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Characterization of wastewater concentrations of human enteric pathogens and human fecal indicators

provides valuable insights and data for use by regulators and other stakeholders when developing treatment

criteria for water reuse applications, performing quantitative microbial risk assessments, or conducting

microbial source tracking. Wastewater samples collected over three years during and after the COVID-19

pandemic were analyzed retrospectively (March 2020–September 2022) and prospectively (October 2022–

December 2023) by qPCR for molecular markers of adenovirus, enterovirus, norovirus GI & GII, as well as the

human fecal indicators pepper mild mottle virus, crAssphage, and HF183 (n = 1112). A sub-campaign was

conducted, and wastewater samples were tested for the culturable enteric viruses adenovirus and enterovirus

(n = 56) and the protozoan parasites Cryptosporidium and Giardia (n = 73) over one year (January–December

2023). All assays had high detection rates, ranging from 71% to 100%, and were fit to log-normal distributions.

All molecular markers for enteric pathogens displayed seasonal and geographic variation, potentially explained

by seasonal epidemiology of gastrointestinal illness, differing populations, and differing sample types.

Additionally, the impact of Nevada-specific COVID-19 public health guidance (e.g., mask mandates, stay-at-

home orders) on enteric pathogen concentrations was characterized, with significantly higher concentrations

of molecular markers observed in “non-pandemic” conditions. This study provides high quality (i.e., high

sensitivity, minimally censored, recovery adjusted) pathogen and indicator datasets with insights for use in

academic, public health/epidemiological, and industry/regulatory applications.

1. Introduction

Understanding microbial constituents of wastewater and their
variable concentrations provides valuable data and insights for
diverse applications, including water reuse, wastewater-based

epidemiology (WBE), quantitative microbial risk assessment
(QMRA), microbial source tracking (MST), and more.
Wastewater has gained renewed attention as a tool for
understanding the spread and prevalence of disease within
communities through wastewater surveillance and WBE, with a
focus that now extends beyond SARS-CoV-2 to include other
respiratory viruses,1 enteric pathogens,2–5 nosocomial fungal
pathogens,6,7 sexually transmitted diseases,8–12 markers of
antimicrobial resistance,13 high risk substances,14 and other
emerging threats.1,8 One of these programs, WastewaterSCAN,
represents one of the largest repositories of wastewater data
across the United States, with a publicly available web interface
to facilitate communication of wastewater data for public health
applications.15 Characterizing the concentrations and variability
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Water impact

Wastewater samples collected over three years were analyzed for a variety of viral and protozoal pathogens and human fecal indicators to establish
statistical distributions of concentrations. Pandemic conditions, seasonality, sample biobanking, and sample type all had various impacts on target
concentrations with implications for use in risk assessments, regulatory rule setting, and in microbial source tracking applications.
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of microbial constituents (including human fecal indicators) in
raw wastewater is also particularly useful for identification and
tracking of fecal contamination sources in environmental
waters—an application known as MST.16,17

The integration of pathogen concentrations, exposure
pathways, and treatment efficiency datasets can be used in
QMRA studies for assessing risk from exposure to wastewater
pathogens.18,19 Increasingly severe drought, particularly in the
southwestern United States (U.S.), and global climate change
have heightened awareness of recycled water as a valuable
component of water resource portfolios. This includes indirect
(IPR) or direct potable reuse (DPR). Robust pathogen
concentration datasets in untreated or partially treated
wastewater are necessary for determining overall treatment
levels that are needed for safe implementation of potable reuse,
and these datasets are instrumental in forming regulatory
guidelines. Regulatory frameworks often emphasize worst-case
assumptions (e.g., peak pathogen concentrations), resulting in
potentially unsustainable capital and O&M costs for the
resultant treatment paradigms. By better characterizing
conditions and factors that lead to these worst-case scenarios, it
is possible to respond to these conditions in near-real-time
rather than resorting to excessive levels of advanced treatment
aimed at mitigating low frequency, high consequence, and
potentially site-specific events.

Reported concentrations of pathogens and human fecal
indicators in wastewater are highly variable due to extensive
external (e.g., geographic location, dilution, disease burden,
socio-economic status20) and internal (e.g., quantification
methods, intra-laboratory variation21) factors. Few studies
have characterized the occurrence and variability of a wide
set of human enteric pathogens and fecal indicators over
extended periods of time in an effort to explain the drivers of
these observed concentration ranges and variability.4,22–26

Notably, Water Research Foundation (WRF) project 4989,
“Pathogen Monitoring in Untreated Wastewater”,27 set out to
perform an extensive monitoring campaign and literature
review to develop a combined dataset of pathogen
concentrations in wastewater for use by California regulators
in establishing log reduction value (LRV) targets for DPR.
WRF 4989 identified two major limitations in wastewater
pathogen occurrence studies that have hindered the
application of wastewater data, particularly for regulatory
purposes, though these limitations extend to applications
beyond regulatory development. These limitations include
the lack of sufficient analytical sensitivity, resulting in high
levels of non-detects and non-quantifiable (i.e., highly
censored) data, and the absence of appropriate recovery
spike-ins and controls. Other limitations that impact large-
scale wastewater studies include limited analytical scope or
using only one enumeration method, such as viral cell
culture, microscopy, or molecular methods, rather than
combining multiple approaches. For understanding pathogen
trends in wastewater on a broad scale, it is useful to integrate
multiple methods to uncover findings that go beyond
methods-related variability.

In this study, we leverage efforts related to a SARS-CoV-2
wastewater surveillance campaign in Southern Nevada to
develop a comprehensive wastewater dataset of diverse
pathogens and indicators. This dataset characterizes the
concentrations of human enteric pathogens and human fecal
indicators in raw wastewater over a three-year-long monitoring
effort yielding over 1000 samples analyzed by qPCR and over 50
samples analyzed by both cell culture and microscopy methods.
The sampling period spanned from 2020–2024, encompassing
the peak impact of the COVID-19 pandemic. Herein,
“pandemic” and “non-pandemic” conditions were delineated by
Nevada's statewide COVID-19 Declaration of Emergency. The
targets chosen reflect the potential use of these data for DPR
regulatory development by including both molecular and
culture-based enumeration of the enteric viruses adenovirus
(AdV) and enterovirus (EnV), molecular data for norovirus (NoV)
GI and GII, and microscopy-based enumeration of the protozoa
Cryptosporidium and Giardia. Additionally, three human fecal
indicator targets were included for MST and WBE applications:
the RNA of pepper mild mottle virus (PMMoV), the DNA of
Bacteroides phage crAssphage (Carjivirus communis28), and a
DNA marker for human-specific Bacteroides (HF183). To ensure
that our data meet high quality standards required for use in
regulatory contexts, we implement extensive quality control
following recommendations outlined by WRF 4989 and related
publications29,30 and expand on them to develop additional
quality control recommendations for future studies utilizing
biobanked nucleic acid samples.

2. Methods
2.1 Study location

Wastewater samples were collected from the six major
wastewater treatment plants (WWTPs) in the Las Vegas area in
Southern Nevada, with samples representing eight different
sewersheds of varying sizes (population and flow rate), sample
type (composite and grab), and composition (demographics).
Fig. 1 displays the geographic service area (sewershed) for each
of the sampled facilities. The population served by these
facilities is approximately 2.2 million residents across four
incorporated cities (Las Vegas, North Las Vegas, Henderson,
and Boulder City) and unincorporated Clark County, collectively
representing 70% of the population of Nevada. In addition,
facility 1 serves the Las Vegas Strip—a casino/resort
entertainment corridor with ∼700000 weekly visitors, the
University of Nevada Las Vegas, with ∼28000 students, and
Harry Reid International Airport, which serves ∼55 million
travelers annually.31

2.2 Wastewater sampling

Wastewater was collected, processed, and stored as part of a
SARS-CoV-2 wastewater surveillance program in Southern
Nevada from March 2020 through December 2023.32,33 The
surveillance program was initiated in March 2020 to provide
data on the progression of the pandemic by measuring the
quantity of SARS-CoV-2 genetic material in wastewater as a
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proxy for cases, but the samples collected have since
provided an opportunity to measure additional pathogenic
and human fecal indicator targets. A one-year monthly sub-
campaign was conducted from January 2023 through
December 2023, in which 100 mL of untreated wastewater
was collected from the six WWTPs for Cryptosporidium and
Giardia enumeration. Additionally, select samples during this
sub-campaign were also analyzed by cell culture for detection
and enumeration of viable AdV and EnV; this involved 1 L
samples collected from the six WWTPs and two additional

trunk line locations (facilities 4A and 4B). Table 1 provides a
summary of the WWTPs, the respective sewersheds, and
sample volumes, and Table S1 in the ESI† provides an
inventory of total sample numbers by location and target/
method.

2.3 Sample concentration and nucleic acid extraction

Wastewater samples were collected and concentrated for qPCR
targets as previously described.32,33 For the viral targets, sample
volumes (10 L vs. 250 mL), locations (influent vs. primary
effluent), and types (composite vs. grab) were artifacts of the
SARS-CoV-2 monitoring effort so they could not be changed for
this study. In summary, 10 L samples were spiked with the
recovery control bovine coronavirus (BCoV), amended with
sodium polyphosphate, and concentrated using hollow fiber
ultrafiltration (HFUF) (REXEED-25S, 30 kDa, Asahi Kasei
Medical Co.) to approximately 100–200 mL. Then, the
concentrates were centrifuged, the pelleted solids were
discarded, and the supernatants were used for nucleic acid
extraction. 250 mL samples were spiked with BCoV and
concentrated with Centricon Plus-70 centrifugal filter units (100
kDA, EMD Millipore) to an approximate volume of 1 mL for
subsequent nucleic acid extraction. Nucleic acid extraction was
performed with PureLink Viral RNA/DNA Mini Kits
(ThermoFisher Scientific) according to manufacturer's
instructions. Several 10 L samples from early 2020 (n = 27) were
concentrated with HFUF and Centricon units, but this
combined process was eventually discontinued due to low BCoV
recovery. Additional details are available in Table S2.†

2.4 Virus and fecal indicator qPCR analyses

Samples were separated into two categories – archived or
fresh – depending on their collection and qPCR analysis time
frame. Archived samples were originally collected between
March 10, 2020, and September 26, 2022, and extracted
nucleic acids from those samples were stored at −30 °C until
they were re-analyzed for the new targets with a new cDNA
synthesis in 2022. From October 3, 2022, to December 18,
2023, samples were considered fresh and were processed/

Fig. 1 Map of the sewersheds (and their facility designations) sampled
in this study. Facility 1 serves the Las Vegas Strip, a large international
airport, and a university. Facility 4 was also subdivided into 4A and 4B
via grab samples collected from individual sewer trunk lines entering
the WWTP. Also, solids from facility 2 are transported to facility 4 via
the 4A sewer trunk line.

Table 1 Summary of WWTP sampling locations and sample characteristics

Facility
Population
served

Flow rate
(mgd) Sample type and source

Sample collection volume (mL)

qPCR assays Protozoa assays Viral culture assays

1 872 009a 100 Grab primary effluent 10 000 NA 1000
Grab influent NA 100 NA

2 86 330 5 Composite influent 10 000 100 1000
3 757 418 42 Composite/grab influentd 250 100 1000
4b N/Ab N/Ab Composite influent 250 100 1000
4Ac 133 977 15 Grab influent 250 NA 1000
4B 114 532 6 Grab influent 250 NA 1000
5 255 008 20 Composite influent 250 100 1000
6 16 399 0.8 Grab influent 250 100 1000

a Facility 1 also serves ∼700 000 weekly visitors and ∼55 million airport travelers annually. b Facility 4 is the 24 hour composite of facility 4A
(west trunk line) and facility 4B (east trunk line). c Facility 4A (and by default facility 4) receives solids and bypass flows from facility 2. d Grab
influent samples were collected on 6/14/2021, 8/15/2022, 8/22/2022, and 8/29/2022 (otherwise composite).
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analyzed within a week of collection using the same cDNA as
the ongoing SARS-CoV-2 WBE campaign. Both fresh and
archived nucleic acid extracts were subjected to one freeze–
thaw prior to qPCR. Nucleic acid extracts were thawed at 4
°C, and cDNA was synthesized for RNA viral assays using the
Maxima First Strand cDNA Synthesis Kit (ThermoFisher
Scientific) according to manufacturer's instructions.
Pathogenic virus assays included EnV,29,34 NoV GIA,29 NoV
GIB,29,34 NoV GII,29,34 and AdV (targeting the enteric serotypes
40/41).29,35 Human fecal indicators, including pepper mild
mottle virus (PMMoV),36 crAssphage (CP56),16 and HF183
(Bacteroides genus)37 were also quantified, alongside BCoV.32

Assays were run in triplicate on a CFX384 Touch Real-Time
PCR Detection System or a CFX Opus 384 Real-Time PCR
System (BIO-RAD Laboratories, Inc., Hercules, CA), and data
were visualized with the CFX Maestro software. Reaction
concentrations of primers and probes, as well as sequences,
are listed in Table S3.† A standard curve was generated for
every plate using gBlock Gene Fragments (Integrated DNA
Technologies, Skokie, IL) (Table S4†). Starting quantities of
each target were estimated from the instrument-provided Cq
paired with a combined, study-wide standard curve (Text S1
and Fig. S1†), and then were divided by a sample-specific
equivalent sample volume (ESV) (Table S2†) – original volume
of sample assayed38 – to calculate the non-recovery-adjusted
concentration (in log10 gene copies per liter) of each target in
the original wastewater sample. Samples with target
amplification in ≥2 replicates with an average Cq earlier than
the limit of quantification (LoQ) (Table S5†) were considered
detected and quantifiable. Samples with target amplification
in ≥2 replicates with an average Cq later than the LoQ were
considered detected but non-quantifiable, and samples with
target amplification in ≤1 replicate were considered non-
detects. Additional details for ESV calculations, recovery
efficiencies, LoQs, and duplex assay optimization (Fig. S2,
Text S2 and Table S6) are available in the ESI.†

2.5 Virus cell culture

A modified version of EPA Method 1615 (ref. 34) was used to
concentrate and quantify enteric virus concentrations using
cell culture.29 Approximately 108 plaque forming units (PFU)
each of MS2 and phiX174 were added as matrix spikes to 1 L
of wastewater. After a modified concentration/purification
procedure involving PEG precipitation with chloroform
extraction, a 10-fold dilution series was performed on the
final sample concentrates, and aliquots were inoculated onto
buffalo green monkey (BGM) kidney cells (provided by the
USEPA) or human lung carcinoma epithelial cells (A549-CCL-
185, purchased from ATCC, Manassas, Virginia) to enumerate
culturable EnV and AdV, respectively. Ten sterile 25 cm2

canted neck polystyrene tissue culture flasks containing BGM
cells and 10 flasks containing A549 cells were each inoculated
with 0.1 mL of the target dilutions (100, 10−1, 10−2). The flasks
were incubated at 36.5 ± 1 °C for 2 weeks in Dulbecco's
modified Eagle's medium (DMEM) supplemented with

antibiotics, antimycotics, and 2% fetal bovine serum (FBS).
Cultures were examined microscopically for the appearance
of cytopathogenic effects (CPE) daily for the first 3 days and
then every 1–3 days for a total of 14 days. For both the EnV
and AdV cell culture assay, second passages were completed
for all flasks. The EPA MPN calculator39 was used to quantify
the total culturable virus from both assays. A portion of the
final sample concentrates were inoculated onto agar plates
with E. coli CN-13 for phiX174 enumeration and with E. coli
Famp for MS2 enumeration following a modified version of
EPA Method 1602.40 Sample-specific recovery was determined
as the average of MS2 and phiX174 recovery (mean = 34% ±
21%; min = 8%; max = 93%), with additional details available
in Text S3.†

2.6 Cryptosporidium and Giardia

A modified version of EPA Method 1693 (ref. 29 and 41) was
used to enumerate Giardia cysts and Cryptosporidium oocysts in
samples collected monthly from six sewersheds from January
2023 to December 2023. First, a ColorSeed™ matrix spike
(BioPoint USA, Pittsburgh, PA) containing approximately 100
fluorescently-labeled Giardia cysts and 100 fluorescently-labeled
Cryptosporidium oocysts was added to each 100 mL sample. 100
mL was chosen over 1000 mL because the lower volume was
found to generally contain sufficient organisms to avoid left-
censored data, while also allowing for the entire pellet to be
analyzed. Next, 5 mL of 20% Tween-80 was added, and the
sample was mixed with a magnetic stir bar for 15 min. The
sample was then centrifuged at 1500 × g for 15 min to
concentrate the (oo)cysts into a pellet. The full pellet was
purified using immunomagnetic separation (IMS) beads. 0.5
mL subsamples of pellets larger than 0.5 mL were added to
each IMS tube for processing. No portions of pellets were
discarded without analysis (i.e., the ESV was equal to the
original sample volume). 0.25 mg kaolin was added to the tubes
after adding the IMS beads and buffer. The (oo)cysts were
dissociated from the beads by vortexing with hydrochloric acid
(0.1 N). Two acid dissociations were completed per IMS tube,
and both acid dissociations were plated onto a single slide well
and left to dry overnight. Once dried, the slides were stained
with 4′,6-diamidino-2-phenylindole (DAPI) and fluorescein
isothiocyanate-labeled antibodies (FITC) and scanned with an
epifluorescence microscope with FITC, DAPI, and Texas Red
filter blocks to identify both spiked ColorSeed™ and native (oo)
cysts. For each run, a method blank (MB), ongoing precision
and recovery (OPR), and staining controls were used. The LoQ
and LoD (limit of detection) were set to 1 (oo)cyst per 100 mL,
as 100 mL was the volume analyzed. Recovery details are
available in Text S3† (mean recovery = 55% ± 21% for Giardia
and 31% ± 19% for Cryptosporidium).

2.7 Quality control and recovery efficiency

For molecular methods, an extraction control of nuclease-free
water was included for each nucleic acid extraction, and a
cDNA synthesis control for each cDNA synthesis step was also
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included. Three negative controls consisting of TE buffer (10
mM Tris/0.1 mM EDTA) or nuclease-free water were included
as no-template controls for each qPCR run. CP56, HF183,
BCoV, and PMMoV were considered quality control indicator
markers for this study. Specifically, if ≥2 of these markers
were non-detect in any archived nucleic acid extract, the
corresponding frozen wastewater concentrate was re-
extracted and analyzed. For virus culture methods, positive
and negative controls were run with every sample batch. The
positive controls consisted of poliovirus type 1 strain Sabin
(EnV assay), human adenovirus 10 (AdV assay), MS2 (E. coli
Famp assay), and phiX174 (E. coli CN-13 assay).

BCoV recovery was determined for every sample using one
of several approaches, depending on the history of the
sample. If BCoV recovery was ultimately determined to be
<1%, the sample was excluded (n = 89, <8% of all samples).
For ‘fresh’ samples, (i.e., non-archived and analyzed
approximately within one week of collection), spiked BCoV
was directly quantified in each sample to estimate recovery of
molecular viral targets. Some samples collected in early 2020
were processed and analyzed before the BCoV spiking
approach was implemented into the monitoring effort (n =
37). For these samples, recovery was set to 2%—the average
observed recovery for the combined HFUF-Centricon method
and consistent with Gerrity et al. (2021).32 For ‘archived’
samples several approaches to determining recovery were
assessed.

The remainder of this section discusses the various
approaches for assessing recovery and the potential effects of
target degradation during long-term sample storage. By re-
quantifying BCoV in archived nucleic acid extracts and
comparing to the original recovery of any given sample, it is
possible to not only account for original loss during sample
processing but also for potential nucleic acid degradation
and loss caused by several years of storage at −30 °C. The
resulting correction factor (recovery×degradation) can then
be applied to all assays in which BCoV can be quantified
before and after storage. For samples in which BCoV was
originally detected but then non-detect upon re-analysis of
the archived extract, several recovery estimation methods
were assessed: (1) substitution of an average BCoV recovery,
(2) substitution of a PMMoV-derived degradation factor, and
(3) supervised machine learning (SML). Data where BCoV
recoveries were known (n = 610) were split randomly into two
sets, one with 75% of the data and the other with the
remaining 25%. The larger set (n = 458) was used to develop
the averages, PMMoV degradation terms, and SML models.
These models were then used to estimate the recovery for the
smaller dataset (n = 152), and the differences between the
estimated recovery values and the actual recovery values were
evaluated using root mean square error (RMSE), R2, and
mean absolute error (MAE) goodness-of-fit metrics.

Traditionally, recovery analyses involve only testing a subset
of samples due to cost and labor constraints.21,42–45 The subset
recoveries are then averaged and applied to all samples, or a
distribution is fit.43 However, with qPCR applications, especially

in wastewater matrices, recovery efficiencies vary widely across
samples. Thus, applying a generalized average may not be
appropriate, as this approach may contribute significant
bias.42,43 To evaluate potential bias, we considered multiple
methods for averaging BCoV recovery rates. The first approach
was using the facility-specific average recovery determined from
the re-quantification of BCoV after storage (R1). Another
method was using the original facility-specific average of
recovery from the original quantification of BCoV before storage
(R2) or substituting the original sample-specific recovery values
(R3). Additionally, we evaluated substituting an overall
combined average recovery point-value determined from the re-
quantification of BCoV after storage (R4) or an overall point-
value average of original recovery values (R5) (Table S7†).

As with BCoV, PMMoV was quantified before and after
sample archiving, with the difference in concentration
theoretically accounting for losses during storage. In the
SARS-CoV-2 wastewater surveillance campaign workflow,
PMMoV was quantified using a SYBR-based qPCR assay for
all samples collected March 2020–December 2023. A paired
sub-analysis of fresh samples showed that the SYBR-based
assay yielded significantly different concentrations compared
to the probe-based qPCR assay used for analysis of archived
samples, with the SYBR-based assay yielding higher
concentrations on average (by ∼0.26 log10 gc L−1) (p < 0.0001,
paired t-test on normally distributed log10 transformed data,
n = 48). Accordingly, SYBR-based PMMoV concentrations were
adjusted using multiple approaches before dividing to
determine the degradation term (PM1, 2, and 3). First, SYBR-
based PMMoV concentrations were converted to probe-based
concentrations using a linear regression (Fig. S3†), and
degradation was calculated as the probe-based concentration
(post-storage value) divided by the normalized concentration
(pre-storage value) (PM1). Second, the average difference in
concentrations (0.26 log10 gc L−1) was subtracted from the
SYBR-based concentrations to convert to probe-based
concentrations (PM2), and the degradation factor was
determined as above. Third, no adjustment for the different
assays was applied, and the degradation factor was calculated
with the probe-based concentrations (post-storage value)
divided by the SYBR-based concentrations (pre-storage value)
(PM3). PMMoV degradation factors over 100% (due to error
in the assay correction factors) were set to 100%, indicating
no degradation occurred.

Calculating a correction term using PMMoV concentrations
before and after archiving only accounts for losses due to
degradation and the cDNA synthesis step for archived samples.
To simultaneously correct for degradation via the PMMoV-
derived correction factors and losses during initial processing,
each iteration of the averaging approach (R1–R5) was also
multiplied by each iteration of the PMMoV correction term
(PM1–PM3) in separate models (R* × P*).

Recovery efficiency appears to be a non-independent
adjustment factor, meaning that recovery can be correlated
or have interdependent relationships with concentrations of
other targets, water quality parameters such as total dissolved
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solids (TDS),43 and sample handling procedures. For this
reason, we also attempted to use SML to estimate recovery
using metadata and target concentrations, including
temperature, storage time, facility, concentration method,
detection status for each assay and sample, and non-
recovery-corrected concentrations of the markers. SML was
conducted using the cubist model,46 which is a form of
decision tree modeling, from the caret package in R.47 The
least important variables were identified with the varImp
function and omitted to determine whether equal or greater
accuracy could be achieved in equal or less computation
time. The most accurate model was then tested across a
wider range of hyperparameter settings. Additional
information on the SML model, including all variables
considered, the most important variables identified, and
algorithm information, are available in Text S4.† Each
individual method (i.e., SML, R* × P*, R1–R4, and PM1–3)
was evaluated to determine the best fit to the known data.

2.8 Statistical analysis

Recovery-corrected results were log10 transformed before
statistical analysis was performed. Statistics were performed
in R (version 4.3.2). The package fitdistrplus48 was used to
estimate the mean, standard deviation, and distribution of
marker concentrations. For the “NoV GI Sum” distribution,
concentrations of both GIA and GIB were added if both were
detected. A detect for either GIA or GIB and a non-detect for
the other still counted as a detect for GI, although only the
value of the detected genotype was used for the NoV GI Sum
distribution. For setting upper limits for left-censored data,
the higher limits of detection and quantification (GIA) were
used. For comparisons between groups of censored data, the
Kruskal–Wallis test followed by Dunn's post hoc test with
Bonferroni adjustment for multiple comparisons was used.
For comparisons between groups of non-censored data,
individual tests are indicated in the text. As these are ranked
tests, they are agnostic to detection status. The lowest rank
was assigned to non-detects, and the second-lowest rank was
applied to <LoQs. Boxplots are in the style of Tukey,49 with
the median as the center line, the box limits representing the
first and third quartiles, and the whiskers extending ±1.5
times the interquartile range (IQR).

3. Results & discussion
3.1 Recovery correction

The original BCoV spike underwent degradation during
storage, resulting in lower detection rates in archived (73.6%)
vs. fresh (100%) samples. Table 2 shows the goodness-of-fit
metrics for each assessed method for assigning recovery to
the ∼19% of the overall dataset with non-detects or <LoQ
values for BCoV re-quantification.

The recovery estimation method with the lowest RMSE,
lowest MAE, and highest R2 was SML using the cubist model.
The RMSE was 0.158, which suggests that SML predicts
recovery on average within 15.8% of the measured recovery

value in the test set. The second lowest RMSE was R2 × PM1
(average of 0.199), referring to the substitution model where
the facility-specific average recovery determined from the
original BCoV quantification was multiplied by PMMoV
degradation determined after correcting SYBR-based
concentrations with linear regression. A subsequent analysis
of the impact of recovery estimation method on final target
concentration distributions revealed no significant difference
(p > 0.95) between using the R2 × PM1 and SML methods,
but that neglecting to account for degradation (R3, original
recovery values alone), yielded significantly lower overall
concentrations (Text S5 and Table S8†). This is expected since
concentrations can decrease due to degradation, and original
recovery alone would not account for that change, thereby
yielding artificially low concentrations. Since the difference
between the R2 × PM1 and SML approaches was statistically
indistinguishable (all markers p > 0.95; Table S8†) and
because SML is less intuitive and more computationally
intensive, R2 × PM1 was chosen for calculating recovery for
samples with BCoV results that were non-detect or <LoQ
upon re-analysis.

Archived biobanks face challenges with nucleic acid
degradation of targets due to the effects of one or more
freeze–thaws, overall duration of storage, and storage
temperature. This is evident here in lower detection rates in

Table 2 Root mean square error (RMSE), R2, and mean absolute error
(MAE) for each recovery estimation method ordered by RMSE from
lowest to highest. The full method names and descriptions are provided
in Table S7†

Methoda RMSE R2 MAE

SMLb 0.158 0.863 0.096
R2 × PM1b 0.199 0.783 0.145
R1 × PM1 0.216 0.745 0.141
R3 × PM2 0.221 0.732 0.158
R5 × PM1 0.223 0.727 0.158
R2 × PM2 0.228 0.714 0.177
R1 0.229 0.712 0.171
R3 × PM3 0.237 0.690 0.153
R1 × PM2 0.247 0.664 0.167
R2 0.248 0.662 0.212
R4 × PM1 0.248 0.661 0.158
R3 × PM1 0.254 0.646 0.169
R2 × PM3 0.262 0.622 0.171
R5 × PM2 0.263 0.619 0.206
R5 0.264 0.616 0.243
R4 × PM2 0.278 0.576 0.189
R4 0.279 0.572 0.200
R5 × PM3 0.285 0.552 0.188
R3b,c 0.287 0.547 0.210
R1 × PM3 0.288 0.545 0.181
R4 × PM3 0.306 0.485 0.194
PM1 0.550 −0.660 0.452
PM3 0.651 −1.328 0.567
PM2 0.725 −1.892 0.668

a Method names and descriptions are available in Table S7.† “R”
methods are BCoV recovery corrections, “PM” methods are PMMoV
degradation corrections, “×” indicates multiplication of two corrections,
and SML is supervised machine learning. b Chosen for final pathogen
distribution comparison (Text S4†). c Sample-specific original recovery.

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ez
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

9.
01

.2
6 

22
:4

8:
03

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ew00620h


268 | Environ. Sci.: Water Res. Technol., 2025, 11, 262–280 This journal is © The Royal Society of Chemistry 2025

archived samples vs. fresh samples (AdV: 66% vs. 93%, EnV:
46% vs. 87%, NoV GI: 57% vs. 100%, NoV GII: 68% vs. 99%).
Whenever possible, these impacts must be accounted for to
avoid underestimating target presence and concentrations,
which occurs when sample degradation has occurred but is
not considered or quantified. Ideally, controls should be
spiked into each sample and quantified before and after
storage. In cases where this is not possible, we recommend
assessing several different recovery or degradation estimation
factors. SML provided the most accurate estimate for recovery
in this study. However, not all biobank studies have access to
the volume of data, including metadata, that were used to
train the model. Using the advanced machine learning
method was shown to not significantly impact concentration
distributions compared to a simpler, average-based approach
using original facility averages multiplied by a PMMoV
degradation factor, though SML might be more useful if
there was more extensive metadata available, such as water
quality parameters. While machine learning might not be
necessary when recovery can be estimated more directly, it
could be useful in cases with extensive metadata, and some
form of critical assessment is essential to determine the best
method for estimating recoveries in the absence of consistent
recovery data. Critical to all these methods is the assumption
of using a spike-in for individual samples, which should be
considered a high priority for wastewater studies.

3.2 Summary statistics & facility comparisons

3.2.1 Viral pathogen targets
Norovirus. NoV GI was observed at lower detection rates

but had higher maximum concentrations across all facilities

(overall max of 9.46 log10 gc L−1) compared to NoV GII
(Table 3 and Fig. 2). Despite lower detection rates for GI
(80%) compared to GII (90%), the fitted distribution mean
for GI was higher (6.48 log10 gc L−1) than for GII (6.15 log10 gc
L−1). Facility 3 had the highest concentrations of GI and GII
and was significantly higher than facilities 1, 2, and 6 for GI
and facilities 1, 2, 4A, 4B, and 6 for GII (p < 0.05) (Fig. S4†).
The four highest GI concentrations were all greater than 9.17
log10 gc L−1, which is the concentration used as the basis for
California's DPR regulatory rule setting,50,51 and the top
three occurred in samples collected from facility 6, with the
fourth occurring in facility 4B. Facility 6 and 4B were
represented by grab samples, and facility 6 is also the
smallest sewershed in the study (only ∼16 000 people), so it
is possible that these particular grab samples constituted
plugs of wastewater containing contributions from
‘supershedders’. In fact, the top two GI concentrations (9.46
log10 gc L−1 and 9.38 log10 gc L−1) both occurred in facility 6
in subsequent weeks in March 2023. The 9.17 log10 gc L−1

concentration utilized by California was observed in a grab
sample from a very small facility in France (290 m3 per day
or 0.08 mgd) serving approximately 1200 inhabitants during
a known NoV GI outbreak.52 Given the small sewershed
sizes for facility 6 in this study and the facility in France,
coupled with their similar per capita wastewater generation
rates, we hypothesize that the hydraulic characteristics of
small systems (i.e., less dilution and dispersion) may result
in higher observed pathogen peaks, especially during
outbreaks. We detected 3 peak (≥9.17 log10gc L−1) samples
from facility 6 across 120 samples, for a similar peak
frequency as the facility in France (1 out of 28 collected
samples).

Table 3 Summary statistics for all targets (recovery corrected). Corresponding non-recovery-corrected data are available in Table S9†

Parameter Crypto Giardia
AdV
(cult.)

EnV
(cult.)

AdV
(mol.)

EnV
(mol.)

NoV GIA
(mol.)

NoV GIB
(mol.)

NoV
GI sum

NoV GII
(mol.)

CP56
(mol.)

HF183
(mol.)

PMMoV
(probe)

PMMoV
(SYBR)

Number of
samples (#)

73 73 56 56 1107 1112 1112 1112 1112 1112 1112 1112 807 1108

Detection
frequency (%)

81% 100% 96% 96% 84% 82% 71% 77% 80% 90% 100% 99% 100% 100%

Meana (log10
target per L)

2.18 3.73 3.29 3.77 6.53 5.92 6.71 6.65 6.91 6.41 9.19 8.04 9.30 9.07

St. dev.a (log10
target per L)

0.47 0.40 0.75 0.88 1.06 0.67 0.83 0.88 0.90 0.84 0.70 1.43 0.53 0.49

Minb (log10
target per L)

1.22 2.52 1.74 1.17 4.08 4.53 4.88 5.17 5.21 4.36 5.82 4.53 6.71 6.66

Max (log10
target per L)

3.31 4.69 5.30 5.76 9.25 8.15 9.27 9.31 9.46 8.57 11.54 11.45 11.14 10.68

Recoveryc (%) 31%
(3–91)

55%
(3–90)

34%
(8–93)e

23%
(1–100) f

31%
(1–100)

Fitted
distributiond

μ = 2.04 μ = 3.73 μ =
3.24

μ =
3.70

μ =
6.23

μ =
5.45

μ = 6.26 μ = 5.99 μ =
6.48

μ = 6.15 μ =
9.18

μ =
7.99

μ = 8.80 μ = 9.07

σ = 0.54 σ = 0.40 σ =
0.78

σ =
0.93

σ =
1.17

σ =
1.1

σ = 1.03 σ = 1.43 σ =
1.17

σ = 1.11 σ =
0.71

σ =
1.47

σ = 0.61 σ = 0.50

a Mean and standard deviation are of samples with detected target only. b Minimum is the lowest measured concentration above the LoQ.
c Recovery mean and range. d Distribution fit to censored data using ‘fitdistcens’ with MLE or non-censored data with ‘fitdist’. Non-detect
values were considered left-censored, and <LoQ values were considered interval-censored between the LoD and LoQ. Distributions are normal
distributions of log10-transformed data, with mean and standard deviation reported in log10 target per L. e Average of MS2 & phiX174
recoveries. f Recovery separated by concentration method is available in Table S4.†
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In composite samples or samples taken further into the
treatment train (e.g., after primary clarification at facility 1),
there is a peak “averaging” effect.54 This is useful when the
goal is to evaluate wastewater that is representative of the
overall population, for instance in WBE applications. Grab
samples taken from influent wastewater are more likely to
capture non-representative (e.g. non-dispersed or single-
sourced) plugs of wastewater, but these samples are useful
when assessing wastewater pathogen concentrations from a
hydraulic perspective (e.g., when examining treatment train
performance and its tolerance to spikes). Therefore, the grab
samples resulting in NoV GI spikes are important additions
to the dataset, highlighting how small systems may be more
susceptible to concentration extremes.

It should be noted that while these concentrations appear to
be outliers in Fig. 2, these values do not actually fall in that
category when censored data are included in the outlier
determination, and this applies to all apparent outliers in the
boxplots. To verify that these points are not true outliers, we
removed the four values >9.17 log10 gc L−1 and re-fit the
distribution. The exceedance probability for 9.17 log10 gc L−1

had only a slight change between the high-points-included
distribution (1.0%) vs. the high-points-excluded distribution
(0.85%), and there was no statistically significant difference
between the two distributions (Kolmogorov–Smirnov, p = 0.24).

Enterovirus. EnV was primarily enumerated with qPCR (n =
1112), with a subset enumerated via cell culture (n = 56). EnV
had an 82% detection rate via qPCR, with a distribution
mean concentration of 5.45 log10 gc L−1. Concentrations of
infectious EnV were lower, with an overall detection rate of
96% and distribution mean concentration of 3.70 log10 MPN
L−1. Fig. 3 shows EnV concentrations, mean distribution
across facilities, and detection rates. Facility 3 had the

highest mean concentrations of EnV for both qPCR and cell
culture. For qPCR, facility 3 was significantly higher than
facilities 1, 2, 4A, 4B, and 6 (p < 0.05), and for culture
methods, facility 3 was significantly higher than facilities 4A
and 6 (p < 0.05).

Adenovirus. AdV was also primarily quantified with qPCR
(n = 1107), with a subset enumerated via cell culture (n = 56).
Overall qPCR detection rate was 84%, falling between EnV
and NoV GII in increasing detection rates. The distribution
mean concentration by qPCR was 6.23 log10 gc L−1. For cell
culture, AdV had a 96% detection rate, with a distribution
mean concentration of 3.24 log10 MPN L−1. No significant
differences in culture-based concentrations were observed
among facilities, but similar to EnV, facility 3 had the highest
concentration of AdV via qPCR, and was significantly higher
than facilities 1, 2, 4A, 4B, and 6 (p < 0.05) (Fig. 4).

Gene copy to infectious unit (GC : IU) ratios. The subset of
data analyzed by both qPCR and cell culture methods (n =
56) was used to develop distributions of GC : IU ratios for AdV
and EnV (Fig. 5). GC : IU ratios varied widely across all
samples and between facilities (Fig. S5†). GC : IU ratios
ranged between 19 : 1 and 246 000 : 1 for AdV and between 1 :
1 and 54 400 : 1 for EnV for detectable data. These ranges (∼5
log10 and ∼4 log10, respectively) are consistent with Pecson
et al. (2022),29 which utilized very similar methods. Notably,
both the ratios observed here and in Pecson et al. (2022) were
lower than those observed in a study utilizing similar
methods on wastewater from San Diego, CA, where ratios for
EnV ranged from 4.5–8 log10 GC : IU.55

Data were slightly censored (7% for AdV and 13% for EnV)
so log10-transformed GC : IU ratios were fit to a censored normal
distribution. The distribution mean GC : IU ratio for AdV was
3.67 log10, corresponding to a GC : IU ratio of 4699 : 1, and the

Fig. 2 Distributions of concentrations of NoV GI (sum of GIA and GIB) and GII across facilities, along with corresponding detection rates.
Censored data estimated for visualization using regression on order statistics (ROS) in NADA.53 Dashed lines indicate the overall combined fitted
distribution means, taking into account left-censored data.
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mean GC : IU ratio for EnV was 2.45 log10, corresponding to a
GC : IU ratio of 280 : 1. A recent study56 suggested that the cell
culture method for enumerating EnV utilized here may not be
optimal for detection of all infectious EnV in wastewater, and so
subsequent QMRAs57 increased measured EnV culture
concentrations by an assumed factor of 10 to correct for
potential undercounting of virus in a viable-but-non-culturable
(VBNC) state. This recently suggested correction factor, if
applied to this study's reported EnV concentrations in future
QMRAs, would bring the average EnV concentration by cell
culture closer to the observed average concentration via qPCR

(4.70 log10 MPN L−1 compared to 5.45 log10 gc L−1), and the
distribution mean GC : IU ratio to only 28 : 1. Although
molecular methods measured higher concentrations, detection
rates were lower for gene copies compared to infectious units
(84% vs. 96% for AdV, 82% vs. 96% for EnV). Two factors may
explain this discrepancy: differences in ESV and storage
degradation. Culture methods had higher ESVs (∼200 mL, Text
S3†) compared to molecular methods (∼1 mL), increasing
detection likelihood. Additionally, archived samples may have
degraded, causing concentrations near the detection limit to fall
below it. Notably, in paired samples measured by both

Fig. 4 Distributions of AdV across facilities, along with corresponding detection rates. Censored data estimated for visualization using ROS.
Dashed lines indicate the overall combined fitted distribution means, taking into account left-censored data.

Fig. 3 Distributions of EnV across facilities, along with corresponding detection rates. Censored data estimated for visualization using ROS.
Dashed lines indicate the overall combined fitted distribution means, taking into account left-censored data.
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methods, the molecular detection rate was greater than or equal
to the culture detection rate (96% for AdV and 100% for EnV).

3.2.2 Protozoa targets. Cryptosporidium oocysts were detected
in 81% of samples, with most non-detects occurring in facility
6. The distribution mean concentration across all facilities was
2.04 log10 oocysts per L. Cryptosporidium's highest mean
concentration occurred in facility 5, although the differences
between facility 5 and other facilities were not statistically
significant (p values ranging between 0.1 and 1 for each facility
comparison). Cryptosporidium also exhibited spikes, with the
maximum concentration (3.31 log10 oocysts per L) occurring in
facility 4. A Kruskal–Wallis test indicated a slightly significant
difference (p = 0.01) between facilities, but Dunn's post hoc
analysis revealed no individual significant differences between
facilities. Giardia was found in every sample (100% detection
rate), with a mean concentration of 3.73 log10 cysts per L across
all facilities. Giardia concentrations varied slightly between
facilities (one-way ANOVA; p = 0.00155) (Fig. 6), with two spikes
in facility 6 (4.66 log10 cysts per L and 4.69 log10 cysts per L) on
separate sampling dates, causing facility 6 to have the widest
range of concentrations and highlighting again the impact of
grab sampling from small systems. However, facility 1 had the
highest mean concentration, with significant differences
compared to facilities 2, 4, and 6 (ANOVA, Tukey post hoc; p <

0.05).

3.3 Distribution of pathogen concentrations

The Shapiro–Wilk test was used to test normality of pathogen
datasets before fitting them to distributions. Log10-transformed
concentrations of EnV (culture), AdV (culture), Cryptosporidium,
Giardia, and EnV (molecular) were all normally distributed (p >

0.05), while all other molecular assays were not. The normal
distribution on log10-transformed concentrations was still
chosen for fitting for all targets because (1) there are no direct
normality tests currently available for left- and interval-censored
data; (2) the log10 normal distribution outperformed other
commonly used environmental distributions (gamma, loge-

normal, and Weibull) in terms of higher probability plot
correlation coefficient (PCPP) goodness-of-fit values,58

indicating a superior fit; and (3) it is widely established in the
literature to describe pathogen data in wastewater as log-
normally distributed30 (either log10-normal [normal distribution
of log10-transformed values] or loge-normal). Because of the
non-normally distributed majority of the data, and due to
censoring, the Kruskal–Wallis non-parametric rank-based test
or the non-parametric Mann–Whitney tests were employed for
censored data. Non-censored data or normally-distributed data
comparisons have tests individually noted with the p-values.
Pathogen distributions can be seen in Fig. 7, with both observed
data and fitted distribution shown. Human fecal indicator
distributions are available in Fig. S6.†

3.3.1 Comparison to previously published datasets. WRF
4989 and a subsequent publication by Darby et al. (2023)30

performed a literature review of high quality pathogen
wastewater data (as defined by various minimum criteria in
data relevance, method quality, compatibility with QMRA,
large sample size, and temporal distributions) with the goal
of creating combined distributions for use in DPR regulatory
development. Their meta-analysis distribution as well as their
project-specific distribution is reproduced in Table 4 for
comparison and contextualization. Compared to their results,
Southern Nevada pathogen wastewater concentrations were
generally higher, within 1 log10 per L for most targets, but
notably over 2 log10 gc L−1 higher in the case of all NoV
targets, and 1.9 log10 gc L−1 higher for AdV (qPCR) compared
to the California dataset. Additionally, there was greater
variability (as measured by standard deviation) for all
molecular targets except AdV (1.6 vs. 1.2) in the Southern
Nevada dataset. This variability may be driven by the large
sample size paired with censored data, encompassing over
three years of weekly and monthly sampling, as well as
encompassing both pandemic conditions and ‘normal’
conditions. Nearly identical methods were employed between
this study and WRF 4989, so while the differences are
unlikely to be methods driven, there still could be differences

Fig. 5 Measured GC : IU ratios for (a) AdV and (b) EnV plotted with the fitted log10 normal distributions (AdV: μ = 3.67, σ = 1.12; EnV: μ = 2.45, σ =
0.84). Non-detects are omitted from the plots but were used in the censored distribution fitting. Solid black vertical lines represent standard
deviations from the 50th percentile.
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due to archiving, recovery adjustment methods, and inherent
sampling differences. Future research can use this study and
the unprecedented volume of biobanks of wastewater data
from other COVID-19 wastewater surveillance programs,
which will result in an increase in published pathogen
datasets, to create a new combined distribution.

3.4 Geographic and temporal trends

3.4.1 Seasonality. Significant seasonal variation was
observed for all qPCR viral pathogen targets but not culture-
based AdV and EnV, Cryptosporidium, nor Giardia, potentially
due to the smaller datasets for the latter targets (e.g., n ≈ 18
per season for Cryptosporidium and Giardia vs. n ≈ 300 per
season for molecular targets). All NoV GI targets (GIA, GIB,
and sum) displayed significantly higher concentrations in the
winter over all other seasons. NoV GII was significantly
higher in winter than summer and fall (p < 0.05) and higher
in fall than in summer (p = 0.03). The observed higher
concentrations of NoV GI and GII in winter align with
seasonal patterns of norovirus outbreaks across the United
States.59 This pattern has been similarly observed in other
non-equatorial areas of the world in both clinical cases60 and
wastewater monitoring.61 Worldwide, NoV GII tends to be the
predominant genogroup in both clinical cases/outbreaks
during winter and spring (peak seasons) and in off-seasons
(summer/fall).62–69 This is reflected in higher detection of
Nov GII in wastewater globally,68,70–72 as well as in this study.
Interestingly, NoV GI had higher concentrations in this study,
although it is rarely determined to be the causative agent of
outbreaks or clinical cases, regardless of season, despite its
prevalence in wastewater throughout the world and in this
study.67,68,73,74 This is corroborated by Southern Nevada
public health data, which suggests endemic circulation of

NoV GII, and more sporadic detection NoV GI in clinical
samples.75 The high concentrations of NoV GI in wastewater
combined with low detection in clinical data/outbreaks could
indicate underreported mild or asymptomatic illness.68,71,74

AdV and EnV did not display as substantial differences. AdV
was slightly, but significantly, higher in the winter than in
summer (p = 0.02); no other comparisons were statistically
significant. Seasonality trends of gastrointestinal AdV are varied,
largely depending on the particular location or timeframe.76,77

AdV gastroenteritis infections do not usually display strong
seasonal patterns; instead, they generally peak sporadically
throughout the year.78 For EnV, concentrations were higher in
the fall than in spring or summer (p < 0.05). Though EnV
gastroenteritis infections are sometimes associated with
summertime illness,79 seasonality of EnV will largely depend on
which EnV species are circulating within the population, as
different enteroviruses have shown different seasonality in
wastewater monitoring data.80

3.4.2 Effect of the COVID-19 pandemic. The hypothesized
effect of the COVID-19 pandemic on wastewater concentrations
of enteric viruses (i.e., lower transmission of gastrointestinal
pathogens due to disease control measures) was one reason for
the California Division of Drinking Water's decision not to use
the California-specific wastewater pathogen dataset developed
by WRF 4989 (Table 4) as the basis for DPR regulations.50 Here,
sufficient data is available to test the hypothesis using
molecular data for AdV, EnV, NoV GI, and NoV GII in Southern
Nevada wastewater. Two approaches were taken. First, the
pandemic was divided into phases representing Nevada-specific
guidelines,81 and concentrations of pathogens were compared
between phases. Pandemic phases are characterized by disease
control measures such as mandated masking, state shutdowns,
and stay-at-home orders (Table 5). Second, the data were
divided into “pandemic” (state stay-at home order of March 18,

Fig. 6 Distributions of Cryptosporidium and Giardia across facilities, along with corresponding detection rates. Censored data estimated for
visualization using ROS. Dashed lines indicate the overall combined fitted distribution means, taking into account left-censored data. For Giardia,
the fitted distribution mean is equivalent to the overall mean as the overall detection rate was 100%. Facility 1 has one additional datapoint due to
a singular sample taken at the commencement of the study for methods optimization.

Environmental Science: Water Research & TechnologyPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ez
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

9.
01

.2
6 

22
:4

8:
03

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ew00620h


Environ. Sci.: Water Res. Technol., 2025, 11, 262–280 | 273This journal is © The Royal Society of Chemistry 2025

2020, through the end of the statewide Declaration of
Emergency on May 20, 2022) and “normal” conditions (pre-
March 18, 2020 and post-May 20, 2022); pathogen
concentrations were compared between these two sets. All viral

pathogens were significantly higher (between 0.97 to 2.24 log10
higher) in samples collected during normal conditions,
suggesting that gastrointestinal disease circulation was lower
during the pandemic (Fig. 8 and S8†). Concentrations of all viral

Fig. 7 Probability plots of fitted normal distributions (gray) and observed data (colors) for log10-transformed pathogen concentrations. <LoQ and
non-detect data are not plotted but included in the calculation of the percentiles (exceedance probabilities). Solid black vertical lines represent
standard deviations from the 50th percentile.
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molecular markers were higher after the end of the state of
emergency than all other individual pandemic phases, with the
following exceptions. There was no significant difference
between the phase after the end of the state of emergency and
the end of the second mask mandate for NoV GII and AdV.
Otherwise, all other phases exhibited significantly lower
concentrations than after the end of the state of emergency (Fig.
S7 and S8†).

An argument can be made that for application of these data,
distinction should be made between pandemic conditions and
normal conditions, with the normal-condition distribution
providing more conservative (i.e., higher) pathogen
concentrations for use in QMRA. Alternatively, the full dataset
provides a larger range of potential wastewater conditions,
incorporating variability that could be useful for estimates of risk
across broad scenarios. Separate pandemic-condition and
normal-condition distribution fittings are available in Table S10.†

3.5 Human fecal indicators

Of the three indicators assessed (crAssphage, HF183, and
PMMoV), crAssphage had the highest concentrations
(distribution mean concentration = 9.18 log10 gc L

−1), followed by
PMMoV (distribution mean concentration = 8.80 log10 gc L

−1) and
HF183 (distribution mean concentration = 7.99 log10 gc L−1).
SYBR-based PMMoV data are not included in these analyses.

In Southern Nevada, human fecal indicator concentrations
in wastewater should be fairly constant due to few and
theoretically stable non-human contributions to the non-
combined sewer system. However, we observed human fecal
indicator changes between facilities, pandemic phases, and
slight seasonal variation. PMMoV and crAssphage exhibited
lower variation in wastewater than the viral pathogens
measured by qPCR (Fig. 9). Bacterial indicator HF183 had an
unexpected drop in concentration in October 2022 before
recovering to previous levels in 2023, which is curious as
methods were consistent for the duration of the study, viral
fecal indicators remained constant, and the drop off was
observed in all facilities. This drop-off impacted the standard
deviation, 1.47 log10 gc L−1, the highest observed across all
targets. We note that the wastewater concentration methods
involve removing the solids fraction, which may contain a
significant portion of bacteria due to their larger size.
Therefore, these methods may not be optimal for bacterial
markers. Seasonal trends were not observed for crAssphage
(p = 0.09). For PMMoV and HF183, there were higher
concentrations observed in summer compared to all other
seasons (p < 0.0001). All fecal indicators displayed significant
variation between facilities, with the most obvious trend
being that facility 1 had significantly lower concentrations (p
< 0.005) than all other facilities, with the only exception
being PMMoV in facilities 1 and 2 not being statistically

Table 5 Pandemic phase characteristics

Milestone
Sampling
starts

Stay-at-home
directive

State
reopening State pause

End of mask
mandate

Mask mandate
2

End of mask
mandate 2

End of state of
emergency

Start date 3/10/2020 3/18/2020 5/9/2020 11/22/2020 6/1/2021 7/27/2021 2/10/2022 5/20/2022
Masking
requirements

No No Yesa Yes No Yes No No

Social distancing
measures

No Yes
(lockdown)

Yes Yes Reopening at 100%
capacity

No No No

Public school
status

In-person Remote Remote Remote/hybrid Hybrid/summer
break

Summer
break/in-person

In-person In-person

a Masking requirements reinstituted on 06/24/2020.

Table 4 Comparison to WRF 4989 pathogen distributions

Pathogen

Meta-analysisa Californiaa Current study Differencec

Meanb St. dev.b Meanb St. dev.b Meanb St. dev.b Δ

Cryptosporidium microscopy 1.9 0.6 1.7 0.4 2.0 0.5 +0.1
Giardia microscopy 4.0 0.4 4.0 0.4 3.7 0.4 −0.3
Enterovirus culture 3.2 1.0 3.2 1.0 3.7 0.9 +0.5
Adenovirus culture — — 2.8 1.0 3.2 0.8 +0.4
Enterovirus molecular 5.1 1.1 4.9 0.8 5.5 1.1 +0.4
Adenovirus molecular — — 4.3 1.6 6.2 1.2 +1.9
Norovirus GIA molecular — — 3.8 1.0 6.3 1.0 +2.5
Norovirus GIB molecular — — 3.6 1.0 6.0 1.4 +2.4
Norovirus GI sum — — — — 6.5 1.2 —
Norovirus GII molecular — — 4.0 0.2 6.2 1.1 +2.2

a Data reproduced here from WRF 4989. b Mean and standard deviation are of a normal distribution of log10-transformed concentrations in
units of target per L. c Δ = current study − literature (i.e., meta-analysis or California). For markers with no meta-analysis data, the California
data are used.
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distinguishable (p = 1). The facility 1 sample is of primary
effluent (influent after undergoing a settling step), so fecal
material may have been somewhat removed. Moreover, due
to the grab nature of the primary effluent, representing
influent arriving at ∼5:00–6:00 am, there may be a diurnal
effect leading to lower human fecal inputs.32

Interestingly, there were significant changes between
individual pandemic phases for all indicators. For instance,
crAssphage increased somewhat during the state reopening
phase (p = 0.01), stayed high and constant, and then
significantly decreased when the second mask mandate was
issued (p = 0.007), potentially due to changes in commuting

Fig. 8 Locally estimated scatterplot smoothed (LOESS, a nonparametric method for smoothing82) concentrations with 95 percent confidence
interval plotted over time and separated by pathogen. For plotting purposes only, <LoQ and non-detect data were set to the LoQ/

ffiffiffi

2
p

. Statistical
significance as measured by the Kruskal–Wallis test and post hoc testing is indicated with solid shading, with solid shade of red indicating a
significant increase from the previous phase and a solid shade of blue indicating a significant decrease from the previous phase. Hatching indicates
no significant difference from the previous phase, and color of the hatching matches the previous shade. Concentrations are not smoothed across
calendar year borders.

Fig. 9 Human fecal indicator quantifiable concentrations and detection rates plotted with the dashed lines representing the overall combined
distribution means. For crAssphage, the fitted distribution mean is equivalent to the overall mean as the overall detection rate was 100%.
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behaviors, tourism, or other factors. PMMoV did not follow
this pattern, however, with a significant increase during the
state reopening phase (p = 0.04), increasing again during the
state pause (p = 0.01), decreasing at the end of the mask
mandate (p = 0.03), constant through the second mask
mandate, and a final significant decrease from the end of the
second mask mandate into the end of the state of emergency
phase (p < 0.0001). When divided into pandemic and normal
phases, crAssphage showed no significant difference between
phases (p = 0.71, Mann–Whitney), whereas PMMoV was
significantly higher (p < 0.0001, Mann–Whitney) in normal/
non-pandemic phases and HF183 was significantly higher (p
< 0.0001, Mann–Whitney) in pandemic phases.

Ultimately, due to the high variability of HF183 and the
potential non-human sources of PMMoV (e.g., food preparation
and food waste disposal down drains), our data suggest that
crAssphage is the best performing molecular fecal indicator for
MST, or potentially for future data normalization approaches, at
least specifically in the studied watershed.

4. Conclusions

For future work, clinical datasets as well as alternative
datasets (e.g., consumer purchases of medications) can
validate WBE of enteric pathogens, which could increase
public health practitioners' confidence in the use of
wastewater for gastrointestinal disease surveillance, as
clinical data are known to underestimate the true prevalence
of gastrointestinal illness.83 Also, QMRA sensitivity analyses
should consider some of the factors found to be significant
in this study, including sewershed-specific characteristics,
seasonality or overall time-dependence of concentrations
(e.g., extended peak concentrations during outbreaks), and
larger disruptions to social behavior such as pandemic
phases and associated policies.

Also, here we characterize microbial constituents (excluding
Giardia and Cryptosporidium) in the liquid portion of
wastewater, although we recognize that enteric pathogens and
fecal indicators exist in both liquid and solid phases.4,84 The
WastewaterSCAN program, initially developed to monitor SARS-
CoV-2 in wastewater, has now expanded to include other targets,
including enteric pathogens. However, it solely focuses on
pathogen concentrations in the solid phase of wastewater,
which presents certain limitations for environmental
applications, wastewater treatment optimization, and regulatory
decision making. While its current form is validated, optimized,
and highly useful for public health applications, the dataset's
utility can be significantly enhanced in future research by
incorporating methodologies to convert between solid and
liquid phase concentrations using partitioning coefficients. For
instance, research could include back-calculating overall
influent concentrations for water reuse LRV development, and
also infection estimates for WBE applications. Characterizing
partitioning coefficients for a growing list of viruses and pairing
these coefficients with total suspended solids data could
facilitate translation of reported gene copies per gram of solids

to overall gene copies per liter of wastewater. This approach
could allow future research to compare pathogen wastewater
dynamics in Southern Nevada to the United States in general,
allowing for a more comprehensive utilization of the
WastewaterSCAN data, enhancing its applicability across various
multidisciplinary fields.

Major products of our study include robust fitted
distributions for culture-based enteric viruses, qPCR-based
enteric viruses, protozoan pathogens, and human fecal
indicators. Additionally, we developed methods for recovery
estimation when degradation of biobank samples may be a
concern, and we established GC : IU ratio distributions. These
ratios are critical parameters for QMRAs when converting
molecular data, which includes both non-infectious and
infectious genetic material, into infectious units. Our analyses
of wastewater concentrations of enteric viruses during the
COVID-19 pandemic supports the hypothesis that
concentrations of enteric pathogens were significantly lower in
some wastewater systems during pandemic conditions. This
decrease is potentially due to reduced spread of gastrointestinal
illnesses during social distancing and other pandemic response
measures. Our study confirmed that enteric viruses, as
measured by molecular methods, exhibited seasonal variation,
with norovirus GI and GII following well documented trends in
the literature. Furthermore, our findings indicated that fresh
samples had fewer non-detects compared to archived samples,
suggesting that storage conditions impact nucleic acid integrity.
Therefore, incorporating appropriate storage and degradation
controls are crucial for studies of biobanked nucleic acid
extracts.
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