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Electrochemical reduction of CO, to chemical fuels with a transition metal-based single atom catalyst (SAC)
offers a promising strategy to reduce CO, with high catalytic selectivity. To date, the study of atomically
dispersed SACs has been mainly conducted by using a conventional H-type cell system with limited
solubility of CO, in aqueous electrolytes, resulting in large overpotentials and low current density. Here,
we reported a pyrrolic N-stabilized Ni SAC with low-coordinated Ni—N, sites by thermal activation of Ni
ZIF-8, which was tested in a 3-compartment microfluidic flow cell system at the industrial level. When
the pyrolysis temperature increased from 800 °C (Ni SAC-800) to 1000 °C (Ni SAC-1000), the content
ratio of pyrrolic N/pyridinic N increased from 0.37 to 1.01 as well as the coordination number of Ni in
Ni—N, sites decreased from 3.14 to 2.63. Theoretical calculations revealed that the synergistic effect
between the high content ratio of pyrrolic N and low-coordinated Ni can decrease the energy barrier for
the desorption of *CO during the CO,RR. Therefore, Ni SAC-1000 exhibited superior catalytic
performances with high CO selectivity (FEco = 98.24% at —0.8 Vgye) compared to that of Ni SAC-800

(FEco = 40.76% at —0.8 Vgrue). Moreover, Ni SAC-1000 based on the flow cell system showed a higher
Received 20th October 2023 -2)

Accepted 25th February 2024 current density (~200 mA cm™2) compared to that of the H-type cell system (~20 mA cm™). As a result,

this study experimentally demonstrated that the pyrrolic N-stabilized and low-coordinated Ni SAC-1000
DOI: 10.1039/d3ta06399b in the microfluidic flow cell reactor provides great chances for scaling up the productivity of the CO,RR

rsc.li/materials-a at the industrial level.
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Introduction

The conversion of CO, to chemical fuels by the electrochemical
CO, reduction reaction (CO,RR) with renewable electricity is an
effective way to solve global climate changes and achieve carbon
recycling in human society."” Among the possible chemical
fuels of the CO,RR, carbon monoxide (CO) is one of the most
desired products because it was generated by low electron
consumption of CO, and could be further converted to meth-
anol, hydrocarbons, and petroleum through Fischer-Tropsch
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synthesis.® To date, nanostructure-based metal catalysts such as
Ag nanowires,”® 3D hierarchical Cu,>'® and Au nanoneedles™
have been demonstrated to improve the catalytic performances
of CO production because they have a large catalytic surface
area for the CO,RR.”® But, it still suffered from large over-
potentials and highly competitive hydrogen evolution reaction
(HER) in an aqueous system.'”'®

Recently, single atom catalysts (SACs) have emerged as
a promising candidate for the CO,RR because they have atom-
ically dispersed active sites and can easily change the local
coordination environments.”?> Especially, a non-noble and
earth-abundant Ni-based SAC coordinated in a carbon matrix
with neighboring N configurations (Ni-N,-C structure) has
been demonstrated to be highly selective in CO production.?**’
Because the Ni-N, configurations play a role in active sites for
the CO,RR, there were several studies to modulate the coordi-
nation structure and local environment of the Ni species.* For
instance, Yan et al. suggested that unsaturated Ni-N, sites
effectively strengthen the CO, adsorption, leading to an
increase in the catalytic selectivity of CO (FEgo = 92% at —1.03
Veue)-?® In addition, low-valent Ni* species anchored on a N-

This journal is © The Royal Society of Chemistry 2024
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doped graphene matrix showed high selectivity toward CO
production (FEgo = 94% at —0.9 Vgyg).?® Pranav et al. reported
that various nitrogen species bonded with metal, such as
graphitic N, pyridinic N, and pyrrolic N, acted as the active sites
for the CO,RR based on density functional theory (DFT) calcu-
lations.*® Despite several kinds of research on Ni-based SACs for
the CO,RR, the reason for the enhanced catalytic activities
remains unclear due to the complexity of various factors, and
more importantly, the role of different types of N configurations
in the CO,RR still remains elusive.

The most effective and easy way to control the N configura-
tions in Ni-based SACs could be pyrolysis treatment at high
temperatures. During the pyrolysis process, the Ni and N
species react with each other to form various active Ni-N, sites
and make different N configurations depending on the process
conditions. Thus, understanding the role of types of N config-
urations fabricated under different pyrolysis conditions can
provide insights into the relationship between the local Ni-N,
structure and catalytic performances, enabling the making of
efficient catalysts.

So far, CO current density for previously reported Ni SACs
with a Ni-N,—C structure has been limited because most of
them were evaluated in conventional H-type electrochemical
cell systems.** In a typical H-type cell system, the CO, gas was
supplied to the catalytic surface through aqueous electrolytes.
The current density of CO, conversion could be restricted due to
the low CO, solubility and slow diffusion of CO, in aqueous
solution, resulting in hardly satisfying the current density of the
industrial level (>100 mA cm™?).% To scale up the productivity of
the CO,RR at the practical level, a gas diffusion electrode (GDE)-
based flow cell system could be employed, where the CO, gas
was directly supplied to the catalytic surface without containing
the aqueous solution. The flow cell system can produce high
current density because of the continuous contact between CO,
and the catalyst as well as the fast diffusion of CO, gas. Thus,
the microfluidic flow cell system is a promising candidate for
enhancing the productivity of the CO,RR in the Ni-based SAC.

In this study, we demonstrated that a simple pyrolysis
process can modulate the local structure of the Ni-N, site and
types of N configurations in Ni SACs, which affects the catalytic
performances of the CO,RR. To manipulate the atomic envi-
ronments of Ni SACs, we fabricated three types of samples with
Ni ZIF-8 (not heat-treated), Ni SAC-800, and Ni SAC-1000 (after
pyrolysis at 800 and 1000 °C). As the pyrolysis temperature
increased from 800 to 1000 °C, the coordination number of Ni-
N decreased from 3.14 to 2.63 as well as the relative ratio of
pyrrolic N/pyridinic N increased from 0.37 to 1.01, indicating
that the pyrrolic N can be thermally activated and stabilized in
low-coordinated Ni SACs. Ni SAC-1000 showed relatively higher
catalytic performances (FEco = 98.24% at —0.8 Vgyg and joo =
148.25 mA cm ™ at —1.4 Vgyg) compared to that of Ni SAC-800
(FEco = 40.76% at —0.8 Vgyg and joo = 4.41 mA cm™2 at —1.4
Vgrue) in a microfluidic flow cell system due to the pyrrolic N-
stabilized Ni SAC with low coordinated Ni-N, sites. Because of
the continuous contact between CO, and the catalyst as well as
the fast diffusion of CO, gas in the flow cell system, Ni SAC-1000
maintained FEco > 95% at potentials from —0.8 to —1.4 Vgyg
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and showed significantly higher current density (~200 mA
ecm™?) compared to that of the H-type cell system (~20 mA
cm ). DFT calculations showed that the synergistic effect
between the high content ratio of pyrrolic N and low-
coordinated Ni can decrease the energy barrier for the desorp-
tion of *CO during the CO,RR, leading to high production of
CO. As a result, the high performance of Ni SAC-1000 in the
microfluidic flow cell system presents great chances for scaling
up the productivity of CO, reduction products toward the
industrial level.

Results and discussion
Morphology and microstructure

The Ni SAC was fabricated by solution-based synthesis and
a subsequent pyrolysis process, which are schematically out-
lined in Fig. 1a (synthesis procedures are detailed in the
Experimental section). ZIF-8 was fabricated through solution-
based synthesis with Ni and Zn precursors, and 2-MeIm. ZIF-8
with a porous structure serves as a molecular cage by trapping
the Ni and Zn ions with the organic ligands of 2-MeIm. After the
pyrolysis process, a metal (M)-N,~C structure supported on an
N-rich carbon matrix was clearly obtained because the ordered
assembly of Ni and Zn was placed in the ZIF-8 structure. To
investigate the effect of pyrolysis temperature, we conducted
heat treatment at 800 and 1000 °C at a rate of 25 °C min_ " and
maintained the temperature for 4 h under an Ar atmosphere in
a tube furnace (denoted as Ni SAC-800 and Ni SAC-1000). The
morphology of Ni ZIF-8 (before pyrolysis), Ni SAC-800, and Ni
SAC-1000 was investigated using a FE-SEM. The SEM images
showed that the as-prepared samples exhibited similar cubic-
like morphology even after the pyrolysis process (Fig. 1b).

The microstructure of the as-prepared samples was further
investigated with HR-TEM. It showed a uniform rhombic
dodecahedron structure with an average size of approximately
40-50 nm in all samples (Fig. 2a and S1t). However, the
morphology started to aggregate because the MOF structure in
ZIF-8 changed to an M-N,-C structure under the pyrolysis
process. The inseted SAED patterns revealed an amorphous-like
carbon structure, which means that there are not any metal-
containing nanoparticles in the carbon matrix. HAADF-STEM
analysis was conducted to investigate the atomic distribution
of Ni atoms in the as-prepared samples (Fig. 2b). In the Ni ZIF-8
skeleton structure, no bright dots representing isolated single
Ni atoms are observed. In contrast, isolated single Ni atoms
were clearly distributed in the entire N-rich carbon matrix in
both Ni SAC-800 and -1000. Thus, it is important to thermally
activate the Ni ZiF-8 structure to achieve highly dispersed Ni
single atoms in the M-N,~C structure. TEM-EDS images showed
that the elements of C, N, Zn, and Ni were distributed in the as-
prepared samples (Fig. S21). The elemental content of Ni
increased with increasing pyrolysis temperature, which was
determined by ICP-AES. It showed that the Ni content was
0.63 wt%, 1.41 wt%, and 2.01 wt% for Ni ZIF-8, Ni SAC-800, and
Ni SAC-1000, respectively (Fig. S3 and Table S1t). Notably, most
of the Zn species were evaporated during the pyrolysis process,
but residual Zn species still remained and could be anchored in
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(a) Schematic illustration of the fabrication process of the pyrrolic N-stabilized low-coordinated Ni SAC and proposed Ni—N, active site
re. (b) SEM images of Ni ZIF-8 (before pyrolysis) and the Ni SAC (after pyrolysis at 800 and 1000 °C).
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(a and b) TEM and HAADF-STEM images of Ni ZIF-8 (before pyrolysis) and the Ni SAC (after pyrolysis at 800 and 1000 °C) with the SAED

patterns in the inset.
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the carbon matrix. The residual Zn can prevent the aggregation
of Ni species and plays a role in the construction of the porous
structure.®

Crystal structure, chemical compositions, and electronic
configuration

The crystal structure was detected by XRD and Raman spec-
troscopy (Fig. S4f). Both Ni SAC-800 and -1000 samples
exhibited no diffraction patterns from crystalline Ni and Zn-
based nanoparticles. It showed a broad graphitic carbon peak
of the (002) plane at 21.5°, which was totally different from the
sharp peaks of the ZIF-8 structure. So, there are no peaks of the
Ni and Zn metallic phases in Ni SAC-800 and -1000, which were
consistent with the results of HR-TEM and HAADF-STEM. The
Raman spectra showed a higher integrated area ratio of I,/I for
Ni SAC-1000 (1.49) compared to those of Ni SAC-800 (1.13),
leading to a higher disordered structure related to the structural
defects. As a result, we confirmed that the Ni single atoms are
highly distributed on the defect-rich carbon matrix, and they are
detected by only HAADF-STEM analysis.

XPS was conducted to elucidate the surface compositions
and related valence states of the as-prepared samples (Fig. 3).
The Zn 2p spectra of the as-prepared samples contained two
peaks centered at 1044.30 and 1021.40 eV, which can be
assigned to Zn** in both Zn 2p,,, and Zn 2p;, (Fig. S5at).>%” As
the pyrolysis temperature increased, the intensity of the Zn 2p
spectra gradually decreased but it still remained as also
confirmed by TEM-EDS, and the residual Zn plays role in the

(a) (b)
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prevention of aggregation of Ni species.”® The Ni 2p;/, spectra of
the as-prepared samples were deconvoluted into the peaks of
Ni** (856.22 eV), Ni* (855.54 €V), and metallic Ni° (854.28 €V)
states (Fig. 3a).>>*”*% Ni ZIF-8 (before pyrolysis) showed only the
Ni** peak, which was consistent with the valence state of the
MOF structure in reference NiPc. On the other hand, there are
three distinct peaks of Ni*", Ni*, and metallic Ni° for both Ni
SAC-800 and -1000 samples, indicating that the valence state of
Ni atoms is likely to be between 0 and +2. Notably, as the
pyrolysis temperature increased, the integrated area ratio of Ni'/
Ni*" increased in the as-prepared samples (Fig. 3c). So, it means
that the valence state of Ni atoms in Ni SAC-1000 was relatively
lower than that of Ni SAC-800. The N 1 s spectra were decon-
voluted into seven N-related configurations, originating from
graphitic N (403.69 eV), N=C (imidazole) (402.12 eV), pyrrolic N
(401.48 eV), N-Ni (400.59 eV), N-Zn (399.13 eV), pyridinic N
(398.55 eV), and N-H (imidazole) (398.24 eV), respectively
(Fig. 3b).2>28373° Ni ZIF-8 showed distinct MOF structure-related
peaks of N=C (imidazole) and N-H (imidazole), and they van-
ished after the pyrolysis because the MOF structure could be
changed to a M-N,-C structure. It is worth noting that the
relative ratio of pyrrolic N/pyridinic N was higher in Ni SAC-1000
compared to that of Ni SAC-800, indicating that some of the
pyridinic N species were damaged during the pyrolysis process;
meanwhile most of the pyrrolic N species remained in Ni SAC
samples (Fig. 3d, S5b and Table S1}). When the pyridinic N
species were removed from the carbon matrix, it will leave
several defects such as vacancies and also can be confirmed by
Raman spectroscopy results of the I,/I; value (Table S27). Thus,
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Fig.3 XPS spectra of (a) Ni 2ps,» and (b) N 1s for Ni ZIF-8 (before pyrolysis) and the Ni SAC (after pyrolysis at 800 and 1000 °C). Relative integrated
peak area ratio of (c) Ni*/Ni?* content and (d) pyrrolic N/pyridinic N content in Ni-based samples.
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it can be concluded that the N configuration coordinated in Ni
species is strongly affected by thermal activation energies.

To identify the local electronic structure of the as-prepared
samples, we further conducted XANES and EXAFS (Fig. 4). In
the Ni K-edge XANES spectra, the near-edge absorption energy
of Ni ZIF-8, Ni SAC-800, and Ni SAC-1000 is placed between
those of reference Ni foil (Ni°) and NiPc (Ni*"), indicating
avalence state between 0 and +2 (Fig. 4a). Also, the valence state
of the as-prepared samples negatively shifted as the pyrolysis
temperature increased, suggesting that Ni atoms in Ni SAC-1000
are in a relatively low-valent state compared to the other
samples. The coordination environment of Ni atoms in the as-
prepared samples was investigated by the corresponding FT-
EXAFS. It showed the presence of Ni-N peaks and the absence
of Ni-Ni peaks in the Ni SAC samples, indicating that Ni species
are distributed at an atomic level in the carbon matrix (Fig. 4b
and S67). The average Ni-N coordination number in Ni ZIF-8, Ni
SAC-800, and Ni SAC-1000 is 4.0, 3.14, and 2.63, respectively,
suggesting that the Ni atoms were unsaturated with N species
after the pyrolysis process (Table S37). So, it indicated that Ni
SAC samples have the configurations of Ni-N, (x = 2 ~ 4) and
showed more unsaturated coordination environments in Ni
SAC-1000 compared to that of Ni SAC-800. Moreover, after the
pyrolysis, Ni-N interatomic distances gradually decreased
compared to that of the MOF structure in NiPc (Ni-N,), sug-
gesting that the pyrolysis process leads to the destruction of the
Ni-N, structures and forms structural defects in the carbon
matrix. Furthermore, through the electron paramagnetic reso-
nance (EPR) measurement technique, the g-value is calculated
to be 2.14, indicating abundant nitrogen vacancies in Ni SAC-
1000 (Fig. S71). From these results, we conclude that the
highly distributed Ni atoms in Ni SAC-1000 have a relatively low-
coordinated and low-valent Ni state (Ni"-N,) with a high content
of pyrrolic N species compared to that of Ni SAC-800.
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Electrochemical CO, reduction in a flow cell system

A conventional H-type cell system has a critical issue with
restricted current densities by the limited solubility of CO, in an
aqueous electrolyte. Thus, we employed a GDE-based flow cell
system and evaluated the Ni ZIF-8 (before pyrolysis), Ni SAC-
800, and Ni SAC-1000 samples to identify the effect of pyrol-
ysis temperature on the catalytic properties of the CO,RR in
a CO,-purged electrolyte (Fig. 5a). LSV was conducted to inves-
tigate the currentrelated performance of the as-prepared
samples in CO, and N,-purged 0.5 M KHCO; electrolyte at
a scan rate of 100 mV s~ ' (Fig. 5b). It showed more negative
current densities under the CO,-purged electrolyte than that
under the N,-purged one. This is because the reduction of CO,
and H,O can occur simultaneously under the former conditions
but only H,O could be reduced under the latter one, indicating
that there is an activity for CO, reduction in all samples.
Especially, Ni SAC-1000 showed the highest magnitude of
current density among the samples (~200 mA cm™?) and
revealed a relatively higher value compared to that of the H-type
cell system. The kinetics of the electron-transfer process were
investigated by EIS measurements (Fig. 5¢). The first semi-circle
in the high-frequency region indicates a capacitive/resistive
behavior between the solution, reference electrode, and
working electrode constituted by the samples. The second semi-
circle in the low-frequency region is the resistance from the
charge transfer during an electrocatalytic reaction.***' The
result that the radius of the second semi-circle is the smallest
for Ni SAC-1000 means that the charge-transfer activity could be
enhanced by increasing the pyrolysis temperature in as-
prepared samples. ECSA measurement was conducted to iden-
tify the catalytically active surface area for the CO,RR (Fig. 5d
and S87). The double-layer capacitance (Cgq;) of Ni SAC-1000 was
13.08 uF cm ™2, which was the highest value among the samples.
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(a) Ni K-edge XANES spectra of Ni ZIF-8 (before pyrolysis), the Ni SAC (after pyrolysis at 800 and 1000 °C), and reference Ni foil and NiPc

samples. (b) FT-EXAFS spectra of the Ni K-edge for Ni-based samples in the R space.
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(a) High-rate CO, electrolysis with a gas and electrolyte-feed flow cell system for Ni-based samples. The results of (b) LSV, (c) Nyquist

impedance, and (d) ECSA measurements for Ni ZIF-8 (before pyrolysis) and the Ni SAC (after pyrolysis at 800 and 1000 °C).

So, the larger active surface area of Ni SAC-1000 is one of the
reasons for enhanced catalytic activity. The faradaic efficiencies
(FEs) of the as-prepared samples were characterized at different
applied potentials from —0.4 to —1.4 Vgyg in CO,-purged 0.5 M
KHCOg; electrolyte (Fig. 6a). Before pyrolysis, Ni ZIF-8 primarily
produces H, (FEy, > 40%) with only a trace amount of CO (FEco
< 10%). After pyrolysis at 800 °C, the FEc, of Ni SAC-800
improved as high as 40.76% at —0.8 Vgryg. As the pyrolysis
temperature further increased to 1000 °C, the FEqo of Ni SAC-
1000 drastically increased to a maximum value of 98.24% at
—0.8 Vg, due to the increased content of catalytically active
pyrrolic N species and abundant structural defects in Ni SAC-
1000. Also, Ni SAC-1000 showed the highest partial current
density of CO among the samples (jco = 148.25 mA cm > at
—1.4 Vgyg) (Fig. 6b). The high selectivity and current density are
due to the significantly suppressed H, evolution in Ni SAC-1000
(FEq, < 5% at all applied potentials) (Fig. 6¢c and Table S47). For
practical applications, the stability of catalysts is important for
the CO,RR in CO,-purged electrolytes. The stability of Ni SAC-
1000 was evaluated for 24 h at a constant potential of —0.8
Vgue in CO,-purged 0.5 M KHCO; (Fig. 6d). To maintain the pH

This journal is © The Royal Society of Chemistry 2024

value of the electrolyte, CO, gas was continuously provided to
the electrolyte during the reaction. The total current density was
almost constant for 24 h (~50 mA ecm ™2 at —0.8 Vgyg) and a high
FEco of ~95% was consistently obtained in long-term reactions.
Moreover, there was negligible change in the morphology,
crystal structure, and atomic environment of Ni SAC-1000
before and after the reaction for 24 h, indicating that Ni SAC-
1000 maintained its catalytic activities and chemical stability
for a long-term reaction in the microfluidic flow cell system
(Fig. S9f). Thus, the thermal activation in the as-prepared
samples was found to be beneficial not only for the catalytic
activity but also for excellent stability. Furthermore, we inves-
tigated the electrochemical stability of Ni-SAC-1000 through
1000 cycles in cyclic voltammetry (CV), confirming its ability to
impede nickel aggregation (Fig. S107).

Up to now, the study of transition metal-based SACs has
been mainly conducted by using a conventional H-type cell
system (Fig. 6e and Table 1). However, scaling up of the
productivity of CO, reduction products such as CO is limited in
a traditional H-type cell because it requires larger overpotentials
and the CO, mass diffusion can be restricted in the electrolytes.
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Fig. 6

(@) FEco and (b) jco at various applied potentials for Ni-based samples in CO,-purged 0.5 M KHCOs electrolytes. (c) Catalytic activities of

Ni-based samples before and after pyrolysis at —0.8 Vgpe. (d) Stability of Ni SAC-1000 at —0.8 Vgpe in CO,-purged 0.5 M KHCOs. Current density
(solid line) and FEco (symbol) at —0.8 Vre Were plotted as a function of reaction time. (e) Summary of the catalytic activities of the Ni-based SAC
for the production of CO measured with a conventional H-cell and microfluidic flow cell system.

Table 1 Summary of the performances of recent Ni-based SACs for the CO,RR toward CO

Catalyst FEco (%) jco (MAcm™?)  Potential (V) Electrolyte Cell system Ref.

Ni-N-C 94% ~10mAcem 2 —0.60 Vgyg 0.5 M KHCO;  H-cell Adv. Funct. Mater., 2022, 32, 2202351

Ni-Zn-N-V 99% 17 mA cm > —0.80 Vgyg 0.5 M KHCO;  H-cell Adv. Mater., 2021, 33, 2102212

Ni-SAC@NC 95% 5.7 mA cm 2 —0.60 Vgyg 0.5 M KHCO;  H-cell Appl. Catal. B: Environ., 2022, 304, 120997

Ni-N-CNSs 95% 5.5 mA cm 2 —0.75 Vggg 0.5 M KHCO;  H-cell J. Colloid Interface Sci., 2020, 570, 31-40

Ni(NC)-1 99% ~10mAcm™2  —0.75 Vgge 0.5 M KHCO, H-cell ACS Catal., 2020, 10, 1086-1093

Ni@NCNTs 99.1% ~13mAcm 2 —0.90 Vgye 0.5 M KHCO;  H-cell Carbon, 2019, 150, 52-59

Ni/NC 96.5% 12.6 mA cm 2 —0.90 Vggg 0.1 M KHCO;  H-cell ACS Sustainable Chemi. Eng., 2019, 7,
15030-15035

Ni-NC_ATPA@C 90% ~16 mAcm 2  —0.90 Vgyge 0.5 M NaHCO,; H-cell Chem. Sci., 2018, 9, 8775-8780

Ni-N-C 80% 11.2 mA cm 2 —0.75 Vggg 0.1 M KHCO;  H-cell Nat. Commun., 2017, 8, 944

Ni-N-C 97% 22 mA cm 2 —0.72 Vgue 0.5 M KHCO,  H-cell Nat. Energy, 2018, 3, 140—147

Ni-N-C 81% 15 mA cm > —0.84 Vgyg 0.1 M KHCO;  H-cell Energy Environ. Sci., 2019, 12, 640-647

Ni1-N-C 96.8% 27 mA cm 2 —0.80 Vgg 0.5 M KHCO;  H-cell Angew. Chem. Int. Ed., 2020, 59, 20589
20595

NiN-graphene layers 90% 65 mA cm 2 —0.79 Vggg 0.5 M KHCO;  Flow cell Chem, 2017, 3, 950

Niz;N/C 92.5% 23 mA cm ™2 —0.79 Vgyg 0.5 M NaCl Flow cell ACS Appl. Mater. Interfaces, 2018, 10,
38024-38031

Ni-NG 97% 50 mA cm 2 2.80 Veen 0.5 M KHCO;  Flow cell Energy Environ. Sci., 2018, 11, 893-903

ZnNi-DCN-1000 90% ~40 mA cm 2 —0.50 Vggg 1 M KOH Flow cell Adv. Funct. Mater., 2022, 32, 2203842

Ni-SA/NC 96.9% ~25 mA cm ™2 —0.66 Vgyrg 1 M KOH Flow cell Nano Energy, 2021, 82, 105689

Pyrrolic N-stabilized Ni SAC  98.2% 45.03 mAcm 2> —0.80 Vg 0.5 M KHCO;  Flow cell This work

95.1% 148.25 mA cm 2 —1.40 Vrug

In this work, we employed a 3-compartment microfluidic flow
cell reactor, which contained a circulated anolyte, catholyte, and
continuous gas-phase CO, supply, to boost the current density
while maintaining high CO selectivity. Ni SAC-1000 maintained

1096 | J Mater. Chem. A, 2024, 12, 11090-11100

FEco > 95% at potentials from —0.8 to —1.4 Vg and showed
significantly higher current density (~200 mA cm™ %) compared
to that of the H-type cell system (~20 mA cm ?) (Fig. S117).
Thus, the high performance of Ni SAC-1000 in the microfluidic

This journal is © The Royal Society of Chemistry 2024
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flow cell system provides great opportunities for scaling up DFT calculations
the productivity of CO, reduction products toward the indus-

. To identify the reason for the increased catalytic activity of Ni
trial level.

SAC-1000 compared to that of Ni SAC-800 in the CO,RR, we have

(@)

1.112
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; 0.8}
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- Ni g CO,
x|
S 041 CcOo
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Reaction coordinate

Fig. 7 (a) Free-energy profiles for the CO,RR to CO on Ni SACs with different Ni—N, coordination environments. (b) Optimized calculation
models for pyrrolic N stabilized Ni SACs with Ni—N,V, sites. (c) Charge density difference plot on CO adsorbed Ni—N,V, with pyrrolic N
configuration, where yellow-colored and cyan-colored isosurfaces represent the boundary of the charge depletion region and charge accu-
mulation region, respectively. (d) Sliced 2-dimensional charge density difference plot of a CO adsorbed single atom Ni site.
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to consider the effect of the coordination environment of Ni
species (Ni-N) and the ratio of pyrrolic N/pyridinic N in the
carbon matrix. Thus, DFT calculations were employed to
understand the enhanced selectivity of CO on Ni SAC-1000
(Fig. 7). For the study, we considered possible reaction mecha-
nisms for the CO,RR in the 2e™ reduction pathway to produce
CO.** First, adsorbed gaseous CO, on the catalytic surface is
reduced to the *COOH intermediate by a proton-coupled elec-
tron transfer reaction. The *COOH can be further reduced to the
*CO intermediate by an additional proton/electron from the
electrolyte and lastly, the *CO intermediate detached from the
catalytic surface, resulting in the formation of gaseous CO
products.** Previous studies suggested that the rate-
determining step (RDS) could be the reaction (1), (2), or (4)
depending on the binding energy of the reaction intermediate.**

CO;, (g) + * = *CO, (1)

*CO, + H* (aq) + e — *COOH (2)
*COOH + H" (aq) + e~ — *CO + H,0 (1) (3)
*CO - CO(g) + * @)

Especially, the step for desorption of the *CO intermediate is
critical because the binding energy of *CO on the catalytic
surface can tune the selectivity of the CO,RR products. The
relatively weak binding of *CO (low desorption energy of *CO)
can produce gaseous CO; meanwhile strongly bonded *CO
(high desorption energy of *CO) could suppress CO production.
Therefore, it is important to reduce the energy barrier of the
*CO desorption step to achieve high selectivity of CO
production.*

In our DFT calculations, we compared the Gibbs free energy
change (AG) of reaction intermediates of *COOH and *CO on
the Ni SAC on various Ni-N configurations (Fig. 7a).

In terms of the *CO desorption step, it showed that the
reaction barrier of desorption of the *CO intermediate is rela-
tively smaller in pyrrolic N sites compared to those of
pyridinic N sites regardless of containing vacancies. Notably,
Ni-N,V, with pyrrolic N sites revealed the favorable formation
of CO products due to its lowest desorption energy of the *CO
intermediate (Fig. 7b). In our study, when the pyrolysis
temperature increased from 800 °C (Ni SAC-800) to 1000 °C (Ni
SAC-1000), the content ratio of pyrrolic N/pyridinic N increased
from 0.37 to 1.01 as well as the coordination number of Ni in
Ni-N, sites decreased from 3.14 to 2.63. We additionally con-
ducted charge density generation calculation on *CO adsorbed
Ni-N,V,-pyrrolic (adsorbate + slab), CO (adsorbate), and Ni-
N,V,-pyrrolic (slab). Then we calculated the charge density
difference induced by the CO adsorption by volumetric
subtraction of the spatial charge density of Ni-N,V,-pyrrolic
(slab) and CO (adsorbate) from that of *CO adsorbed Ni-N,V,-
pyrrolic (adsorbate + slab), which was then plotted as a charge
density difference plot in Fig. 7. The yellow-colored isosurface of
Fig. 7c represents the boundary of the charge depletion region,
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which matches with the positive oxidation state of the Ni single
atom center. The cyan-colored isosurface represents the
boundary of the charge accumulation region and the strong
bond bridged with accumulated electron density between Ni
and C of the CO adsorbate was confirmed in the 2-dimensional
sliced charge density plot in Fig. 7d. As a result, we conclude
that the synergistic effect between the high content ratio of
pyrrolic N and low-coordinated Ni can decrease the energy
barrier for the desorption of the *CO intermediate during the
CO,RR, leading to high production of CO in Ni SAC-1000 (FEgo
= 98.24% at —0.8 Vg and jco = 148.25 mA cm ™2 at —1.4 Vpyg)
compared to that of Ni SAC-800 (FEco = 40.76% at —0.8 Vgug
and jco = 4.41 mA cm™ 2 at —1.4 Vgyg).

Spin-polarized partial density of states (PDOS) calculations
on 5 configurations without adsorbed intermediates, namely
pristine (a) Ni-N,V,-pyrrolic, (b) Ni-N;V;-pyrrolic, (c) Ni-N,-
pyrrolic, (d) Ni-N,V;-pyridinic, and (e) Ni-N,-pyridinic, are
plotted in Fig. S12.1 We calculated the Ni d-band center posi-
tion and it turned out that if the Ni d-band center position was
closer to the Fermi-level, the reaction energy barrier of the CO,
to CO pathway was reduced. The Ni d-band center of Ni-N,V,-
pyrrolic configuration was calculated to be —0.71 eV, which was
the lowest among the 5 pristine configurations without adsor-
bed intermediates and showed the lowest reaction energy
barrier of 0.149 eV toward the CO pathway. In contrast, Ni-N-
pyridinic configuration showed the largest reaction energy
barrier of 1.112 eV toward the CO pathway and the lowest Ni d-
band center position of —2.09 eV. The closer Ni d-band center to
the Fermi level induces the optimal *CO binding strength via
orbital coupling with the C and O orbitals of the adsorbate near
the Fermi level, which eventually leads to the facile adsorption
and desorption of *CO at the same time. We also conducted
partial density of states calculations on 5 different configura-
tions with adsorbed CO on the Ni site and calculated the Ni d-
band center in Fig. S13.}

The HCOOH production pathway and H, evolution reaction
pathway are the two representative competing reactions toward
the electroreduction of CO, to CO pathway, and we revisited our
structural models and placed adsorbates for those competing
reactions (Fig. S141). It turned out that the reaction energy
barrier for both HCOOH production and H, evolution reaction
pathways is higher than that of the CO, to CO pathway, which
ensured outstanding selectivity and faradaic efficiencies toward
CO higher than 95%.

Conclusions

In summary, we have demonstrated a pyrrolic N-stabilized Ni
SAC with low-coordinated Ni-N, sites by using a thermal acti-
vation of Ni ZIF-8. We found that Ni SAC-800 and -1000 showed
atomically dispersed Ni species with low-coordinated N sites in
the carbon matrix and inhibited the formation of Ni nano-
particles as confirmed by HAADF-STEM and XAS. As the pyrol-
ysis temperature increased from 800 to 1000 °C, the
coordination number of Ni-N, sites decreased from 3.14 to 2.63
and increased to a relative content ratio of pyrrolic N/pyr-
idinic N from 0.37 to 1.01. The synergistic effect between the

This journal is © The Royal Society of Chemistry 2024
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low-coordinated Ni-N, sites and the high content ratio of
pyrrolic N/pyridinic N decreases the energy barrier for the
desorption of the *CO intermediate during the CO,RR, which
enhanced the catalytic performances in Ni SAC-1000 (FEco =
98.24% at —0.8 Vgyg) compared to that of Ni SAC-800 (FEco =
40.76% at —0.8 Vgyg). Moreover, we employed a microfluidic
flow cell system to boost catalytic productivity at the industrial
level. Ni SAC-1000 showed relatively outstanding current
density (~200 mA cm™?) in the flow cell system compared to
that of conventional H-type cell configuration (~20 mA cm™?).
The FE¢o keeps well above 95% at potentials from —0.8 to —1.4
Vrue and it showed excellent stability to produce CO during
long-term operation for 24 h. This work experimentally
demonstrated the relationship between local N configuration in
Ni-N, sites and catalytic activities for the CO,RR in a flow cell
system, providing guidelines for designing highly productive
CO selective Ni SACs.
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