculates the
nearest integer number of sub-modules along each direction. The resulting sub-
modules are then populated by extracting atoms from the starting structure
according to their fractional atomic co-ordinates. The angles for the sub-module

Slice structure » Extract sub-modules

Fig. 2 (a) Example of FUSE2 selecting a module shape to slice the known garnet
compound CazAl,SizO1,,*® based upon creating sub-modules with the lattice parameter
424 x 424 x 2.12 A, derived from atomic radii as outlined in Methods. FUSE2 slices the
structure with a grid of 3 x 3 x 6, yielding a total of 54 sub-modules within the structure.
(b) The first nine sub-modules extracted from the structure of CazAl,SizO1,, illustrating the
diversity of sub-modules when compared to those in the previous version of FUSE,
restricted to one of only eight possible motifs. Atoms coloured as follows: Ca (green), Al
(cyan), Si (blue), O (red).
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are inherited from the unit cell of the structure being broken down. The stacking
direction is taken as c axis of the parent crystal structure. For example, as shown
in Fig. 2, FUSE calculates the size of a sub-module for Ca;Al,Si;0;, (ref. 18) to be
4.24 x 4.24 x 2.12 A. This sub-module size equates to the full structure being
broken down into 54 sub-modules, in a 3 x 3 x 6 grid. Corresponding to the
structure being broken down into 6 modules, with each module comprising of 3 x
3 x 1 sub-modules.

Therefore when FUSE is extracting a sub-module with the position x, y, z on the
grid for the above, it will use all atoms with the fractional co-ordinates within the

x—1 x -1 z—1 z
range: - —, ry—-,7 , |——— —=|. The crystal structure now broken
3 3 3 3 6 6

down into the constituent sub-modules can then be evolved using a basin
hopping routine similar to that in the original implementation of the code. The
flowchart for the new implementation of FUSE is shown in Fig. 3.

In the new implementation of FUSE, at the start of a structure prediction run,
the code will run the ML model, outlined in Section 2.1 generating a user specified
number of crystal structures for each number of formula units specified by the
use in the input file, using the specified optimizer and range of space groups. To
remove un-physical structures generated by the ML models (generated as a result
of noise within the model), an option to re-rank the generated structures has been
included. In this work, ML generated structures are re-ranked using universal,
statistical inter-atomic proxy potentials'® (SPP), derived from all ordered crystal
structures within the ICSD. The structures which can be successfully computed at

Initialisation

Rank generated Run ML (S
structures model
— Choose start structure —
=)
Yes s=0 Yes
No Alter structure: No
?
s =s+1 positions / unit cell s = s+1 Break? Alter 67
>
Break? Accept structure | [ Reject structure

Accept structure

Calculate energy
Yes No

Is energy lower?

Fig. 3 Flowchart detailing the workflow of FUSE2 as presented in this work. Red sections
indicate where FUSE has been modified for this work. “Run ML model”: the trained gn-boss
model presented in this work is run for the given composition, to generate potential crystal
structures for use in the main CSP search. "Rank generated structures”: in order to remove
non-physical structures which are generated (as a result of noise in the model), the
generated structures are re-ranked using a statistical proxy potential®® (see Methods),
structures are then fed into the initial population for FUSE2 using this re-ranking,
remaining structures from the ML generated population may then be used later in the
"Alter structure” stage. "Alter structure: positions/unit cell”: here the basin hopping move
which would generate a random new structure is replaced by using remaining structures
from those generated using the ML model, if none remain, FUSE2 reverts back to using the
original version of the random structure generator.
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the ranking stage are then compiled into a pool of structures which the basin
hopping routine can access. Once structures have been generated and ranked, in
order to proceed with the basin hopping search routine used in FUSE, the code
needs to assemble the initial population of structures. The population is
assembled by taking the top x structures (where x is a user defined initial pop-
ulation) from the ML generated pool, which are then broken down into their sub-
modular structures as outlined above, and their energies calculated using the user
chosen method. If the ML generator fails to produce x structures which FUSE is
able to rank, it will revert to generating additional structures using the original
structure generation algorithm to complete the initial population. With the new
implementation of FUSE, all crystal structures can now be symmetrised prior to
any geometry optimisation using the python spglib library, as this reduces the
occurrence of crystal structures with very flat shapes, which can be slow to
compute with computational chemistry codes. After the structure has been parsed
by spglib (if used), the calculation proceeds with no symmetry imposed during the
local optimisation in P; symmetry. The basin hopping routine then progresses in
the same manner as per the original implementation, with the following move
types written to work with this implementation (presented in order in which they
are in the code), the probability of the code using each move is definable by the
user, by default there is an equal probability of using each:

1. Swap the position of two atoms: locate two atoms of different species within
the crystal structure and swap their positions, this move is not used if the
composition is elemental.

2. Swap an atom into a vacant space within the structure: first choose an atom
in the structure, then locate a space within the crystal structure which is more
than x A from any other atom, and move it into this space. Where x is a user
specified distance used within the code as a threshold for atom-atom contacts
which are too short, the default value is 1 A.

3. Swapping the position of i atoms, where n > i > 2 where 7 is the total number
of atoms within the structure. This move is not used if the composition is
elemental, or the structure contains fewer than 4 atoms.

4. Swapping the positions of i atoms, where n > i > 2, as with move 3. But
allowing atoms to move into vacant spaces within the structure as defined in
move 2.

5. Swap the positions of all of the atoms within the structure, this move is not
used if the composition is elemental.

6. Swap the positions of all of the atoms within the structure, allowing for
atoms to be moved into vacant positions as outlined in move 2.

7. Swap the position of two sub-modules: swap the location of two sub-
modules from within the crystal structure.

8. Swap the position of two modules within the structure.

9. Generate a new unit cell shape for the sub-modules within the current
structure. This move reshapes the sub-modules of the current structure into a new
unit cell shape, with the shape randomly determined according to the original
implementation of FUSE.

10. Mutation of the structure: inspired by genetic algorithms, the code selects
a sub-module from the current structure and modifies the positions of the atoms
within it. Currently, the only option, is for the code to select a sub-module with <5
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atoms, and move their fractional co-ordinates to match one of the original sub-
module motifs from the original implementation of FUSE.

11. Double the current structure along one axis. Providing the current structure
is = half the maximum number of atoms permitted from the input file, the
structure will be doubled along one randomly selected crystallographic axis. For the
new part of the crystal structure there is an even chance to: repeat the structure,
translate the structure by 0.5 fraction co-ordinates in the plane perpendicular to the
direction chosen, invert the atomic co-ordinates, about the centre of the plane
through which the structure has been doubled or mirror the structure through
a mirror plane in the face through which the structure has been doubled.

12. Triple the crystal structure along one axis. Providing the number of atoms
within the current structure is = than one third of the maximum atoms permitted
in the input file, the code will triple the current structure along one crystallo-
graphic axis. When the structure is tripled, there is an equal probability to: repeat
the structure along the chosen axis or to translate the atomic co-ordinates of each
new set of atoms by one third in the plane perpendicular to the direction in which
the structure is being extended.

13. Generate a random new structure up to the size of the current structure.
The current structure is replaced by a new random structure, with an equal
probability to select a structure from the pool of ML generated structures if
unused structures are available, or to generate a new structure using the algo-
rithm used in the original implementation of FUSE.

14. Generate a random new structure up to the maximum size permitted from
the input file. An identical copy of move 13, with the maximum number of atoms
raised to be equal to the maximum number of atoms within the input file.

This new implementation of FUSE is hereafter referred to as FUSE2.

3 Results

3.1 Calculation setup

The experiments outlined below were designed to test FUSE2 with both a range of
different chemistries and varying complexity. In order to do this, all of the
compositions have been chosen with system sizes and target crystal structures
which are non-trivial for FUSE2 to calculate, therefore it is unlikely to predict the
precise crystal structures within the compute time available. This is a result of the
combination of the range of number of formula units available in the search
space and the complexity of the target crystal structures. For our first test, we
explored a range of eight compounds, with known experimentally reported
ordered crystal structures: CazTi,05,>° C0As,,”* Cu;S,,>> Mn,* PbsAs;04,Cl,>* Sie.
Al¢BzFe;NaO;0F,” WC,,** and YWB,,” the target crystal structures are shown in
Fig. 4. Each of the reported crystal structures has a primitive unit cell which
consists of 50 atoms or fewer. To ensure that any benefits observed using ML
structure generation are not from the model purely recalling structures from
training data, the same experiments detailed above were performed for three
hypothetical compounds which have been studied previously: Li,Sn,S;Cly, Lis.
Siz05Cl; and Li,OBrCl.* In practice, FUSE is used to rapidly predict approximate
probe structures” for a range of compositions which can be used to predict the
energy landscape of compositional phase fields, without explicitly predicting the
exact ground state structure. When used in this way, using DFT as the energy
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Fig. 4 The reported crystal structures of the eight known compounds tested in this work.

calculator, the formula units and number of atoms are typically limited to 20-30
atoms.

For each of the compositions tested in this work, the same set of four exper-
iments with FUSE2 have been performed:

1. “fgen”: as our baseline experiment, FUSE2 is run without using the ML
model outlined in Section 2.1, all crystal structure are therefore generated as in
the original version of the code, using the original random unit cell selection and
sub-module motifs to populate the unit cell. Local optimisation is then only
performed using VASP. This experiment is similar to structure prediction runs
using the original implementation of FUSE.

2. “mligen”: the initial population of crystal structures is generated using the
ML model in 2.1. The ML generated structures are ranked using SPPs and the top
x structures selected and broken down into their sub-modules. The remaining ML
structures which do not form the initial population of structures then form a pool
of structures which may be introduced into the search via moves 13 and 14 out-
lined above. Local optimisation is then only performed using VASP.

3. “fgen-SPP”: as experiment 1, but local optimisation is performed in two
stages: (1) structures are locally optimised using SPPs and (2) the SPP optimised
structure is then re-optimised using VASP, with the final energy taken from VASP.

4. “mlgen-SPP”: as experiment 2, but local optimisation is performed in two
stages: (1) structures are locally optimised using SPPs and (2) the SPP optimised
structure is then re-optimised using VASP, with the final energy taken from VASP.

For each of the experiments performed in this work, the same approximate
quantity of computing time has been allocated; note that this means that due to
the differences in the compute time required per structure (see below), each
experiment will not have explored the same number of individual crystal struc-
tures. In total, for the experiments below approximately 1.5M core hours were
used, equally distributed among all experiments, with all experiments for a given
composition performed on the same high performance computing cluster to
ensure a fair comparison between experiments. For all of the timings discussed
below where the ML structure generation is used, the computational cost of
running the ML model for the initial structure generation is not factored in, as
this a constant value and the amount this contributes towards the overall runtime
is minimal. In this work, the ML structure generation and ranking for each run of
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the code uses between 2-16 core hours (approximately 600 core hours in total),
compared to the total CPU time budget of 1.5M core hours.

For each of the compositions described below (see Tables 1 and 3), a maximum
limit of 50 atoms per structure was used, with an initial population of 25 structures.
For each experiment, three independent runs of FUSE2 were performed, replicating
a typical use case, and the lowest energy from the combined results of each
experiment is reported. For timings, the run times across all three runs are
aggregated, along with the total number of structures to produce a mean run time.
For all but one of the FUSE2 experiments described below, where ML generated
structures were used, 5000 structures were generated per formula unit, using the
Bayesian optimisation search which is integrated into the ML model (see Section
2.1) with only triclinic symmetries used. For each composition, the ML model was
run for up to 8 formula units, or the highest number of formula units which is less
than the set limit of 50 atoms. In the case of SigAlgB;Fe;NaO;,F, where only one
formula unit could be used, 7500 structures were generated.

Where SPPs are used in both the ranking and pre-optimising structures prior
to optimisation with DFT, all structures were relaxed to their nearest minimum,
with forces optimised until the normalised gradient of the forces was < than 0.1,
computed using GULP.”® DFT calculations were performed for all structures
within searches, using the density functional theory code VASP*® with conven-
tional PBE pseudo-potentials,® for a total of 220 steps or until the forces are below
0.03 eV A~ I'-centred k-point grids are generated using the “KSPACING” setting
in VASP, with the value at the final step of the calculation of 0.3. The plane-wave
cutoff was set for each composition to be 1.3 x the maximum plane wave energy
from the pseudo-potentials.

For each of the four experiments described above, two key performance
metrics were used: the mean time take