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The last few years have seen the development of numerous deep learning-based protein-ligand docking
methods. They offer huge promise in terms of speed and accuracy. However, despite claims of state-of-
the-art performance in terms of crystallographic root-mean-square deviation (RMSD), upon closer
inspection, it has become apparent that they often produce physically implausible molecular structures.
It is therefore not sufficient to evaluate these methods solely by RMSD to a native binding mode. It is
vital, particularly for deep learning-based methods, that they are also evaluated on steric and energetic
criteria. We present PoseBusters, a Python package that performs a series of standard quality checks
using the well-established cheminformatics toolkit RDKit. The PoseBusters test suite validates chemical
and geometric consistency of a ligand including its stereochemistry, and the physical plausibility of intra-
and intermolecular measurements such as the planarity of aromatic rings, standard bond lengths, and
protein—-ligand clashes. Only methods that both pass these checks and predict native-like binding modes
should be classed as having “state-of-the-art” performance. We use PoseBusters to compare five deep
learning-based docking methods (DeepDock, DiffDock, EquiBind, TankBind, and Uni-Mol) and two well-
established standard docking methods (AutoDock Vina and CCDC Gold) with and without an additional
post-prediction energy minimisation step using a molecular mechanics force field. We show that both in
terms of physical plausibility and the ability to generalise to examples that are distinct from the training

data, no deep learning-based method yet outperforms classical docking tools. In addition, we find that
Received 10th August 2023

Accepted 17th November 2023 molecular mechanics force fields contain docking-relevant physics missing from deep-learning

methods. PoseBusters allows practitioners to assess docking and molecular generation methods and
may inspire new inductive biases still required to improve deep learning-based methods, which will help
rsc.li/chemical-science drive the development of more accurate and more realistic predictions.
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1 Introduction Deep learning (DL) promises to disrupt the dominant design
principle of classical docking software, and DL-based docking
Docking, an essential step in structure-based drug discovery,' is methods promise to unlock fast and accurate virtual screening
the task of predicting the predominant binding modes of for drug discovery. To this end, a handful of different DL-based
a protein-ligand complex given an experimentally solved or docking methods have already been proposed.®™°
computationally modelled protein structure and a ligand Classical non-DL-based docking methods include within
structure.? The predicted complexes are often used in a virtual ~their search and scoring functions terms that help ensure
screening workflow to help select molecules from a large library ~ chemical consistency and physical plausibility; for example
of possible candidates;* or directly by medicinal chemists to limiting the degrees of movement in the ligand to only the
understand the binding mode and to decide whether a small rotatable bonds in the ligand and including penalties if the
molecule is a suitable drug candidate.* protein and ligand clash."™** Some current DL-based docking
Docking methods are designed with the understanding that methods, as we will show, still lack such key “inductive bia-
binding is enabled by interactions between target and ligand ses” resulting in the creation of unrealistic poses despite
structures but due to the complexity of this property methods obtaining root-mean-squared deviation (RMSD) values from
tend to strike a balance between fast calculation and accuracy.” the experimental binding mode that are less than the widely-
used 2 A threshold.”® To assess such docking methods, an
independent test suite is necessary to check the chemical
consistency and physical plausibility alongside established
T Electronic  supplementary information (ESI) available. See DOI: metrics, such as the binding mode RMSD. Such a test suite
https://doi.org/10.1039/d3sc04185a would help the field to identify missing inductive biases
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required to improve DL-based docking methods, driving the
development of more accurate and realistic docking
predictions.

The problem of assessing the physical plausibility of docking
predictions is akin to the structure validation of ligand data in
the Protein Data Bank (PDB)."*** Structure validation assesses
the agreement of the ligands bond lengths and angles with
those observed in related chemical structures and the presence
of steric clashes both within the ligand and between it and its
surroundings.’ While these tests were designed for users to
select those ligand crystal structures which are likely to be
correct,” docking methods are evaluated on their ability to
recover crystal structures so their output should pass the same
physical plausibility tests.

Physical plausibility checks are also part of some workflows
for conformation generation.'®"” Friedrich et al. use geometry
checks performed by NAOMI*® which measures—like the PDB
tests mention above—the deviation from known optimal values
for bond lengths and bond angles, and also tests for divergences
from the planarity of aromatic rings."”

In addition to physical checks, chemical checks are also
needed." Chemical checks proposed for checking PDB struc-
tures include the identification of mislabelled stereo assign-
ment, inconsistent bonding patterns, missing functional
groups, and unlikely ionisation states.' The problem of
checking chemical plausibility has also come up in de novo
molecule generation, where Brown et al. proposed a test suite
including checks for the chemical validity of any proposed
molecule.” For docking, the focus is less on stability and
synthetic accessibility of a molecular structure as it is hoped
that these have been tested prior to attempting docking, but
more on chemical consistency and physical realism of the pre-
dicted bound conformation.

Some comparisons of docking methods have included
additional metrics based on volume overlap* or protein-ligand
interactions® to supplement pose accuracy-based metrics such
as RMSD of atomic positions and run time measurements, but
the majority of comparisons of docking methods are predomi-
nantly based on binding mode RMSD."*?%%

The current standard practice of comparing docking
methods based on RMSD-based metrics alone also extends to
the introduction papers of recent new methods. The five DL-
based docking methods we test in this paper®* all claim
better performance than standard docking methods but these
claims rest entirely on RMSD. None of these methods test their
outputs for physical plausibility.

In this paper we present PoseBusters, a test suite that is
designed to identify implausible conformations and ligand
poses. We used PoseBusters to evaluate the predicted ligand
poses generated by the five DL-based docking methods (Deep-
Dock,® DiffDock,” EquiBind,* TankBind,” and Uni-Mol*) and
two standard non-DL-based docking methods (AutoDock Vina'?
and Gold*). These poses were generated by re-docking the
cognate ligands of the 85 protein-ligand crystal complexes in
the Astex Diverse set” and 308 ligands of the protein-ligand
crystal complexes in the PoseBusters Benchmark set, a new set
of complexes released from 2021 onwards, into their cognate
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receptor crystal structures. On the commonly-used Astex
Diverse set, the DL-based docking method DiffDock appears to
perform best in terms of RMSD alone but when taking physical
plausibility into account, Gold and AutoDock Vina perform
best. On the PoseBusters Benchmark set, a test set that is harder
because it contains only complexes that the DL methods have
not been trained on, Gold and AutoDock Vina are the best
methods in terms of RMSD alone and when taking physical
plausibility into account or when proteins with novel sequences
are considered. The DL-based methods make few valid predic-
tions for the unseen complexes. Overall, we show that no DL-
based method yet outperforms standard docking methods
when consideration of physical plausibility is taken into
account. The PoseBusters test suite will enable DL method
developers to better understand the limitations of current
methods, ultimately resulting in more accurate and realistic
predictions.

2 Methods

Five DL-based and two classical docking methods were used to re-
dock known ligands into their respective proteins and the pre-
dicted ligand poses were evaluated with the PoseBusters test suite.
The following section describes the docking methods, the data
sets, and the PoseBusters test suite for checking physicochemical
consistency and structural plausibility of the generated poses.

2.1 Docking methods

The selected five DL-based docking methods®*® cover a wide
range of DL-based approaches for pose prediction. Table 1 lists
the methods and their publications. In order to examine the
ability of standard non-DL-based methods to predict accurate
chemically and physically valid poses, we also included the well-
established docking methods AutoDock Vina*® and Gold.*®
The five DL-based docking methods can be summarised as
follows. Full details of each can be found in their respective
references. DeepDock® learns a statistical potential based on the
distance likelihood between ligand heavy atoms and points of
the mesh of the surface of the binding pocket. DiffDock” uses
equivariant graph neural networks in a diffusion process for
blind docking. EquiBind® applies equivariant graph neural
networks for blind docking. TankBind® is a blind docking
method that uses a trigonometry-aware neural network for
docking in each pocket predicted by a binding pocket predic-
tion method. Uni-Mol" carries out docking with SE3-

Table 1 Selected DL-based docking methods. The selection includes
five methodologically different DL-based docking methods published
over the last two years

Method Authors Date Search space
DeepDock® Méndez-Lucio et al. Dec 2021 Pocket
DiffDock’ Corso et al. Feb 2023 Blind
EquiBind® Stirk et al. Feb 2022 Blind
TankBind® Lu et al. Oct 2022 Blind
Uni-Mol"’ Zhou et al. Feb 2023 Pocket
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equivariant transformers. All five DL-based docking methods
are trained on subsets of the PDBbind General Set* as detailed
in Table 2. DeepDock is trained on v2019 and the other four are
trained on v2020. It should be noted that we used the DL models
as trained by the respective authors without further hyper-
parameter tuning.

The docking protocols that were used to generate predictions
with each method and the software versions used are given in
section S1 of the ESL.{ Table 3 lists the search space definitions
that we used for each method. DeepDock and Uni-Mol require the
definition of a binding site while DiffDock, EquiBind, and Tank-
Bind are ‘blind’ docking methods that search over the entire
protein. We used the default search spaces for DiffDock, Deep-
Dock, EquiBind, and TankBind but larger than default search
spaces for AutoDock Vina, Gold, and Uni-Mol such that they are
more comparable with the blind docking methods. ESI Fig. S1t
shows the search spaces for one example protein-ligand complex.
We show results for Uni-Mol across a range of binding site defi-
nitions starting from their preferred definition of all residues with
an atom within 6 A of a heavy atom of the crystal ligand. Under
this tight pocket definition Uni-Mol performs better than any of
the blind docking methods (ESI Fig. S217).

2.2 The PoseBusters test suite

The PoseBusters test suite is organised into three groups of tests.
The first checks chemical validity and contains tests for the
chemical validity and consistency relative to the input. The second
group checks intramolecular properties and tests for the ligand
geometry and the ligand conformation's energy computed using
the universal force field (UFF).** The third group considers inter-
molecular interactions and checks for protein-ligand and ligand-
cofactor clashes. Descriptions of all the tests PoseBusters
performs in the three sections are listed in Table 4. Molecule
poses which pass all tests in PoseBusters are ‘PB-valid’.

For evaluating docking predictions, PoseBusters requires three
input files: an SDF file containing the re-docked ligands, an SDF
file containing the true ligand(s), and a PDB file containing the
protein with any cofactors. The three files are loaded into RDKit
molecule objects with the sanitisation option turned off.

2.2.1 Chemical validity and consistency. The first test in
PoseBusters checks whether the ligand passes the RDKit's
sanitisation. The RDKit's sanitisation processes information on
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the valency, aromaticity, radicals, conjugation, hybridization,
chirality tags, and protonation to check whether a molecule can
be represented as an octet-complete Lewis dot structure.*
Passing the RDKit's sanitisation is a commonly-used test for
chemical validity in cheminformatics, for example in de novo
molecular generation.*

The next test in PoseBusters checks for docking-relevant
chemical consistency between the predicted and the true
ligands by generating ‘standard InChI’ strings** for the input
and output ligands after removing isotopic information and
neutralising charges by adding or removing hydrogens
where possible. InChl is the de facto standard for molecular
comparison,® and the ‘standard InChI’ strings generated
include the layers for the molecular formula (/), molecular
bonds (/c), hydrogens (/h), net charge (/q), protons (/p),
tetrahedral chirality (/t), and double bond stereochemistry
(/b). Standardisation of the ligand's protonation and charge
state is needed because the stereochemistry layer is depen-
dent on the hydrogen (/h), net charge (/q) and proton (/p)
layers. These can unexpectedly change during docking
even though most docking software considers the charge
distribution and protonation state of a ligand as fixed.**?*¢
The normalisation protocol also removes the stereochem-
istry information of double bonds in primary ketimines
which only depends on the hydrogen atom's ambiguous
location.

2.2.2 Intramolecular validity. The first set of physical
plausibility tests in the PoseBusters test suite validates bond
lengths, bond angles, and internal distances between non-
covalently bound pairs of atoms in the docked ligand against
the corresponding limits in the distance bounds matrix ob-
tained from the RDKit's Distance Geometry module. To pass the
tests, all molecular measurements must lie within the user-
specified tolerances. The tolerance used throughout this
manuscript is 25% for bond lengths and bond angles and 30%
for non-covalently bound pairs of atoms e.g.: if a bond is less
than 75% of the distance geometry bond length lower bound, it
is treated as anomalous. This was selected as all but one of the
crystal ligands in the Astex Diverse set and all of those in the
PoseBusters Benchmark set pass at this threshold.

The PoseBusters test for flatness checks that groups of atoms
lie in a plane by calculating the closest plane to the atoms and
checking that all atoms are within a user-defined distance from

Table 2 Data sets used to train the selected five machine learning-based docking methods. All five DL-based methods were trained on subsets

of the PDBBind 2020 General Set

Method Training and validation set

DeepDock
16 367 complexes
DiffDock, EquiBind

PDBBind 2019 General Set without complexes included in CASF-2016 or those that fail pre-processing—

PDBbind 2020 General Set keeping complexes published before 2019 and without those with ligands

found in test set—17 347 complexes

TankBind

Uni-Mol

PDBbind 2020 General Set keeping complexes published before 2019 and without those failing pre-
processing—18 755 complexes
PDBBind 2020 General Set without complexes where protein sequence identity (MMSeq2) with CASF-

2016 is above 40% and ligand fingerprint similarity is above 80%—18 404 complexes
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Method Search space

Classical docking methods
Gold
Vina

DL-based docking methods
DeepDock
Uni-Mol

DL-based blind docking methods
DiffDock
EquiBind
TankBind

this plane. This test is performed for 5- and 6-membered
aromatic rings and non-ring non-aromatic carbon-carbon
double bonds. The chosen threshold of 0.25 A admits all Astex
Diverse and PoseBusters Benchmark set crystal structures by
a wide margin and as with all other thresholds can be adjusted
by the user.

Table 4 Description of the checks used in the PoseBusters test suite

Sphere of radius 25 A centered on the geometric centre of the crystal ligand heavy atoms
Cube with side length 25 A centered on the geometric centre of crystal ligand heavy atoms

Protein surface mesh nodes within 10 A of any crystal ligand atom
Protein residues within 8 A of any crystal ligand heavy atom

Entire crystal protein
Chains of crystal protein which are within 10 A of any crystal ligand heavy atom
Pockets identified by P2Rank®'

The final test for intramolecular physicochemical plausi-
bility carried out by PoseBusters is an energy calculation to
detect unlikely conformations. Our metric for this is the ratio of
the energy of the docked ligand conformation to the mean of
the energies of a set of 50 generated unconstrained conforma-
tions as in Wills et al.*” The conformations are generated using

Test name Description

Chemical validity and consistency
File loads

Sanitisation

Molecular formula

Bonds

Tetrahedral chirality

Double bond stereochemistry

Intramolecular validity
Bond lengths
distance geometry
Bond angles
distance geometry
Planar aromatic rings
Planar double bonds
closest shared plane
Internal steric clash
determined by distance geometry
Energy ratio

The input molecule can be loaded into a molecule object by RDKit

The input molecule passes RDKit's chemical sanitisation checks

The molecular formula of the input molecule is the same as that of the true molecule

The bonds in the input molecule are the same as in the true molecule

The specified tetrahedral chirality in the input molecule is the same as in the true molecule

The specified double bond stereochemistry in the input molecule is the same as in the true molecule

The bond lengths in the input molecule are within 0.75 of the lower and 1.25 of the upper bounds determined by

The angles in the input molecule are within 0.75 of the lower and 1.25 of the upper bounds determined by

All atoms in aromatic rings with 5 or 6 members are within 0.25 A of the closest shared plane
The two carbons of aliphatic carbon-carbon double bonds and their four neighbours are within 0.25 A of the

The interatomic distance between pairs of non-covalently bound atoms is above 0.7 of the lower bound

The calculated energy of the input molecule is no more than 100 times the average energy of an ensemble of 50

conformations generated for the input molecule. The energy is calculated using the UFF** in RDKit and the
conformations are generated with ETKDGv3 followed by force field relaxation using the UFF with up to 200

iterations

Intermolecular validity
Minimum protein-ligand
distance

Minimum distance to organic

cofactors Waals radii

The distance between protein-ligand atom pairs is larger than 0.75 times the sum of the pairs van der Waals radii

The distance between ligand and organic cofactor atoms is larger than 0.75 times the sum of the pairs van der

Minimum distance to inorganic The distance between ligand and inorganic cofactor atoms is larger than 0.75 times the sum of the pairs covalent

cofactors radii

Volume overlap with protein

The share of ligand volume that intersects with the protein is less than 7.5%. The volumes are defined by the van

der Waals radii around the heavy atoms scaled by 0.8

Volume overlap with organic

The share of ligand volume that intersects with organic cofactors is less than 7.5%. The volumes are defined by

The share of ligand volume that intersects with inorganic cofactors is less than 7.5%. The volumes are defined by

cofactors the van der Waals radii around the heavy atoms scaled by 0.8
Volume overlap with inorganic
cofactors the van der Waals radii around the heavy atoms scaled by 0.5

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the RDKit's ETKDGv3 conformation generator®® followed by
a force field relaxation using the UFF** and up to 200 iterations.
The test suite rejects conformations for which this ratio is larger
than a user-specified threshold. Wills et al. set a ratio of 7 based
on the value where 95% of the crystal ligands in the PDBbind
data set are considered plausible.’” We selected a less strict ratio
of 100 where only one structure each from the Astex Diverse and
PoseBusters Benchmark set is rejected.

2.2.3 Intermolecular validity. Intermolecular interactions are
evaluated by two sets of tests in the PoseBusters test suite. The first
set checks the minimum distance between molecules and the
second checks the share of overlapping volume. Both sets of tests
report on intermolecular interactions of the ligand with three types
of molecules: the protein, organic cofactors, and inorganic
cofactors.

For the distance-based intermolecular tests PoseBusters
calculates the ratio of the pairwise distance between pairs of heavy
atoms of two molecules and the sum of the two atoms’ van der
Waals radii. If this ratio is smaller than a user-defined threshold
then the test fails. The default threshold is 0.75 for all pairings.
For inorganic cofactor-ligand pairings the covalent radii are used.
All crystal structures in the Astex Diverse set and all but one in the
PoseBusters Benchmark set pass at this threshold.

For the second set of intermolecular checks, PoseBusters
calculates the share of the van der Waals volume of the heavy
atoms of the ligand that overlaps with the van der Waals volume
of the heavy atoms of the protein using the RDKit's Shape-
TverskyIndex function. The tests have a configurable scaling
factor for the volume-defining van der Waals radii and
a threshold that defines how much overlap constitutes a clash. A
threshold is necessary because many crystal structures already
contain clashes. For example, Verdonk et al. found that 81 out of
305 selected high-quality protein-ligand complexes from the
PDB contain steric clashes.”® The overlap threshold is 7.5% for
all molecule pairings and the scaling factor is 0.8 for protein-
ligand and organic cofactor-ligand pairings and 0.5 for inor-
ganic cofactor-ligand pairings.

2.3 Quality of fit

PoseBusters calculates the minimum heavy-atom symmetry-
aware root-mean-square deviation (RMSD) between the pre-
dicted ligand binding mode and the closest crystallographic
ligand using the RDKit's GetBestRMS function. Coverage,
a metric often used for testing docking methods, is the share of
predictions that are within a user adjustable threshold which by
default is 2 A RMSD. This value is arbitrary but commonly-used
and recommended for regular-size ligands."

2.4 Sequence identity

In this paper, sequence identity between two amino acid chains
is the number of exact residue matches after sequence align-
ment divided by the number of residues of the query sequence.
The sequence alignment used is the Smith-Waterman algo-
rithm®® implemented in Biopython*® using an open gap score of
—11 and an extension gap score of —1 and the BLOSUM®62

3134 | Chem. Sci., 2024, 15, 3130-3139
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substitution matrix. Unknown amino acid residues are counted
as mismatches.

2.5 Molecular mechanics energy minimisation

Post-docking energy minimisation of the ligand structure in the
binding pocket was performed using the AMBER ff14sb force
field** and the Sage small molecule force field*> in OpenMM.*
The protein files were prepared using PDBfixer** and all protein
atom positions were fixed in space only allowing updates to the
ligand atoms positions. Minimisation was performed until
energy convergence within 0.01 k] mol .

2.6 Data

2.6.1 Astex Diverse set. The Astex Diverse set®” published in
2007 is a set of hand-picked, relevant, diverse, and high-quality
protein-ligand complexes from the PDB.** The complexes were
downloaded from the PDB as MMTF files** and PyMOL* was
used to remove solvents and all occurrences of the ligand of
interest from the complexes before saving the proteins with the
cofactors in PDB files and the ligands in SDF files.

2.6.2 PoseBusters Benchmark set. The
Benchmark set is a new set of carefully-selected publicly-
available crystal complexes from the PDB. It is a diverse set of
recent high-quality protein-ligand complexes which contain
drug-like molecules. It only contains complexes released since
2021 and therefore does not contain any complexes present in
the PDBbind General Set v2020 used to train many of the
methods. Table S27 lists the steps used to select the 308 unique
proteins and 308 unique ligands in the PoseBusters Benchmark
set. The complexes were downloaded from the PDB as MMTF
files and PyMOL was used to remove solvents and all occur-
rences of the ligand of interest before saving the proteins with
the cofactors in PDB files and the ligands in SDF files.

PoseBusters

3 Results

The following section presents the analysis of the PoseBusters
test suite on the re-docked ligands of five DL-based docking
methods and two standard non-DL-based docking methods on
the 85 ligands of the Astex Diverse set and the 308 ligands of the
PoseBusters Benchmark set into the receptors crystal
structures.

3.1 Results on the Astex Diverse set

Fig. 1 shows the overall results of the seven (AutoDock Vina,*?
Gold,*®* DeepDock,® DiffDock,” EquiBind,* TankBind,’ Uni-
Mol*) docking methods on the Astex Diverse set in ocean green.
The striped bars show the performance only in terms of RMSD
coverage (RMSD = 2 A) and the solid bars show the perfor-
mance after also considering physical plausibility, i.e., only
predictions which in addition pass all tests in PoseBusters and
are therefore PB-valid.

The Astex Diverse set is a well-established and commonly-
used benchmark for evaluating docking methods. Good
performance on this set is expected because the five DL-based
methods evaluated here have been trained on most of these

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Comparative performance of the docking methods. The Astex
Diverse set (85 cases) was chosen as an easy test set containing many
complexes the five DL-based methods were trained on while the
PoseBusters Benchmark set (308 cases) was chosen to be a difficult
test set containing complexes none of the methods was trained on.
The striped bars show the share of predictions of each method that
have an RMSD within 2 A and the solid bars show the subset that in
addition have valid geometries and energies, i.e., pass all PoseBuster
tests and are therefore ‘PB-Valid'. DiffDock appears to outperform the
classical methods on the Astex Diverse set when only binding mode
RMSD is considered (striped teal bars). However, when physical
plausibility is also considered (solid teal bars) or when presented with
the PoseBusters Benchmark set (coral bars), AutoDock Vina and Gold
outperform all DL-based methods.

complexes. 47 of the 85 complexes in the Astex Diverse set are in
the PDBbind 2020 General Set and 67 out of the 85 of the Astex
Diverse set proteins have more than 95% sequence identity with
proteins found in PDBbind 2020 General Set. AutoDock Vina
may also perform well on this data set because the linear
regression model behind the scoring function was trained on an
earlier version of PDBbind** which already included most of the
Astex Diverse set.

The RMSD criterion alone (striped green bars in Fig. 1) gives
the impression that DiffDock (72%) performs better than
TankBind (59%), Gold (67%), AutoDock Vina (58%) and Uni-
Mol (45%). However, when we look closer, accepting only
ligand binding modes that are physically sensible, i.e., those
predictions that pass all PoseBusters tests and are therefore PB-
valid (solid green bars in Fig. 1), many of the apparently
impressive DL predictions are removed. The best three methods
when considering RMSD and physical plausibility are Gold
(64%), AutoDock Vina (56%), and DiffDock (47%) followed by
Uni-Mol (12%), DeepDock (11%) and TankBind (5.9%). Diff-
Dock is therefore the only DL-based method that has compa-
rable performance to the standard methods on the Astex
Diverse set when considering physical plausibility of the pre-
dicted poses.

All five DL-based docking methods struggle with physical
plausibility, but even the poses produced by the classical
methods Gold and AutoDock Vina do not always pass all the
checks. Fig. 2 shows a waterfall plot that indicates how many
predicted binding modes fail each test. The waterfall plots for
the remaining methods are shown in ESI Fig. S5.1 The DL-based
methods fail on different tests. TankBind habitually overlooks
stereochemistry, Uni-Mol very often fails to predict valid bond
lengths, and EquiBind tends to produce protein-ligand clashes.
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Fig. 2 Waterfall plot showing the PoseBusters tests as filters for the
TankBind predictions on the Astex Diverse data set. The tests in the
PoseBuster test suits are described in Table 4. The leftmost (dotted) bar
shows the number of complexes in the test set. The red bars show the
number of predictions that fail with each additional test going from left
to right. The rightmost (solid) bar indicates the number of predictions
that pass all tests, i.e. those that are ‘PB-Valid'. For the 85 test cases in
the Astex Diverse set 50 (59%) predictions have RMSD within 2 A RMSD
and 5 (5.9%) pass all tests. Fig. S5 and S6 in the ESIt show waterfall plots
for all methods and both data sets.

The classical methods Gold and AutoDock Vina pass most tests
but also generated a few protein-ligand clashes. Fig. 3 shows
examples of poses generated by the methods illustrating various
failure modes.

The results on the Astex Diverse set suggest that despite what
the RMSD < 2 A criterion would indicate, no DL-based method
outperforms classical docking methods when the physical
plausibility of the ligand binding mode is taken into account.
However, DiffDock in particular is capable of making a large
number of useful predictions.

3.2 Results on the PoseBusters Benchmark set

The results of the seven (AutoDock Vina, Gold, DeepDock,
DiffDock, EquiBind, TankBind, Uni-Mol) docking methods on
the PoseBusters Benchmark set are shown in coral in Fig. 1. The
striped bars show the performance only in terms of coverage
(RMSD within 2 A) and the solid bars show the performance in
terms of PB-validity (passing all of PoseBusters tests).

The PoseBusters Benchmark set was designed to contain no
complexes that are in the training data for any of the methods.
Performing well on this data set requires a method to be able to
generalise well.

All methods perform worse on the PoseBusters Benchmark
set than the Astex Diverse set. Gold (55%) and AutoDock Vina
(58%) perform the best out of the seven methods with (solid
coral bars) and without (striped coral bars) considering PB-
validity. On the PoseBusters Benchmark set, the best perform-
ing DL method, DiffDock (12%), does not compete with the two
standard docking methods. Gold and AutoDock Vina again pass
the most tests but for a few protein-ligand clashes.

The waterfall plots in ESI Fig. S61 show which tests fail for
each method on the PoseBusters Benchmark set. Again, the

Chem. Sci., 2024, 15, 3130-3139 | 3135


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04185a

Open Access Article. Published on 13 Dezember 2023. Downloaded on 27.01.26 21:28:54.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

(a) Double bond stereochemistry not preserved. DiffDock prediction for ligand
VDX of protein-ligand complex 7QPP. RMSD 1.9A.

(b) Bond lengths too long. Uni-Mol prediction for ligand P16 of protein-ligand
complex 10PK. RMSD 1.5A.

3 T

(c) Bond angles too extreme. Uni-Mol prediction for ligand FR4 of protein-
ligand complex 1UML. RMSD 1.4A.

)~

(d) Internal clash. DeepDock prediction for ligand BDI of protein-ligand complex
1N2V. RMSD 1.6A.

e WSo

(e) Aromatic rings not flat. TankBind prediction for ligand CRZ of protein-
ligand complex 1ITOW. RMSD 2.2A.

At S

(f) Double bond not flat. TankBind prediction for ligand DBQ of protein-ligand
complex 1U4D. RMSD 1.7A.

(g) Energy ratio too high. AutoDock Vina prediction for ligand IFM of protein-

ligand complex 7LOU. RMSD 1.9A.
05 &Qg

(h) Clash with protein. DiffDock prediction for ligand XQ1 of protein-ligand
complex 7L7C. RMSD 1.6A.

Fig. 3 Examples of failure modes that PoseBusters is able to detect.
Predictions are shown on the left with white carbons and the crystal
structures on the right have cyan carbons. Oxygen atoms are red,
nitrogen atoms are dark blue, chlorine atoms are green. Most of the
shown predictions have a RMSD within 2 A but all are physically invalid.

methods have different merits and shortcomings. Out of the five
DL-based methods, DiffDock still produces the most physically
valid poses but few predictions lie within the 2 A RMSD

3136 | Chem. Sci, 2024, 15, 3130-3139

View Article Online

Edge Article

threshold. EquiBind, Uni-Mol and TankBind generate almost
no physically valid poses that pass all tests. Uni-Mol has a rela-
tively good RMSD score (22%) but struggles to predict planar
aromatic rings and correct bond lengths.

Fig. 4 shows the results of the docking methods on the
PoseBusters Benchmark set but stratified by the target protein
receptor's maximum sequence identity with the proteins in the
PDBbind 2020 General Set.*® As the DL-based methods were all
trained on subsets of the PDBbind 2020 General Set, this
roughly quantifies how different the test set protein targets are
from those that the methods were trained on. We bin the test
cases into three categories low [0, 30%], medium [30%, 90%],
and high [90%, 100%] maximum percentage sequence identity.
Without considering physical plausibility (striped bars), the
classical methods appear to perform as well on the three protein
similarity bins while the DL-based methods perform worse on
the proteins with lower sequence identity. This suggests that the
DL-based methods are overfitting to the protein targets in their
training sets.

We also compared the performance of the docking methods
on the PoseBusters Benchmark set stratified by whether
protein-ligand complexes contain cofactors (ESI Fig. S37). Here,
we loosely define cofactors as non-protein non-ligand
compounds such as metal ions, iron-sulfur clusters, and
organic small molecules in the crystal complex within 4.0 A of
any ligand heavy atom. About 45% of protein-ligand complexes
in the PoseBusters Benchmark set have a cofactor (ESI Fig. S27).
The classical methods perform slightly better when a cofactor is
present while the DL-based docking methods perform worse on
those systems.

3.3 Results with pose-docking energy minimisation

In order to examine whether the outputs of the DL-based
methods can be made physically plausible we performed an

100% [0%, 30%)]
RMSD < 2A

RMSD < 2A & PB-Valid

(30%, 95%]
RMSD < 2A
RMSD < 2A & PB-Valid

(95%, 100%]

RMSD < 2A

RMSD < 2A & PB-Valid
80%

0w
c
S
B
= 64% 65%
154 60% 5%
5 60% 56% 57% 5a%
= 53% sow (508
s} san
%
o = 5%
©
2 40%
g 30%
3]
25%
o 21% 21%21% 2%
20% 2
13% 5% 13%
39% e 41%
18% 7% G o 2% o 0.0% 13% 1.8% 1.3 4%
0% .
Gold Vina DeepDock Uni-Mol DiffDock EquiBind TankBind

classical DL-based DL-based blind

Fig. 4 Comparative performance of docking methods on the Pose-
Busters Benchmark set stratified by sequence identity relative to the
PDBBind General Set v2020. The sequence identity is the maximum
sequence identity between all chains in the PoseBuster test protein
and all chains in the PDBBind General Set v2020. The striped bars show
the share of predictions of each method that have an RMSD within 2 A
and the solid bars show those predictions which in addition pass all
PoseBuster tests and are therefore PB-valid. The DL-based methods
perform far better on proteins that are similar to those they were
trained on.
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additional post-docking energy minimisation of the ligand
structures in the binding pocket for the PoseBusters Benchmark
set (Fig. 5). Again, striped bars indicate predictions with RMSD
= 2 A while solid bars indicate which of those are also PB-valid
i.e.,, pass all PoseBusters tests. The figure shows that post-
docking energy minimisation significantly increases the
number of physically plausible structures of the DL-based
methods DiffDock, DeepDock, TankBind, and Uni-Mol but
does not improve the poses predicted by AutoDock Vina and
Gold. We also performed energy minimisation on the Uni-Mol
results for the minimal 6 A pocket (ESI Fig. S22%). The
number of poses that pass the tests increase to about the same
level as DiffDock. The fact that energy minimisation is able to
repair many of the DL methods predicted poses and increase
coverage shows that at least some force field physics is missing
from DL-based docking methods. An example of a predicted
pose that was fixed is shown in Fig. 6. However, even with the
energy minimisation step, the best DL-based docking method
DiffDock still performs worse than the classical methods Gold
and AutoDock Vina.

4 Discussion

We present PoseBusters, a test suite designed and built to
identify chemically inconsistent and physically implausible
ligand poses predicted by protein-ligand docking and molec-
ular generation methods. We show the results of applying the
PoseBusters test suite to the output of seven different docking
methods, five current DL-based docking methods (DeepDock,
DiffDock, EquiBind, TankBind, and Uni-Mol) and two standard
methods (AutoDock Vina and Gold).

We find that no DL-based docking method yet outperforms
standard docking methods when both physical plausibility and
binding mode RMSD is taken into account. Our work

100% No post-processing
RMSD < 2A

RMSD < 2A & PB-Valid

With energy minimization
RMSD < 2A
RMSD < 2A & PB-Valid
80%

9 60%
58% 56%
58%

60% 56%

55%

49% 49% 40%
40% 38%

Percentage of predictions

29% 35%
200 21% 22% 22%
20% 16%

18%.

1% 12% 5.4%

2:0% 2.0% 33w %
o

5%
DeepDock Uni-Mol
DL-based

Gold Vina
classical

DiffDock EquiBind TankBind

DL-based blind

Fig. 5 Comparative performance of docking methods with post-
docking energy minimisation of the ligand (while keeping the protein
fixed) on the PoseBusters Benchmark set. The striped bars show the
share of predictions of each method that have an RMSD within 2 A of
the crystal pose and the solid bars show those predictions which in
addition pass all PoseBuster tests and are therefore PB-valid. Post-
docking energy minimisation significantly improves the relative phys-
ical plausibility of the DL-based methods' predictions. This indicates
that force fields contain docking-relevant physics which is missing
from DL-based methods.
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Fig. 6 Example of a prediction that was fixed by the post-docking
energy minimisation. The Uni-Mol prediction (RMSD 2.0 A) is shown in
white, the optimised prediction (RMSD 1.1 A) is shown in pink, and the
crystal ligand is shown for reference in light blue. Note how the
aromatic rings are flattened and the leftmost bond is shortened by the
optimisation making the prediction pass all PoseBusters checks.

demonstrates the need for physical plausibility to be taken into
account when assessing docking tools because it is possible to
perform well on an RMSD-based metric while predicting phys-
ically implausible ligand poses (Fig. 3). Using the tests in the
PoseBusters test suite as an additional criterion when devel-
oping DL-based docking methods will help improve methods
and the development of more accurate and realistic predictions.

In addition, the individual tests in the PoseBusters test suite
highlight docking-relevant failure modes. The results show that
Uni-Mol for example predicts non-standard bond lengths and
TankBind creates internal ligand clashes. The ability to identify
such failure modes in predicted ligand poses makes Pose-
Busters a helpful tool for developers to identify inductive biases
that could improve their binding mode prediction methods.

Our results also show that, unlike classical docking
methods, DL-based docking methods do not generalise well to
novel data. The performance of the DL-based methods on the
PoseBusters Benchmark set overall was poor and the subset of
the PoseBusters Benchmark set with low sequence identity to
PDBbind 2020 revealed that DL-based methods are prone to
overfitting to the proteins they were trained on. Our analysis of
the targets with sequence identity lower than 30% to any
member of PDBbind General Set v2020 revealed that across all
of the DL-based docking methods almost no physically valid
poses were generated within the 2 A threshold.

The most commonly-used train-test approach for building
DL-based docking models is time-based, e.g.,, complexes
released before a certain date are used for training and
complexes released later for testing. Based on our results, we
argue that this is insufficient for testing generalisation to novel
targets and the sequence identity between the proteins in the
training and test must be reported on.

Post-docking energy minimisation of the ligand using force
fields can considerably improve the docking poses generated by
DL-based methods. However, even with an energy minimisation
step, the best DL-based method, DiffDock, does not outperform
classical docking methods like Gold and AutoDock Vina. This
shows that at least some key aspects of chemistry and physics
encoded in force fields are missing from deep learning models.

The PoseBusters test suite provides a new criterion, PB-
validity, beyond the traditional “RMSD = 2 A” rule to evaluate
the predictions of new DL-based methods, and hopefully will
help to identify inductive biases needed for the field to improve
docking and molecular generation methods, ultimately result-
ing in more accurate and realistic predictions. The next

Chem. Sci., 2024, 15, 3130-3139 | 3137


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04185a

Open Access Article. Published on 13 Dezember 2023. Downloaded on 27.01.26 21:28:54.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

generation of DL-based docking methods should aim to
outperform standard docking tools on both RMSD criteria and
in terms of chemical consistency, physical plausibility, and
generalisability.

Data availability

PoseBusters is made available as a pip-installable Python
package and as open source code under the BSD-3-Clause
license at https://github.com/maabuu/posebusters. Data for
this paper, including the Astex Diverse set and PoseBusters
Benchmark set, as well as the individual tabulated test results
each docking are available at Zenodo at https://
zenodo.org/records/8278563.
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