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Hydrogen bond (H-bond) network connectivity in electric double layers (EDLs) is of paramount importance
for interfacial HER/HOR electrocatalytic processes. However, it remains unclear whether the cation-
specific effect on H-bond network connectivity in EDLs exists. Herein, we report simulation evidence
from ab initio molecular dynamics that cations at Pt(111)/water interfaces can tune the structure and the
connectivity of H-bond networks in EDLs. As the surface charge density ¢ becomes more negative, we

- 02 show that the connectivity of the H-bond networks in EDLs of the Na* and Ca®* systems decreases
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Accepted 7th April 2024 markedly; in stark contrast, the connectivity of the H-bond networks in EDLs of the Mg“" system

increases slightly. Further analysis revealed that the interplay between the hydration of cations and the

DOI: 10.1039/d35c06904d interfacial water structure plays a key role in the connectivity of H-bond networks in EDLs. These

rsc.li/chemical-science findings highlight the key roles of cations in EDLs and electrocatalysis.
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Introduction

The structure and composition of the electrical double layer
(EDL) at the interface of the electrolyte solution and catalyst
surface during electrochemical processes play a paramount role
in the activity and selectivity of a wide range of electrocatalytic
reactions. Examples of such reactions include the hydrogen
evolution reaction (HER),'® hydrogen oxidation reaction (HOR),
oxygen reduction reaction (ORR),*® CO oxidation, CO reduction
reaction (CORR), and CO, reduction reaction (CO,RR).**™*
Although the cations at EDLs are electrochemically inactive,
they have shown to highly affect the strengths of interfacial
electric fields, the structures of interface water, and the local pH
values, etc. Consequently, various mechanisms have been
proposed to account for the cation effects on different catalytic
reactions. For example, Singh et al. proposed that hydrolysis of
the cation's solvation layer buffers the interfacial pH, thereby
regulating the local CO, concentration and affecting CO,RR
activity.”* However, Ayemoba and Cuesta reported that the
buffering of local pH by cations was overestimated.*® Qin et al.
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illustrated that K' can promote the CO, activation through an
inner-sphere mechanism.*®" Strmcnik and co-workers found
that the trend of the interaction energies between cations and
surface adsorbed OH follows the order Li* > Na* > K" > Cs",
which is contrary to the activities of the ORR, the HOR and the
oxidation of methanol on Pt, suggesting that the cations block
the Pt active sites for electrocatalytic reactions.” Very recently,
Goyal et al. showed that interfacial cations on the Au electrode
can alter the kinetics of the HER by stabilizing the transition
state of the rate-determining Volmer step.*®

In addition, several researchers have recently proposed that
interfacial hydrogen-bond (H-bond) networks may play a key
role in the kinetics of interfacial proton-coupled electron
transfer processes, thereby affecting the kinetics and selectivity
of electrocatalytic interface reactions. For example, Wang et al.
used a library of protic ionic liquids in an interfacial layer of Pt
and Au to strengthen H-bonds between ORR products and the
ionic liquid, thereby enhancing the ORR activity up to fivefold.*®
Berg et al. found that the acidic part of thiophenol could
generate an extended H-bond network between phosphate-H'-
phosphate dimers and amides, leading to efficient regeneration
of the photocatalysis.”® What's more, Wang et al. revealed that
the integration of diaminotriazine with Cu-porphyrin could
construct numerous H-bond networks, which were beneficial
for proton migration and intermediate stabilization, thus
improving the performance of electrochemical CO,RR.** Very
recently, Chen et al. discovered that the connectivity of the H-
bond network in the double layer dominates the pH kinetic
effects of HER/HOR electrocatalytic processes at Pt-water
interfaces. In comparison to alkaline environments, the H-bond
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network at the interface exhibits higher continuity under acidic
conditions, resulting in enhanced HER/HOR reaction activity.

Despite much effort in studying the effects of cations on the
dynamics and structure of interface water, cation-specific effect
on the H-bond network connectivity in EDLs and underlying
mechanisms have not yet been explored. In this study, we
employed ab initio molecular dynamics (AIMD) simulations to
investigate the structure and the connectivity of H-bond
networks in EDLs with Na®, Ca®>" and Mg**as counter charges
at Pt(111)/water interfaces. Here we selected Na*, Ca** and Mg**
because Mg®" and Ca®" carry similar charges, and Na* and Ca**
have a similar ionic size. We find that there is a water gap zone
at the electrode surface, which leads to a significant reduction
in the connectivity of H-bond networks. When the surface
charge density ¢ continuously changes from —13.38 to —53.52
uC em™?, the connectivity of H-bond networks in EDLs of the
Na" and Ca®" systems decreases monotonically. In contrast, the
connectivity of H-bond networks in EDLs of the Mg”* system
increases slightly. This interesting behavior is attributed to the
fact that the electrostatic attraction between the cation and the
electrode surface, as well as the size of the cation notably affect
the distance between the cation and the electrode surface,
which in turn dictates the structure of H-bond networks in EDLs
via the interplay between the hydration of cations and the
interfacial water structure.

Methods

Models of electrified interfaces

The Pt(111) surface was modelled using an orthogonal p(6 X 6)
periodic slab with 4 atomic layers and separated from its peri-
odic images with a vacuum region. The vacuum is fully filled
with water molecules, and the density of the bulk water was
close to 1 g em™. The overall size of the surface model was
16.615 x 14.389 x 30 A’. EDLs were modelled by introducing
metal atoms (i.e., Na, Mg, or Ca) near the Pt(111) surface. The
metal atoms cannot diffuse to the bulk water on the time scale
of AIMD due to electrostatic forces. Bader charge analysis of Mg,
Ca and Na atoms shows that Mg, Ca and Na atoms carry positive
charges of ~+1.65e, ~+1.60e and ~+0.89e respectively, indi-
cating that Mg, Ca and Na atoms are indeed ionized. Varying the
number of cations in the system is equivalent to controlling the
surface charge density (o). Using this approach, electrified
Pt(111)/water interfaces with ¢ = —13.38, —26.76, —40.14, or
—53.52 uC em™ 2 were constructed (Fig. S11). Note that similar
EDL models have been used successfully in previous studies.>***

Computational details

The second generation Car-Parrinello molecular dynamics
(SGCPMD)**” was used to sample configurations for interface
systems, and this method has been widely applied for metal/
water systems.****?® The simulations were run in a canonical
ensemble at 330 K and the propagation of the equations of
motion is based on the Langevin dynamics. The Langevin fric-
tion coefficient (y.) was set to 0.001 fs~', and the intrinsic
friction coefficients (yp) were 5 x 10> fs* for Pt, 2.2 x 10* fs™*
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for H,0, Mg and Na, respectively. The correction step was ob-
tained by 6 iterations of the orbital transformation (OT) opti-
mization algorithm.?® The temperature of the Ca®>" system is
controlled using the Nose-Hoover chain thermostat.** The time
step of the AIMD simulations was 0.5 fs. All AIMD simulations
were sampled for up to 15-30 ps to ensure that the interface
systems were well equilibrated, and the last 10-15 ps data were
collected for analysis.

All calculations were performed using the CP2K package
with the QUICKSTEP module.*** The exchange-correlation
interactions of electrons were treated using the Perdew-Burke-
Ernzerhof (PBE) functional®*® with Grimme's van der Waal
correction®*** (PBE-D3). Goedecker-Teter-Hutter (GTH) norm-
conserved pseudopotentials®*® were used to represent the core
electrons. Double-{ with one set of polarization functions
(DZVP) Gaussian basis sets were used, and the energy cutoff was
set to 400 Ry.

Results and discussion

As illustrated in Fig. S1,t a series of ion-water/Pt(111) interfaces
with different o were modelled. Typical AIMD snapshots of the
Mg> -water/Pt, Ca®>"~water/Pt and Na'-water/Pt interfaces with
o = —26.76 uC cm > are shown in Fig. 1A-C, and additional
snapshots are illustrated in Fig. S2.T The planes consisting of
the cations closest to the electrode surface are defined as the
counter ion planes (CIPs) and are represented by black dashed
lines (Fig. 1A-F). Remarkably, CIPs are located at different
distances away from the electrode surface for Mg>*, Ca®>" and
Na' systems. Fig. 1D-F show profiles of water density along the
surface normal direction at different surface charge densities.
Independently of o, all three systems show a sharp main peak at
the height of ~3.1 A, ie., a water layer is located at ~3.1 A
height. In contrast, the height of the CIP increases with ¢ for all
three systems. In addition, the distribution of the different
cations in EDLs relative to water molecules exhibits a very
different behavior. Specifically, in the Na" system, the CIP is
separated from the electrode surface by the water layer, whereas
in the Mg®" system, the CIP is located between the electrode
surface and the water layer. By contrast, in the Ca>* system, the
CIP is close to the water layer. These differences can be attrib-
uted to the interaction between cations and the electrode
surface as well as the size of cations. Mg®" and Ca** carry more
positive charges, almost twice as much as Na', indicating that
the electrostatic interaction between Mg”*/Ca®>" and the elec-
trode surface is much stronger than that between Na" and the
electrode surface. Therefore, Mg®" and Ca®" are closer to the
electrode surface than Na. On the other hand, Mg>" is much
closer to the electrode surface than Ca®>" because the size of
Mg>" is smaller than Ca*".

As shown in Fig. 1D-F, at ¢ = —13.38 uC cm ™2, there are two
major peaks for the three systems. One peak is located at 7 =
~2.3 A, which corresponds to water molecules directly chem-
isorbed on the electrode surface. The other peak is located at £
= ~3.3 A, which is much more intense and represents non-
chemisorbed water molecules. In addition to the sharp peaks,
all three systems have a gap zone located between heights of 3.6

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Representative snapshots of EDL structures at Pt(111)/water interfaces for the (A) Na*, (B) Ca®* and (C) Mg®* systems. The red, white, silver,
blue, green and orange spheres represent O, H, Pt, Na, Ca and Mg elements, respectively. The density profiles of water along the Pt(111) surface
normal direction for the (D) Na*, (E) Ca2* and (F) Mg?* systems at different surface charge densities (¢ = —13.38, —26.76, —40.14 and —53.52 uC

cm—

2). The CIPs for all systems are presented by black dashed lines. Statistic distributions of the number of H-bonds along the surface normal

direction in the (G) Na™, (H) Ca* and (1) Mg?* systems at different surface charge densities. The shaded areas represent the gap zones of water

and H-bonds and are magnified on the right.

A and 4.8 A, where the water density is lowest (the shaded areas
in Fig. 1D-F). The distribution of the number of H-bonds
(Fig. 1G-1I) reveals that the depletion of water molecules in
this gap zone reduces the connectivity of H-bond networks.
Furthermore, as the surface charge density becomes more
negative, i.e., from —13.38 to —53.52 uC cm ™2, we note that the
number of H-bonds in the gap zone monotonically decreases
from 9.7 and 11.9 to 2.9 and 3.4 in the Na" and Ca** systems,
respectively (Fig. 1G and H). In contrast, in the Mg®" system,
although the water density profiles in the gap zone are similar to
those of the Na* and Ca** systems (Fig. 1F), the dependence of
the connectivity of H-bond networks on the ¢ is quite different.
Surprisingly, the number of H-bonds in this gap zone gradually
increases from 8.0 to 11.2 as ¢ changes from —13.38 to —53.52
uC cm™> (Fig. 11). Similar results were observed for the systems
with the *H intermediates present on the Pt electrode (Fig. S31).
Specifically, the number of H-bonds in the gap zone of the Na'-
Pt(*H) system decreases as the surface charge density becomes

© 2024 The Author(s). Published by the Royal Society of Chemistry

more negative, while the number of H-bonds in the gap zone of
the Mg”>*-Pt(*H) system increases. It is noteworthy that the
height of the gap zone decreases of the Na'-Pt(*H) system
decreases as the surface charge density becomes more negative,
while the height of the gap zone of the Mg>'-Pt(*H) system
remains almost constant. The different trends in the g-depen-
dent gap zone heights should be attributed to the different A¢cp
of the Na*-Pt(*H) and Mg**-Pt(*H) systems (black dashed lines
in Fig. S3A and S3Bt).

Although the cations at EDLs are electrochemically inactive,
they are more than just counter charges to electrode surface
charges. We then calculated the electrode potential (U) at each
surface charge density using the recently developed computa-
tional standard hydrogen electrode method.?” The convergence
of the computed U can be found in Fig. S4.1 As shown in Fig. 24,
U decreases for all systems as ¢ becomes more negative. Indeed,
the change in U (Ay/) can be decomposed into two parts:* (1) the
usual potential change (Ay,) induced by the interface dipole of

Chem. Sci., 2024, 15, 7111-7120 | 7113
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(A) Plot of surface charge density (¢) as a function of computed electrode potential (U) for the three systems. Surface charge densities

scale linearly with computed electrode potential and the slopes indicate the Helmholtz capacitances. (B) Plot of the height of CIP (h¢ip) as
a function of surface charge density (o) for the three systems. The gray dashed line represents the height of the sharp peak in the water density

profiles.

hcrp; (2) the potential due to water chemisorption (Ay,). At
potentials slightly more negative than PZC, both Ay, and Ay,
contribute to the overall electrode potential. In contrast, at
much more negative potentials than PZC, all chemisorbed water
is desorbed from the surface (Fig. 1D-F), indicating that Ay, =
0 and only Ay, contributes to the overall electrode potential. In
addition, ¢ shows almost linearly dependence on the U, and
similar results have been illustrated in previous work.>* The
slope corresponds to the Helmholtz capacitance (Cy = do/dU).
The Cy of the three systems follows the sequence Mg>" (~55.83
uF em™?) > Ca®" (~46.24 uF cm™?) > Na™ (~28.15 pF cm ?),
which is largely due to the different Helmholtz layer widths in
these three systems (Fig. 2B). We note that previous experi-
ments on the Cy; of Mg>*, Ca® and Li* systems show a similar
trend: Mg>" > Ca”" > Li'.*** Since the size of Mg*" (ryge = 0.72

A) is the smallest of the three cations, the height of CIP (h¢yp) for
the Mg>" system is lowest. Interestingly, the Acpp of the Ca®*
system is much lower than that of the Na* system, despite their
similar sizes (rya- = 1.02 A and g2 = 1.00 A), which should be
due to the stronger electrostatic attraction between Ca** and the
electrode surface. Furthermore, the qp becomes lower as the o
becomes more negative in all systems, which means that the
width of the Helmholtz layer decreases as the electrode poten-
tial becomes more negative. At ¢ = —53.52 uC cm™ 2, Mg®" can
be viewed as a specific adsorbed ion due to its low hcp (~2.5 A)
and weak diffusivity (Fig. S57).%*

To understand why the H-bond network connectivity in EDLs
behaves so differently with decreasing ¢ in the presence of
different cations, we first analyzed the interaction between the
cations and water molecules in EDLs. Fig. 3A plots the average
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Fig. 3

surface charge densities. (B)—(D) Representative snapshots of coordination structures of cations at the Pt (111)/water interface at —13.38 uCcm™

(A) The average numbers of water molecules in ionic hydration shells, i.e., coordination number (CN), for the three systems at different

2

and —53.52 uC cm~2. The blue, green, orange and silver spheres represent Na*, Ca%*, Mg?* and Pt, respectively. Water molecules in ionic
hydration shells are highlighted with the stick model, while others are represented with the line model.
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numbers of water molecules in different ionic hydration shells,
i.e., coordination number (CN), as a function of ¢. For all
cations, CN decreases as ¢ becomes more negative due to the
competition between electrostatic attraction and solvation of
the ion. This can be understood by the fact that the interaction
of cations with water molecules plays a dominant role when the
electrode surface charge is less negative, and thus CN is high.
Specifically, for Na* and Ca”" ions, CN decreases from 5.4 and
5.2 to 4.8 and 5.0 as ¢ changes from —13.38 to —53.52 uC cm’ 2,
respectively. It is clear that the decrease in the CN of Na' is
larger than that of Ca®>" because the CIP height of the Na*
system varies more as ¢ becomes more negative. Furthermore,
we note that at less negative surface charge density (¢ = —13.38
uC em™?), Na* has a fully solvated structure at the EDL, as in
bulk water (Fig. 3B), whereas Ca®>" and Mg** are partially
solvated at the EDL (Fig. 3C and D), which should be attributed
to stronger electrostatic interactions and low CIP heights.
Interestingly, although the CIP heights of the Mg®" system only
decrease from 3.1 to 2.5 with a change in ¢ from —13.38 to
—53.52 uC cm 2, the CN of Mg>" decreases the most of the three
systems. This is due to the fact that the CIP of the Mg>" system is
located between the electrode surface and the water layer

View Article Online
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(Fig. 1F), and thus the number of water molecules in the vicinity
of Mg>" varies sharply with the height of CIP. In other words, the
interaction between the cations and water molecules in EDLs is
highly dependent on the CIP height.

To gain more insight into the mechanism underlying the
cation-specific effect on the H-bond network connectivity in
EDLs, structures of interfacial water for these three systems at
different charge densities were analyzed. The 2D probability
distributions of the angle ¢ between the bisector of water and
the surface normal as a function of height / above the electrode
surface for the three systems at different o were plotted (Fig. 44,
Cand 4E). At ¢ = —13.38 uC cm 2, there are two major peaks for
the three systems: one peak is located at # = ~2.3 A and ¢ =
~53°, which corresponds to the “two-H-up” water molecule that
is directly chemisorbed on the electrode surface (in purple in
Fig. 4B, D, 4F and S67); the other peak is located at 7 = ~3.3 A
and ¢ = ~128°, which is much more intense and represents the
“one-H-down” non-chemisorbed water molecules (in yellow in
Fig. 4B, D, 4F and S67). Similar results were found for the
Pt(111)/water interface system.>*** The presence of chemisorbed
and nonchemisorbed water at the interface is mainly due to
water-metal interactions. At the very negative potential, there is
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Fig.4 The probability distribution of water structure (within ~4.8 A from the electrode surface) as a function of height h and the angle ¢ between
the bisector of water and the surface normal in (A) Na™, (C) Ca®" and (E) Mg?* systems. The figures from left to right represent the probability
distribution of water structure at ¢ = —13.38, —26.76, —40.14 and —53.52 pC cm™2, respectively. The gray areas represent the gap zones.
Representative AIMD snapshots of local structures of (B) Na*, (D) Ca®* and (F) Mg®* systems. Na, Ca, Mg and Pt elements are represented by blue,
green, orange and silver spheres, respectively. Interfacial water molecules corresponding to different peaks in 4A, 1C and 1E are distinguished by

different colors (purple, yellow, cyan, green).
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no chemisorption of water on the surface due to coulombic
repulsion, and hence the peak at # = ~2.3 A disappears. Note
that due to water-water interactions, both chemisorbed and
nonchemisorbed water form H-bonds with neighboring water
molecules. At much more negative charge densities, the peaks
corresponding to chemisorbed water disappear in the three
systems due to coulombic repulsion. For Na* and Ca®" systems,
at ¢ = —26.76 uC cm 2, there is only one peak corresponding to
the “one-H-down” water structure (Fig. 4A and C), where the
other hydrogen of the water forms H-bonds with the neigh-
boring water. As ¢ becomes more negative, the peak for the
“one-H-down” water becomes more intense, indicating that
a more ordered interfacial water structure is formed. In sharp
contrast, for the Mg>" system, a new peak appears gradually at &
=3.5-3.8 Aand ¢ = ~46°, which corresponds to the “one-H-up”
water molecule (in cyan in Fig. 4E), when o becomes more
negative. In addition, a small peak is observed at & = ~3.6 A and
¢ = ~105° corresponding to the “two-H-parallel” water mole-
cule (in green in Fig. 4F). Interestingly, at a more negative
surface charge density (¢ = —53.52 uC cm™2), the peak for the
“one-H-up” water moves to a height of ~3.9 A from the surface,
located in the H-bond gap zone (gray region in Fig. 4), sug-
gesting that more water molecules enter this H-bond gap zone.

An arising question is why the interfacial water structure is
so different in the Mg?* system? Our AIMD simulations show
that the CIP height of Mg>" is lower than that of Ca** and Na*
due to the small size of the cation and the strong electrostatic
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attraction between the cation and the electrode surface. On the
other hand, the radial distribution functions of O atoms
surrounding the cations show that the solvation shell radius of
the Mg?* (~2.1 A) is much smaller than that of the Na* (~2.4 A)
and Ca** (~2.4 A) (Fig. S71). Due to the high valence state of
Mg>" and the small CIP height, the shaping effect of electric
field on water orientation is weak, and thus “two-H-parallel”
and “one-H-up” water molecules are observed (in green, cyan in
Fig. 4F).

There are two ways to reduce the H-bond network connec-
tivity in the H-bond gap zone: one is to reduce the number of
water molecules, and the other is to reduce the number of H-
bonds per water molecule. To determine which one is more
important, we calculated the number of water molecules and
the number of H-bonds per water molecule in the H-bond gap
zone of the whole systems for various ¢. As shown in Fig. 5A,
when ¢ changes from —13.37 to —53.52 uC cm ™, the number of
water molecules in the H-bond gap zone in the Na* and Ca**
systems decreases sharply from 6.0 and 7.5 to 1.5 and 2.1,
respectively, while the number of water molecules in the H-
bond gap zone in the Mg>" system increases slightly from 5.5
to 6.3. However, in all three systems, the difference in the
number of H-bonds per water in the H-bond gap zone of the
three systems seems not significant at the same o (Fig. S87). In
other words, the number of water molecules in the H-bond gap
zone can be seriously affected by cations.

o
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Fig.5 (A) The average number of water molecules in the H-bond gap z

one in the three systems. The average number of water molecules within

the solvation shell of cations and the average number of water molecules interacting with interfacial water molecules via H-bonds in the H-bond
gap zone of (B) Na*, (C) Ca®*, and (D) Mg®* systems at different ¢. In addition, the average number of water molecules that neither form H-bonds
with the interfacial water nor are in the solvation shell of the cations was counted, as well as the average number of water molecules that both
form H-bonds with the interfacial water and are in the solvation shell of the cations. (E) Typical AIMD snapshot of the local structure of the H-
bond gap zone in the Mg?* system. Interfacial water molecules and water molecules in the gap zone are represented by yellow and cyan spheres,

respectively.
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Further, we analyzed interactions between the water mole-
cules in the H-bond gap zone and the interfacial water mole-
cules or cations by counting the number of water molecules
within the solvation shell of cations (namely, within-cation-
solvation-shell water molecules) and the number of water
molecules interacting with interfacial water molecules via H-
bonds (namely, via-H-bonds water molecules) at different o.
As shown in Fig. 5B-D, almost no water molecules (namely,
none) neither form H-bonds with the interfacial water nor are
within the solvation shell of the cations, indicating that there
are strong interactions between the water molecules in the H-
bond gap zone and the interfacial water molecules or cations.
When the surface charge density is less negative (¢ = —13.38 uC
cm %), the number of via-H-bonds water molecules is high,
much higher than the number of within-cation-solvation-shell
water molecules, in these three systems, which suggests that
the water molecules in the H-bond gap zone interact with EDLs
mainly via H-bonding with interfacial water molecules. As ¢
becomes more negative, the number of via-H-bonds water
molecules in the Na* and Ca** systems decreases sharply from
5.8 and 7.1 to 1.5 and 2.1, respectively, while the number of
within-cation-solvation-shell water molecules does not change
much. In contrast, the number of via-H-bonds water molecules
in the Mg>" system increases slightly from 5.2 to 5.8 with
decreasing ¢, which is attributed to a sharp increase in the
number of within-cation-solvation-shell water molecules from
0.1 to 4.7. Specifically, as ¢ becomes more negative, interfacial
water molecules tend to adopt a more ordered network struc-
ture, and it becomes more difficult for the water molecules in
the H-bond gap zone to form H-bonds with interfacial water
molecules. As a result, the number of water molecules in the H-
bond gap zone of the Na” and Ca®" systems decreases with
negative changing of . However, in the Mg?* system, O(H,0)- -
Mg>" electrostatic attraction between water molecules in the H-
bond gap zone and Mg”* increases with negative changing of o,
compensating for the weakening of the interaction between the
interfacial water and water molecule in the H-bond gap zone
(Fig. 5E). Thus, there is a slight increase in the number of water
molecules in the H-bond gap zone of the Mg>* system.

Conclusions and discussions

Recently, the importance of H-bond networks in EDLs for
reaction kinetics has received increasing attention, which has
contributed significantly to the fundamental understanding of
modern electrocatalysis.**>*>*-5* Although there have been
recent reports on the cation effect on interfacial H-bond
networks.'****> The atomic-scale mechanisms and cation-
specific effects on H-bond networks remain unclear. In fact,
the effect of cations on the electrocatalytic kinetics is usually
attributed to the strength of noncovalent interactions between
cations in EDLs and reaction species.'®»*33-% In our work, we
have investigated the cation-specific effect on H-bond network
connectivity in EDLs.

Strikingly different H-bond network connectivity scenarios
emerge when different cations are present. The interplay
between the hydration of cations and the interfacial water

© 2024 The Author(s). Published by the Royal Society of Chemistry
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structure plays a key role in the H-bond network connectivity in
EDLs. As ¢ becomes more negative, more interfacial water
molecules adapt to the “one-H-down” structure, resulting in
a decrease in the number of water molecules in the H-bond gap
zone. On the other hand, cations can help to stabilize the water
molecules in the H-bond gap zone if the hydration of the cations
and the distance between the cations and the electrode surface
are appropriate. Overall, the interplay between the hydration of
cations and the interfacial water structure can tune the number
of water molecules in the H-bond gap zone and thus the
connectivity of H-bond networks in EDLs. Our work demon-
strates the cation-specific effect on H-bond network connec-
tivity in EDLs.

Our findings may help to improve the electrocatalytic
performance. In addition to hydrogen transfer (HT) from the
closest interfacial water molecules to the electrode surface, HT
between bulk water and the interfacial water via the H-bond
networks in the EDL is also essential to the whole electro-
chemical process. Chen et al. revealed that the origin of the
large kinetic pH effect in the HER is caused by the significantly
different connectivity of H-bond networks in EDLs, and not by
differences in the free energy barrier of the Volmer reaction.”
Note the protonation of *CO, (*CO,-to-*COOH) is the second
key step in the CO,RR, and the water molecules adjacent to the
electrode surface are the source of hydrogen transfer. Therefore,
this step may also be affected by the H-bond network connec-
tivity. Our AIMD simulations demonstrate that the ability of
cations to tune the connectivity of H-bond networks exhibits an
ion-specific effect. This implies that the connectivity of H-bond
networks can be increased by selecting appropriate cations,
thereby facilitating the HT from bulk water to interfacial water,
and thus increasing the activity of *CO,-to-*COOH.
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