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Deep learning-enabled detection of rare
circulating tumor cell clusters in whole blood
using label-free, flow cytometry†

Nilay Vora, a Prashant Shekar,b Taras Hanulia, ac Michael Esmail,‡d

Abani Patrae and Irene Georgakoudi*a

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients.

Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential

biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current

detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion

methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time

monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for

label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification.

Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs

in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per

min with a high Pearson correlation coefficient of 0.943 between detected events and expected events.

DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both

homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through

artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the

samples and does not add variability in detection beyond the expected variability from Poisson statistics.

The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using

transfer learning, we additionally validate DL-based BSFC on blood samples from different species and

cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical

applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with

minimal disruption and processing steps.

Introduction

Metastatic tumor growth is the leading cause of all cancer-
related deaths.1 During cancer progression, individual cells
are observed to detach from the primary tumor and enter the
bloodstream in a process known as intravasation.2 Once in
the bloodstream, these cells called circulating tumor cells
(CTCs), can extravasate into distal organs, forming secondary

tumors.3–6 Multiple studies have correlated the dissemination
of CTCs with poor prognosis and treatment resistance.7

During the metastatic cascade, CTCs and naturally
occurring cells in blood can also form aggregates called
CTC clusters (CTCCs).1,8–11 CTCCs typically vary in size from
as few as two cells to more than nine cells and are
extremely rare, with less than four CTCCs being observed
per 7.5 mL of blood.1,7,12 While rare, CTCCs have gained
significant attention due to their distinct characteristics and
behaviors compared to individual CTCs. CTCC formation
provides certain advantages to cancer cells, including
increased survival rates in the bloodstream and enhanced
ability to colonize distant tissues.1,12 The collective presence
of multiple cancer cells within a cluster can provide
protection against immune system attacks, promote
resistance to therapies, and facilitate the formation of
secondary tumors.1,9,10

While interest in CTC and CTCC detection and isolation
has grown, the only FDA-approved technique to date is
CellSearch.8,13 CellSearch is optimized for the enrichment,
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labeling, and detection of rare CTCs in whole blood with
greater than 85% recovery.13,14 However, no conclusive data
are available on the enrichment and detection of CTCCs by
CellSearch, with only two studies listing anywhere from
0–53% enrichment efficiency.7,13,15,16

Microfluidic and size-based approaches provide an
epitope-independent technique for CTCC isolation.1,7,9,17–21

New isolation devices can provide up to 90% detection
sensitivity for CTCCs in whole blood.21 However, microfluidic
devices depend on ex vivo blood processing of small volumes
of blood compared to the total blood volume, leading to over
or underestimation of CTCCs.12 As liquid biopsy
interrogation for CTCs and CTCCs has advanced, multiple
groups have highlighted shifts in CTC dissemination due to
hormonal changes during sleep cycles.22–26 Further, the
temporal selection of blood draws demonstrates high
variability (order of magnitude or more) in CTC counts and
consequently, CTCC counts, in as little as a few minutes.24,25

Ex vivo processing of blood samples in microfluidic channels
is, therefore, likely to lead to poor correlation with prognosis.

In vivo flow cytometry (IVFC) provides a robust, highly
sensitive and specific platform for CTCC detection
continuously.5,24,27–33 Fluorescence-based IVFCs (FIVFC) have
been used to detect both rare CTCs and CTCCs; however, they
are limited by the need for exogenous contrast
agents.1,5,24,27–30,34,35 Label-free IVFC (Lf-IVFC) systems utilize
intrinsic contrast from CTCs and CTCCs, enabling wider
clinical utility.31–33 One such Lf-IVFC system, the photoacoustic
flow cytometer (PAFC), has already demonstrated successful
clinical detection of CTCCs in vivo in humans; however, the
absorbance of melanoma cells is crucial in enabling detection
of the CTCCs with this platform.31 To expand the PAFC for
broader use, photoacoustic contrast agents would need to be
developed and approved by the FDA for in vivo use, limiting full
clinical adoption.

A critical gap between broad CTCC detection and label-
free techniques exists. To address this, our group has focused
on developing label-free, backscatter flow cytometry (BSFC).
BSFC monitors intrinsic light scattering and fluorescence to
detect CTCCs.12,36 We have previously demonstrated using
in vitro BSFC that CTCCs have unique light scattering
signatures,36 which can be used to detect and classify CTCCs
in whole blood using machine-learning (ML) based
algorithms.12 However, exogenous fluorescence was used in
these studies to identify CTCCs from non-CTCCs (NCs)
events.12 In this study, we aim to improve our ML model for
fully label-free detection of CTCCs in whole blood and assess
the clinical utility of BSFC for CTCC detection.

For the work described here, fresh rodent blood samples
were spiked with green fluorescence protein- (GFP-) expressing
CTCs and CTCCs. Light scatter and fluorescence data were
collected using BSFC to design a peak detection and
classification algorithm, herein referred to as the DeepPeak
model. The model's performance was assessed using the
criteria proposed by Allard et al. (2004) for validation of the
CellSearch platform.14 Namely, we sought to answer two

questions. First, what is the lowest number of CTCCs needed
in a blood sample to detect one CTCC? Second, what is the
potential extent of variability at a theoretical level when
measuring the reproducibility of rare events based on a random
distribution?14 We further assessed the error rate of BSFC on
blood samples not expected to contain any CTCCs to determine
the false alarm rate (FAR) of the DeepPeak model. Finally, we
compared all relevant performance metrics reported against
other key CTCC detection platforms. We demonstrate that the
DeepPeak model with BSFC provides a clinically relevant, label-
free CTCC detection platform with comparable performance to
other CTCC detection platforms and unique potential to be
extended to in vivo human studies.

Methods
Sample preparation

Blood samples were collected as previously described.12

Briefly, 500 μL of blood from healthy, non-experimentally
manipulated rats from other studies was collected via cardiac
puncture immediately after CO2 euthanasia in K2EDTA-
coated blood tubes.12 All blood collections were performed in
accordance with Tufts University Institutional Animal Care
and Use Committee regulations (Protocol #M2022-132;
formally M2019-158). All collected blood samples were
processed within 24 hours of the blood draw. Blood samples
stored in K2EDTA tubes have been demonstrated to remain
stable for up to 24 hours post collection.37 This timeframe
was also in line with reported blood processing times used in
modern day transfusion medicine.38

CTCCs were introduced to the blood samples prior to flow
data collection. MDA-MB-231 cells, a well-characterized
human triple-negative metastatic breast cancer cell line, were
used for all studies. CTCCs were generated using a previously
established protocol.12,18 Briefly, GFP-associated MDA-MB-
231 cells were grown on a 10 cm culture plate to 90%
confluency. Following a wash step with phosphate buffer
saline (Invitrogen), 1.5 mL of 0.25% trypsin (Gibco) was
added to cleave the bonds between the cells and the plastic
culture plate. As a result of the trypsin, natural aggregates
(CTCCs) were observed to form (see ESI† Fig. S1 online). Fully
prepared media with serum was used to deactivate excess
trypsin. Floating CTCCs were then carefully transferred for
spiking into whole blood samples. Mechanical dissociation
was expected to impact the size of CTCCs and the number of
CTCs found in the sample; as such, it was critical to
minimize introducing excessive forces during transfer and
spiking steps.

During spiking, 100 μL of the mixture of CTCCs and CTCs
were added to the blood tube. A tube rotator (VWR) was used
to gently mix the CTCCs/CTCs into whole blood for 3–5
minutes. Once mixed, the samples were brought to the flow
cytometer system for the collection of light scatter and
fluorescence data. All studies conducted were approved by
the Tufts University Institutional Biosafety Committee
(Protocol #2022-M71; formally 2020-M1) (Fig. 1a).
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Flow cytometer and data collection

The BSFC instrument has been previously described (see ESI†
Fig. S2 and S3 online).12,36 A 405 nm, 488 nm, and 633 nm
laser were used as excitation sources. Photomultiplier tubes
(PMTs) were configured for the collection of light scattering
from the three excitation lasers and red autofluorescence
(670 ± 20 nm) and green exogenous fluorescence (525 ± 25
nm). Green exogenous fluorescence (GFLR) was used as a
ground truth label for the location in the light scatter data
corresponding to CTCC scattering. Based on the excitation
and emission spectra of the green fluorescence protein used
to label our cells, no/negligible signal is expected to
contribute to the three light scattering detection bands, all of
which have narrow bandpass filters centered at each
excitation wavelength (±5 nm).

Whole blood samples drawn from rodents were spiked
with CTCCs prior to flow through a 30 × 30 μm2 rectangular
microfluidic channel (see ESI† Fig. S3 online). CTCCs have
previously been observed to deform to traverse small
capillary-like structures (as small as ∼5 μm) and reform after
size constraints were removed.39 It was therefore assumed
that CTCCs were able to traverse our microfluidic channels.
The width of the peaks we detected from the CTCCs as they
were flowing in the microfluidic channels were used as the

metric for assessing how large the CTCCs we detected were
instead of their sizes prior to spiking them in the whole
blood samples. Light scatter data were sampled at 60 kHz
and stored using a data acquisition (NI-DAQ) unit (National
Instruments; USB-6341). A custom Lab-VIEW (v18.0; National
Instruments) project was written to read data output from
the NI-DAQ and save it as a comma-separated values (CSV)
file. A wrapper function was written in MATLAB to read the
CSV files and store the data into smaller 1.5 minute-long data
segments. Each segment was then processed for CTCC
detection by the DeepPeak model (Fig. 1b), which was
composed of a region-of-interest (ROI) detection (Fig. 2) and
ROI classification algorithm (Fig. 1c).

ROI detection algorithm

To detect ROIs, data segments were processed one at a time.
Baseline variance was assessed to determine whether blood
clots existed in the data. A blood clot was found to be present
if the standard deviation of the cumulative scattering signal
was greater than 1.75 V. A threshold of 1.75 V was selected
based on the inspection of data without clots. Baseline
variance for the 405 nm, 488 nm, and 633 nm data traces
was first examined across 10 different experimental
recordings. An average variance of 0.169 V2, 0.452 V2, and

Fig. 1 (a) Schematic of experimental design. Whole blood is collected for rodents and spiked with MDA-MB-231 breast cancer cell clusters. Data
are collected through a microfluidic channel using a sharp illumination slit. (b) Data are processed using the DeepPeak model. Regions of interest
(ROIs) are first selected using a new ROI detection algorithm before being passed to an ROI classification algorithm. (c) The classification algorithm
utilizes a 1-D feature vector containing normalized scattering intensity from the three scattering wavelengths and a convolutional neural network
(CNN) to classify CTCC peaks from non-CTCC (NC) peaks.
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0.511 V2 was observed for the 405 nm, 488 nm, and 633 nm
light scatter channels, respectively. As the cumulative

scattering signal was the sum of the independent signals, the
average variance in the cumulative signal was expected to be

Fig. 2 Schematic of the ROI detection algorithm. (a) Raw data is loaded in and (b) filtered using a second-order Butterworth filter. (c) Filtered data
is normalized between 0 and 1 using the maximum intensity. (d) PCA and Hotelling's T2 test are used to calculate the distance of each observation
from the centroid, generating a new cumulative scattering trace. (e) Loadings for two principal components and the corresponding data are
shown, along with the threshold used for peak detection. Points outside the oval represent strong outliers and are part of a suspected CTCC peak.
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approximately 1.132 V2 with a standard deviation of 0.204 V.
To discern outliers, a threshold of 3 times the standard
deviation from the mean was used, leading to a threshold of
1.75 V (

ffiffiffiffiffiffiffiffiffiffiffiffi

1:132
p

+ 3 × 0.204 = 1.7 V). A threshold of 3 times the
standard deviation was selected as less than 0.3% of
cumulative scattering signals will have a standard deviation
greater than 1.7 V (a conservative threshold of 1.75 V was
implemented to account for rounding errors). This suggested
that standard deviations greater than 1.75 V were the result
of a blood clot within the sample.

Blood clots were characterized by the rise in the baseline
signal due to increased background scattering signal. If
variability greater than 3.06 V2 was detected in the segment,
a 500-point moving average of the signal was calculated for
all points to find the average baseline signal. This baseline
was removed from all points in the segment to exclude the
shift in background scattering intensity from the blood clot
(zero-mean data). To preserve the scattering signal's positive
values, the mean intensity of the entire signal was added
back to the zero-mean data. This process was repeated up to
three times or until the standard deviation of the scattering
signal fell below 1.75 V, whichever came first. A maximum of
three was selected to prevent an infinite loop on noisier data.

Once cleaned, we proceeded with previously described
standard preprocessing steps.12 Specifically, a second-order
Butterworth filter was used to remove high-frequency noise and
normalize the baseline signal (50–10000 Hz) (Fig. 2b). Then, the
filtered light scatter signal was normalized for differences in
power measurements from day to day (Fig. 2c). Normalized and
filtered data were used for all ROI detection steps.

To extract ROIs, anomaly detection methods were
implemented. Principal component analysis (PCA) has been
used for various applications to extract features from inter-
correlated data.40,41 PCA extracts the most important features
from multivariate data and reduces the dimensionality to
compress the data.40 In the case of anomaly detection,
outliers, like scattering from CTCCs and CTCs, were expected
to contribute the most to data variability.42,43 Using this
principle, we first used PCA to reduce the dimensionality of
our light scatter dataset. We then assessed the anomalies in
the dataset using a statistical test called Hotelling's T2 test
(Fig. 2d).41–43 Hotelling's T2 test measures the squared
Mahalanobis distance of each point from the centroid of the
principal components.42,43 Outliers were characterized by
larger magnitudes, while inliers featured little to no
magnitude. As Hotelling's T2 values were calculated at each
point in the dataset, the data were reformatted to measure
outlier probability over time (Fig. 2).

Previously described ROI detection algorithms were then
used to locate ROIs in the outlier time-series dataset.12

Briefly, the built-in MATLAB (R2021b, Natick, MA) function
findpeaks.m was used to find local maximums in the dataset.
A simple intensity threshold of ten was set based on
experimentation to maximize initial detection sensitivity and
purity (see ESI† Fig. S4 online). Locations where the outlier
signal crossed the intensity threshold were used to extract

the peak event ranges. Each event range was inspected to
remove extra peaks within a range as we sought to label the
entire ROI as a single cluster event. Peak characteristics such
as full-width-at-half-max (FWHM), location, and intensity
were recorded for all events. During data visualization, we
observed peaks with narrower than expected FWHM values
due to lower-intensity shoulder peaks (see ESI† Fig. S5
online). To correct for differences in the height of shoulder
peaks during FWHM measure, a geometric height
equalization algorithm was implemented.44 In this
equalization algorithm, all local maxima were rescaled to
one, and points in-between were scaled by a fitted line from
peak to peak. Once peaks were equalized, standard FWHM
measurements on the equalized signal were possible. A
spreadsheet containing peak characteristics was saved at the
end of this step for peaks found in both the scattering and
fluorescence acquisition channels. The green fluorescence
channel was used as a ground-truth label for CTCCs, while
only the light scattering data was used by the DeepPeak
model for label-free detection of the CTCCs.

As these studies aimed to demonstrate label-free detection
of CTCCs in whole blood, peaks from single cells were
removed using a peak width threshold.12 To calculate the
threshold, the estimated size for a large CTC or white blood
cell (12–15 μm) was used in combination with the flow speed
(55.6 mm s−1) to calculate the maximum time it would take
for a large single event to cross the illumination slit. As the
sample rate was 60 000 samples per second, we anticipated a
single cell would measure 21–22 points in width. To calculate
the corresponding FWHM, we multiplied the full peak width
by 0.75, which represented a conservative measure of the
relationship between FWHM and event width. Therefore, the
calculated threshold for multicellular events was set to 17
points. Peaks less than 17 points in FWHM were removed,
with the remaining peaks selected as ROIs.

ROI classification algorithm

Once ROIs were identified, feature vectors were generated for
the ROI classification algorithm. Feature vectors were
designed similarly to previous work.12 Briefly, raw data was
loaded individually and normalized by subtracting the mean
signal and dividing it by the standard deviation (zero-mean
normalization). The normalized data were then parsed based
on identified ROIs from the ROI detection algorithm. Data
from the 405 nm, 488 nm, and 633 nm channels were
collected in a window of ±49 points from the peak location. A
window size of ±49 points was selected to ensure that large
and small clusters would be fully included in the feature
vector. The three sets of 99 data points were concatenated to
generate a single 297-point feature vector (405 nm channel =
features 1–99, 488 nm channel = features 100–198, and 633
nm channel = features 199–297). To generate a label, ROIs
identified in the green fluorescence channel were cross-
referenced with ROIs from the scattering channel. If a
matching peak was found in the green fluorescence channel
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and the scattering channel, the event was labeled as a CTCC
event; if the event was only found in the scattering channel,
it was labeled as a non-CTCC (NC) event. A total of 34
independent days of experimental data were formatted for
classification. 32% of the data (11 days) were set aside as a
test set. The remaining 68% were used to train and validate
the ROI classification model. During training, 21% of the
training set (5 days) was used for validation, with the
remaining 18 days used for training. A total of five training-
validation folds were used to verify model performance.

The Tufts high performance cluster was used for all ROI
classification algorithm training. A single, eight-core CPU
with a 40-gigabyte NVIDIA Tesla A100 GPU card was used for
all training and evaluation. The classification algorithm
utilized a convolutional neural network (CNN) to classify NC
events from CTCC events accurately. The CNN architecture
was based on prior work by Melnikov et al. (2020), which
examined peak detection in noisy liquid chromatography–
mass spectrometry (LC–MS) data.45 The designed CNN
featured six convolutional + max pooling layers followed by
an additional max pooling layer and a fully connected layer
(Fig. 1c).

The classification algorithm was implemented using
PyTorch in an anaconda environment.46,47 A starting learning
rate of 1 × 10−3 was used with an Adam optimizer.48 During
training, the maximum number of epochs was set to 15 with
an early stop condition if performance failed to improve after
seven epochs. As class imbalance was expected to be
significant, a weighted binary cross-entropy (BCE) loss function
was combined with the focal Tversky loss function.49,50

BCE loss is a robust loss function for equally balanced
datasets; however, in the case of high-class imbalance,
models learn little from the misclassification of the minority
class. Weighted BCE loss attempts to improve application on
imbalanced datasets by increasing the penalty on minority
class misclassification. However, weighted BCE loss may not
perform well on highly-imbalanced datasets.50 Focal Tversky
loss (FTL) was designed for use on highly-imbalanced
datasets.49 FTL enables flexibility in false negative (FN) and
false positive (FP) detection based on hyperparameters
controlling the acceptable limits of FNs and FPs. However,
FTL can be unstable in learning based on parameter
selection. To account for this, we combined BCE loss with
FTL to stabilize learning while promoting accurate
classification of a largely imbalanced dataset.

To further improve the model's performance, we used an
ensemble of CNNs to improve detection purity. Each model was
independently trained based on the output from the previous
model. For example, model one was trained until performance
stabilized, after which all FPs, FNs, and true positive (TP) events
were separated from the events the CNN accurately classified as
NC peaks (true negatives; TN). The isolated FP + FN + TP events
were then inputted into the second CNN as the training set.
This process was repeated for ten networks. The assumption
was that each successive CNN would learn new boundaries to
separate hard-to-discern NC and CTCC peaks. After training, the

test set was evaluated through all ten networks. During
evaluation, only the FP and TP events were passed as inputs into
the subsequent network. Performance was logged after each
network. The number of networks used was selected after the
performance was observed to stagnate. The final classification
algorithm's performance was assessed after all ten networks
had evaluated the test data set.

Metrics

To determine the performance of the DeepPeak model, six
metrics of performance were examined: purity (also referred
to as precision), sensitivity, specificity, FAR, F1 score, and
Pearson correlation coefficient (PCC) between the predicted
number of events and the number of spiked events present
(calculated based on green fluorescence signal). These
metrics were defined as follows:

Purity ¼ True Positive
True Positiveþ False Positive

(1)

Sensitivity ¼ True Positive
True Positiveþ False Negative

(2)

Specificity ¼ True Negative
True Negativeþ False Positive

(3)

FAR ¼ False Positive
Acquisition Time

(4)

F1 ¼ 2·
Sensitivity·Purity
Sensitivity þ Purity

(5)

Metrics were selected to compare the DeepPeak model's
performance against other CTCC detection platforms.
Performance targets were not available for all metrics from
other platforms, but we present a complete list of all reported
performance metrics below.

Statistics

Poisson statistics have long been used to describe randomly
distributed objects in a given volume and are frequently used
to describe the detection of CTCs in liquid biopsies.14,51

Based on Poisson statistics, to detect an average of x events
at a probability of detection (p), a minimum of n events
would be needed in the sample (eqn (6)). In this study, we
assessed the minimum volume of blood needed to detect a
minimum of 1 CTCC based on a Poisson distribution.

x = n·p (6)

To calculate the necessary interrogation volume of blood,
we first determined the minimum number of CTCCs needed
in a sample to detect 1 CTCC based on the DeepPeak model's
sensitivity. Then, we estimated the blood volume necessary to
detect a single CTCC based on the average concentration of
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CTCCs in patient blood. Concentrations of CTCCs in patient
blood varied considerably from study to study, with some
studies listing concentrations as low as 0.44 CTCCs per mL
of blood7 and as high as 10 CTCCs per mL of blood.52,53 For
the studies listed here, we assumed an average concentration
of 0.4–0.5 CTCCs per mL of blood.

Additionally, to assess the reliability of measurements
using the DeepPeak model, the coefficient of variability
(CV) was calculated for multiple spiking ratios. CV was
used as an alternative measure of standard deviation to
assess variability in measurements without including
mean.54 Standard deviation shifts proportionally according
to the mean number of events in a sample; however,
these shifts make comparing the variability between
different concentrations difficult.54 CV accounts for
differences in concentration by removing the mean and
standardizing the variation.

CV was used in this study to assess the variability of the
DeepPeak model when a restricted number of CTCCs were
provided from various days of experimental measurements.
The distributions of CTCC size and concentration were not
controlled in this study beyond following the same protocol
for their creation and introduction in the blood samples as
CTCCs can break during isolation, spiking into the blood
sample, and/or flowing through the device. For this reason,
the number and width of the GFP-detected peaks were used
as the gold-standard to quantify the number and size of the
CTCCs within a certain volume of blood assessed by BSFC.
To this end, a set number of CTCC peak events were isolated
from BSFC datasets along with all NC peak events leading up
to the set CTCC count, based on analysis of the GFP detected
peaks. For example, if 50 CTCCs were desired and the 50th
CTCC was found 30 minutes after collection started, based
on GFP data analysis, all NC peaks found within the first 30
minutes of data were isolated along with the 50 CTCC peaks.
CV values were calculated for spiked concentrations of 5, 10,
30, 50, and 100 CTCCs.

To determine if the DeepPeak model added additional
variation to the inherent variation of counting random events
due to Poisson statistics, we calculated the theoretical
variability (eqn (7)) for the five spiked CTCC concentrations
and compared it to the observed %CV. As the volume of
blood scatter peaks (NC peaks) varied based on the amount
of time needed to detect the desired number of CTCCs, we
estimated the variability in volume and accounted for this in
our calculation of theoretical %CV through the sum of
variance (eqn (8)).

%CV ¼
ffiffiffi

μ
p
μ

(7)

where μ is the average number of events in a sample.

σ2x + y = σ2x + σ2y ± 2·Cov(x, y) (8)

where x is the measurement of theoretical variability and y is
the measurement of volume variability.

Results
Assessment of the ROI detection algorithm

The first step in the DeepPeak model was to define potential
ROIs within the time series data traces. In prior studies, we
determined ROIs using an intensity threshold based on the
variance in the baseline signal.12,36 Cumulative scattering
intensity was interrogated using a built-in MATLAB® function
findpeaks.m to find all local maxima. Once all local maxima
were identified, any maximum with an amplitude less than
three to five times the standard deviation of the ninety seconds
data segment was removed.12,36 The basis of this algorithm was
to remove noise from the detectors and weaker scattering
events. When implemented on datasets of depleted blood data
(containing only white blood cells), the algorithm provided
highly sensitive and specific detection of CTCCs.36 However,
when applied to CTCC detection in whole blood, ROI detection
sensitivity fell to 43.3% with a detection purity of 0.2%.

It was assumed that whole blood scattering and
absorption properties, originating particularly from red blood
cells (RBCs) and plasma, contributed to the loss in sensitive
and specific detection of CTCCs. RBCs and plasma account
for up to 99% of whole blood samples and most of blood's
absorption and scattering properties.55 Poorly defined peak
characteristics due to absorption and increased baseline
scattering from RBCs and plasma led to reduced detection
signal-to-noise ratio (SNR) for CTCCs. As such, sensitive or
precise detection of CTCCs using our standard threshold-
based ROI algorithm was not possible.

To account for the reduced performance, an anomaly ROI
detection algorithm was written using PCA and Hotelling's T2

test to redefine how cumulative light scattering data were
calculated. Whole blood backscatter intensity contributed
heavily to our baseline signal and was a majority of the
detected signal. It was therefore assumed that blood cell
scattering would have lower Hotelling's T2 metric values.
Conversely, significant changes in scattering intensity from the
baseline signal would have high Hotelling's T2 metric values.
As CTCCs have lower absorption and different scattering
properties compared to RBCs, it was assumed that high
Hotelling's T2 metric values were from CTCCs. Based on this
principle, we applied an empirical threshold of ten to detect
outlier locations in the Hotelling's T2 metric time trace
(Fig. 2e). Hotelling's T2 values greater than ten were identified
as outliers (outside of the ellipse), while those inside the ellipse
were considered inliers and removed. The selection of ROIs
based on the outlier points demonstrated an improvement in
detection sensitivity from 43.4% to 85.1% and detection purity
from 0.2% to 2%. This suggested that PCA and Hotelling's T2

test could be used to extract CTCC ROIs.

Assessment of the ROI classification algorithm

The second portion of the DeepPeak model was the
classification algorithm. Despite the improvement in
sensitivity and purity, 2% detection purity was far below the
desired performance for ultimately in vivo clinical CTCC
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detection. To improve detection purity, we utilized a CNN-
based classification algorithm. The classification algorithm
included 10 CNNs ensembled to enhance the detection of
rare cellular events in whole blood. The ensemble procedure
was consistent with prior implementations completed by
our group.12 Peaks were labeled before classification based
on the width of the scattering peak and ground truth
(GFLR) signal. If the peak was greater than 17 points in
FWHM in the cumulative light scatter trace and featured
GFLR signal or was greater than 17 points in FWHM in the
GFLR channel, the peak was considered a CTCC. Sample
CTCC peaks are shown in Fig. 3a and b. Classification
performance was assessed using purity, specificity,
sensitivity, accuracy, and Pearson correlation coefficient.
K-fold validation was used to verify the reproducibility of
the classification on varying validation sets with a k = 5. On
an independent test set, we observed approximately 69.0%
detection purity, 98.7% specificity, 43.8% sensitivity, 95.5%
accuracy, and r = 0.943 correlation between detected events
and spiked events (Fig. 3c and d). Across the entire dataset,
including training and validation data, performance was
stable with approximately 72.5% detection purity, 98.6%
specificity, 60.5% sensitivity, 96.5% accuracy, and r = 0.944
correlation between detected events and actual events
(Fig. 3c and d). Confusion matrices for the test set and the
full dataset for one of the folds are shown in Fig. 3c.

A challenge in rare event detection was the large class
imbalance. Consequently, while the classification algorithm
improved detection purity, the low TP rate led to
decreased sensitivity. Pearson correlation coefficient (PCC)
was used to assess how well the detected events correlated
with the anticipated CTCC count. We observed that the

test set and full dataset detected event counts correlated
highly with the expected number of events (Fig. 3d). To
further assess the impact of outliers in the linear fit, we
refit the lower 30% of peak counts in the full dataset.
PCC of the full dataset fell from 0.94 to 0.88 (data not
shown), suggesting that while the outliers impacted our
fit, the detected events were still well correlated with the
actual event counts.

Assessment of the DeepPeak model on unspiked blood data

For in vivo clinical utility, it was important for the DeepPeak
model to minimize the number of FP events reported when
no CTCCs were present, i.e. the false alarm rate (FAR). To
assess the FAR of the DeepPeak model, unspiked blood
samples from control animals were flowed for up to 60
minutes. Collected data were processed using an identical
ROI detection algorithm as the spiked blood samples.
Selected ROIs were then classified using the trained ROI
classification algorithm. 175 minutes of data from five
experimental days were used for FAR assessment. A total of
137 FP events were detected in the negative control blood
dataset (Fig. 4a). Detected FP events mimicked many of the
characteristics of CTCCs in the light scatter channel
(Fig. 3a/b and 4b). Interestingly, some FPs displayed weak
autofluorescence, although the source of the
autofluorescence was not confirmed in this study (Fig. 4b).
Potential sources of autofluorescence include lipo-pigments
(found in RBCs and plasma) and FAD/other flavoproteins
(found in WBCs) which fluoresce at 520 nm with 405 nm
excitation.56 However, as millions of RBCs are traversing the
illumination slit continuously, we would not expect to see

Fig. 3 (a) A representative 2-cell CTCC peak. Peaks are defined as CTCCs based on the GFLR signal and FWHM. (b) A representative 3–6 cell CTCC
peak. Larger CTCC events are expected to have broader peak widths. (c) Assessment of 5-fold validation on an independent test set and the full
dataset (all data). Confusion matrices are shown for the test set and full dataset. (d) Correlation plots for true CTCC numbers (based on detected
GFP peak numbers and widths) compared to the number of events detected by the DeepPeak model.
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RBC autofluorescence from such a limited subset of events.
The width of the autofluorescence peaks corresponds to cell
sizes in the 12–15 μm range, suggestive of a subpopulation of

WBCs. Based on the detected number of events in the control
blood samples and time of collection, the FAR was estimated
to be 0.78 events per min.

Fig. 4 (a) Confusion matrix for events in negative control blood data after classification by the DeepPeak model. (b) Four examples of
misclassified peaks by the DeepPeak model. Paired images show light scattering and fluorescence signals. Autofluorescence is observed in some
FP events, such as the bottom right event.

Fig. 5 (a) Linear fit for controlled spiking study between the number of events detected by the DeepPeak model and the expected number of
events. (b) Box plot for the various spike concentration compared to the number of events detected by the DeepPeak model. Variability is
observed to increase with the number of events spiked in. (c) Summary table for assessing sources of variability in spiked cell study.
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Assessment of the DeepPeak model consistency in spiked
samples

Spiking CTCCs into blood has frequently been used to assess
device performance in cell sorting and flow cytometry
studies. However, to simulate in vivo concentrations of
CTCCs, controlled spiking studies were needed to validate
how sensitive the DeepPeak model was to changes in CTCC
concentration and the limit of detection for the DeepPeak
model. Further, replication of spiked CTCC concentrations
enabled us to validate the detection consistency of the
DeepPeak model. Five concentrations were selected: 5, 10, 30,
50, and 100 CTCCs. Formatted datasets containing the
specified number of CTCCs and an assortment of NC peaks
were evaluated by the trained model. The DeepPeak model
demonstrated high sensitivity to changes in the
concentration of CTCCs (r = 0.996) (Fig. 5a). At a minimum,
the DeepPeak model recovered 60.3% of the expected counts.
To assess the variability in detection, theoretical %CV and
observed %CV were calculated for each spiked concentration.
Despite the variance increasing with the number of expected
events (Fig. 5b), %CV decreased for all spiked concentrations
outside of the 100 CTCC spiked concentration (Fig. 5c). More
significantly, observed %CV values were similar to the
predicted (theoretical) %CV values. This implied that
variability resulted from rare event detection based on
Poisson statistics and no variability was added by the
DeepPeak model. Overall, this suggested that the DeepPeak
model could measure changes in and reliably assess CTCC
concentrations.

Net DeepPeak model performance

To assess the overall performance of the DeepPeak model,
initial ROI detection sensitivity and specificity were combined
with the ROI classification performance. For all performance
metric analyses, we used weights from an ensemble of
models trained on a specific data fold. Net sensitivity was
calculated by multiplying the ROI detection algorithm
sensitivity with the ROI classification algorithm sensitivity for
the test set. Based on this formula, the observed net
sensitivity for CTCC events was 35.3% (85.1% × 41.5%). To
assess the net specificity, the total number of NC scattering
events labeled by both the ROI detection and classification
algorithms were summed together (TNtotal = TNdetect + TNclass)
and compared to the total number of NC scattering events
(FP + TNtotal). In total, the DeepPeak model demonstrated a
net specificity of 99.97%.

Additional metrics considered included the FAR and F1
score. Minimizing FAR was considered important in
preventing the misidentification of rare events when
handling clinical samples. The F1 score was calculated to
determine how well the model performed as a harmonic
mean of sensitivity and purity. A high F1 score would indicate
that both sensitivity and purity were high; however, a low F1
score could indicate that the performance favored only high
sensitivity/high purity or had low sensitivity and purity. For

clinical use, it was important for the DeepPeak model to be
both sensitive to CTCCs and to minimize the number of FPs
detected (maximize purity), as such, achieving high F1 scores
was desirable. Owing to the high detection purity/specificity
of the DeepPeak model, less than one FP event per minute of
data collection (FAR = 0.78 min−1) was measured (Fig. 4).
Further, based on our detection purity and sensitivity (72%
and 35%, respectively), the F1 score was approximately 0.474.

Discerning the clinical utility of BSFC and the DeepPeak
model

To demonstrate the potential clinical value of BSFC and the
DeepPeak model, we explored the final DeepPeak model
performance metrics in the context of clinical use. Allard et al.
(2004), in their characterization of the CellSearch platform for
CTC detection, provided a blueprint for contextualizing the
clinical utility of a rare event detection platform.14 Two
questions were proposed in the study to quantify the
performance of rare event detection platforms. The first
question addressed the minimum number of CTCCs needed in
a blood sample to detect a single CTCC. As the DeepPeak
model's net sensitivity was ∼35.3%, to detect a single CTCC, we
would need ∼3 CTCCs (1/0.353) to be present within the sample.
Using a relatively low estimate concentration of CTCCs in whole
blood (0.4–0.5 CTCCs per mL of blood), we estimated that 5–7
mL of blood would need to be processed to detect a single
CTCC. Accounting for our current throughput (3 μL min−1), this
would require between 27–39 hours of blood processing.

The second question proposed by Allard et al. (2004) was
to determine the extent of variability present in measuring
rare events reproducibly based on a random distribution. In
artificially spiked samples, we observed variability in
measurements that were consistent with theoretical values of
variability at varying spike concentrations (Fig. 5). Our results
suggested that BSFC with the DeepPeak model did not
increase the variation in CTCC measurements beyond the
inherent variation in a random distribution. As the only
source of variation originated from Poisson statistics for
counting rare events, we determined that BSFC with the
DeepPeak model could reliably detect rare CTCC events.

To understand the performance of our model in the
context of broader CTCC detection, we compared our
performance values against three flow cytometer systems,
CellSearch, and two microfluidic platforms that have been
used for CTCC detection (Table 1).7,16,18,19,31,57,58

Comparisons between different platforms were challenging
due to numerous studies reporting a mixture of performance
metrics from varying event types. However, we sought to
identify performance targets based on the listed metrics in
literature to the best of our ability.

In our results, we observed improved detection purity
compared to the non-equilibrium inertial separation array-
extralarge (NISA-XL) chip for CTCCs. However, sensitivity
trailed both the deterministic lateral displacement (DLD)
chip (CTCCs only), NISA-XL chip (CTCCs only), and PAFC
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(CTCs and CTCCs). Compared to epitope-based detection
platforms, the DeepPeak model demonstrated greater
consistency in sensitivity compared to CellSearch, which has
been reported as having anywhere between 0% to 53%
sensitivity for CTCCs. Against other flow cytometer platforms,
the DeepPeak model demonstrated greater sensitivity
compared to the virtual freezing fluorescence imaging flow
cytometer (VIFFI FC) and comparable levels of specificity
without the use of fluorescence. Finally, despite a higher FAR
compared to the diffuse in vivo flow cytometer (DiFC), events
detected by the DeepPeak model demonstrated higher PCC
compared to the DiFC. A higher FAR was expected due to
increased background signals from light scatter compared to
fluorescence signals used by the DiFC for detection. In DiFC
fluorescence detection, autofluorescence was the principal
source of background signal and was less prevalent
compared to light scatter signal.

A limitation of the DeepPeak model compared to other
label-free detection platforms was the lower detection
sensitivity. Higher sensitivity was achievable by reducing the
number of ensemble models but came at the cost of purity,
specificity, PCC, and FAR (Fig. 6). Higher sensitivity would
reduce the volume of blood needed to be interrogated, but
poor PCC and high FAR represented undesirable artifacts in
rare event detection. As such, we prioritized lower FAR and
higher PCC compared to maximizing the detection sensitivity
(Table 2).

Discussion

In summary, we demonstrate a robust platform for label-free
detection and enumeration of rare cellular events in whole
blood. BSFC, in combination with deep learning models (the
DeepPeak model), have implications for clinical detection

Table 1 Summary of all performance metrics available from various CTCC detection platforms. Metrics are calculated using eqn (1)–(5). For clarity in
the comparison of metrics, the type of cell events included in performance calculation is also indicated. Label-free systems are bolded

System Purity Sensitivity Specificity False alarm rate F1 score PCC Event inclusion

PAFC31 — 62 ± 18% 94.7% — — — CTC/CTCC
DiFC5,58 No comparable metrics discussed in

paper
0.017 per minute — 0.906 CTC/CTCC

VIFFI FC57 — 29% 99.9984% — — — CTC/CTCC
DLD Chip18 — 66.7 ± 6.4% — — — — CTCC
NISA-XL19 5.5% 84% — — 0.1 — CTCC
Cell Search7,16 — 0–53% — — — — CTCC
DeepPeak (our model) 72.0% 35.3% 99.97% 0.78 per minute 0.474 0.943 CTCC

Fig. 6 Visual summary of the impact of varying the number of ensemble models used in the ROI classification algorithm on the DeepPeak model
performance. FAR is shown on the right axis. A tradeoff between sensitivity and purity leads to changes in FAR and PCC.
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and continuous monitoring of rare cellular events in vivo. In
this study, we cover in vitro-based assessment of CTCC
detection using the DeepPeak model. However, in vivo
translation of the model is possible and remains the aim of
our work.

Label-free detection methods face fewer regulatory barriers
for clinical application than epitope-based detection
methods. The DeepPeak model builds on our previous work
in label-free detection of CTCCs using BSFC12 by
implementing a more advanced signal processing algorithm
for completely label-free detection of both homotypic and
heterotypic CTCCs with a minimum cluster size of 2 cells.
The measured FAR of 0.783 events per minute suggests that
the DeepPeak model detects less than 1 FP event per every
15.2 million cellular events. To the best of our knowledge,
this is the first time that FAR has been assessed for label-free
CTCC detection platforms. Detected events by the DeepPeak
algorithm display a high correlation with the actual number
of events present within the sample despite the lower
sensitivity compared to other CTCC detection platforms. The
high PCC between the detected and spiked events suggests a
linear relationship could be used to estimate the
concentration of CTCCs from the classified events. We
believe the high correlation between detected events and
spike count indicates the model's utility for extremely rare
event detection. Our performance demonstrates that the
DeepPeak model could be used to predict CTCC counts
despite possible FP events being detected.

Label-free detection provides an inherent advantage
compared to fluorescence-based methods of CTCC detection
for clinical use. While the advent of new molecular probes
for in vivo staining of CTCs and CTCCs could enable
fluorescence-based in vivo monitoring of CTCs/CTCCs, these
probes still face limitations in technical development and
regulatory approval.35 The chief advantage of BSFC and the
DeepPeak model over other label-free systems is its
potentially broad application to all types of cancer cell
clusters in vivo (see ESI† Results: Application of DeepPeak
Algorithm on CAL27 CTCC for greater detail online). In vitro
microfluidic devices enable only small volumes of blood to
be sampled compared to the total peripheral blood volume.
As CTC and CTCC concentrations fluctuate over time, often
within the course of a couple of hours, detection of rare
events in small blood volumes may lead to over or
underestimation of CTCC events.24,25 The over or
underestimation of CTCCs events could lead to poor
correlation with prognosis. In vivo PAFC accounts for this by
providing label-free, continuous in vivo monitoring of rare
cellular events with high sensitivity and specificity. While

PAFC-enabled detection of CTCs and CTCCs, it is limited to
melanoma CTC/CTCC detection until probes for
photoacoustic contrast are approved.31,59–61 These probes
would face similar technical development and regulatory
limitations as fluorescence-based probes preventing broad
label-free monitoring of CTCCs in vivo.

In this study, we show that BSFC yields 72% detection
purity, 99.97% net specificity, and 35.3% net sensitivity for
CTCC detection. Based on this performance, 5–7 mL of blood
would need to be interrogated for BSFC to detect a single
CTCC. While this volume of blood is high, assessment of
CTCC concentration in vivo could vastly impact the needed
volume. Multiple studies have published conflicting
concentrations of CTCCs in blood ranging from 0.44 CTCCs
per mL to 10 CTCCs per mL of blood.7,52,53 A challenge in
assessing CTCC concentration is that all measurements to
date have been collected ex vivo and are subject to over or
underestimation. Defining an average concentration of 10
CTCCs per mL, for example, would only necessitate
processing 300 μL of blood compared to 5–7 mL of blood.
The range of uncertainty between concentrations highlights
the need for in vivo detection methods to ascertain the actual
concentration of CTCCs in whole blood. Here, we assume
CTCC concentration is near the lower end of literature
concentrations (0.4–0.5 CTCCs per mL) to determine the
maximum volume and collection time needed in a clinical
setting. While processing 5–7 mL of blood is within the
normal ranges for blood processing, at the throughput used
in this study, processing time would approach close to 39
hours. Enhanced throughput is needed to reduce the
processing time.

Multichannel flow could be used to improve BSFC
throughput. A limitation in multichannel illumination and
detection in our current set up is the available slit
characteristics (5 × 30 μm2). Future efforts will be focused on
implementing straightforward modifications to our
illumination scheme and microfluidic device design to
enable data collection from whole blood flowing through
multiple microfluidic channels. More complex illumination
schemes will be required for simultaneous interrogation of
multiple blood vessels in vivo. Structured illumination or
multi-lens array schemes may be suitable for this purpose.62

To understand the limitations of detection sensitivity, we
carefully examined FN peaks from the ROI classification
algorithm (sample FN peaks are included in ESI† Fig. S6
(online)). Considering the FWHM of all mislabeled events,
>80% of mislabeled events were 2-cell CTCCs, 14–16% were
3–6 cell CTCCs, and less than 4% of mislabeled events were
6+ cell CTCCs. This suggests that the classification errors

Table 2 Comparison of all metrics for varying ensemble model counts. Numerical results correspond to numbers from Fig. 6

DeepPeak model count Purity Sensitivity Specificity FAR F1 score PCC

Single model 43.6% 64.4% 99.8% 20.5 per minute 0.52 0.44
Three models 57.0% 57.1% 99.88% 7.91 per minute 0.57 0.59
Ten models 72.0% 35.3% 99.97% 0.783 per minute 0.474 0.94
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center around mostly smaller CTCC events, which are known
to be more challenging to classify from large single-cell
events and WBCs. While these events could be excluded to
achieve improved performance, these events were included as
the role of smaller clusters may be significant.

There are a number of scenarios that introduce challenges
in separating a two cell CTCC cluster from a single CTC.
Currently, we assume a CTC is ∼13 microns in diameter and is
flowing at a speed of 55.6 mm s−1 within the channel,
corresponding to FWHM of ∼12 points. However, the size and
speed of a CTC as well as the size, speed, and orientation of a
two-cell CTCC can vary. When we consider one of the larger
size CTCs (15 μm) flowing at a speed on the lower range of
what we encounter when there is no clot (42.4 mm s−1), we have
a peak with a FWHM of 17 points, which we set as our
threshold for CTCC detection. Thus, the chances of mislabeling
such events are small (the lower speed threshold is based on
FWHM of peaks measured from 7 μm calibration beads
flowing in the blood samples we assay along with CTCCs). If
the combined size of a CTCC flowing at an average speed is less
than 21.3 μm, such a CTCC would be mislabeled as a single
CTC, but we do not encounter many CTCs lower than 11 μm in
diameter. Variations in flow velocity as a function of time and
along the channel cross-section can also limit the accuracy of
distinguishing CTCs from two cell CTCCs. Assuming an
average size two cell CTCC (26 μm) flowing at a speed on the
faster side of what we detect (61.7 mm s−1, based on the width
of the bead peaks FWHM), we would have a peak FWHM of 18
points, which is still larger than our threshold. However, if this
two cell CTCC is flowing at an orientation, such that its long
axis is at an angle greater than 21.9° with respect to the flow
direction, then we would mislabel this CTCC as a CTC. This
angle is larger (35.2°) for a two-cell CTCC flowing at an average
speed, and lower for a smaller size two-cell CTCC. It is
therefore possible that some two-cell CTCCs may be mislabeled
as CTCs, based on limitations of our ground truth GFP+
fluorescence-based two cell CTCC assessments. In future
studies, it may be possible to assess the prevalence of such
CTCCs by establishing two color, two cell CTCCs by mixing
CTCs expressing different fluorescent proteins. Scattering-angle
dependent BSFC measurements or more advanced algorithms
specifically optimized for this purpose may then be used to
improve two cell CTCC detection, if needed.63

More intriguingly, detection purity remained constant
between the test set and the full dataset while detection
sensitivity decreased. This would suggest that the
classification model has sufficiently learned parameters for
FPs but was limited by the number of TP (CTCC) peaks
included in training. The disparity in CTCC (16 243) and NC
peaks (286 618) in the training set likely accounts for the
difference between training and test set performance. A
greater distribution of CTCC data in the training data could
improve sensitivity. As we move forward, we aim to collect
more training data and examine alternative training schemes
to prioritize maximizing sensitivity, such as implementing
data augmentation.

We previously reported that detection based on only two
interrogation wavelengths was sufficient to achieve
comparable levels of performance as using all three
interrogation wavelengths.12 In this study, we observed
similar results when using only two of the three interrogation
wavelengths for classification (see ESI† Fig. S7 online).
Surprisingly, using only 405 nm excitation, also led to
comparable levels of classification sensitivity and PCC, albeit
with a loss in detection purity. This suggests that sensitivity
was highly correlated with the 405 nm channel. Alternatively,
exclusion of the 405 nm signal (using only 488 and 633 nm
channels) led to comparable levels of detection sensitivity but
a significant decrease in detection purity and PCC,
suggesting that the 488 and 633 nm channels contain
sufficient information for identifying CTCCs but insufficient
information for discriminating against NC events. The
increased sensitivity from the 405 nm channel is attributed
to the significantly higher absorption coefficient of blood at
405 nm relative to scattering, leading to lower overall levels
of background scattering signal for this wavelength. These
lower background levels enable more sensitive detection of
scattering from a CTCC. The corresponding 488 and 633 nm
CTCC scattering peaks are harder to distinguish because
blood scattering at these wavelengths becomes significantly
stronger (and either similar or much higher than the
corresponding absorption) leading to overall higher levels of
background and lower SNR. Further exploration is needed to
determine how optimization of the 488 and 633 nm channels
data could improve model sensitivity.

In vivo translation of BSFC with the DeepPeak model is yet
to be explored. However, as a label-free detection and
monitoring platform, clinical translation of BSFC holds
promise. An important first step toward clinical translation is
the collection of data and training of new models for
application on human blood. Light scattering and absorption
properties of blood are highly dependent on those of red
blood cells (RBCs) and plasma, composing up to 99% of
whole blood samples.55 In rats, on average, there are
expected to be 5.2 × 106 RBCs per μL, 0.34 × 106 platelets per
μL, and 9.1 × 103 white blood cells (WBCs)/μL.64

Comparatively, in human blood, there are typically 5.4 × 106

RBCs per μL, 0.28 × 106 platelets per μL, and 5.5 × 103 WBCs
per μL.65 Further, human blood cells are larger than rat
blood cells.66 These differences in blood composition and
cell size are anticipated to lead to variations in the measured
background scattering signal and CTCC scattering signal-to-
noise ratio. We expect that the impact of such differences will
be accounted for via established transfer learning methods.67

In preliminary studies, to assess the potential of transfer
learning as a means to readily optimize the CTCC DeepPeak
model for use with blood specimens from different species,
we acquired data from mouse blood samples spiked with
GFP+ MDA-MB-231 cells. Mouse blood was used instead of
human blood due to the ease in collection and transport of
animal blood compared to human subjects. Mouse blood cell
sizes and composition are also distinct from those of rat
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blood.68,69 Using data from three days for training and
validation of an optimized model and testing using data from
two different experiments and the validation data set, we
achieved similar performance as with our extensive rat blood
sample studies: sensitivity of 41.4%, purity of 59.7%,
specificity of 99.8%, and an accuracy of 99.4% (see ESI†
Methods online for greater details).

Transfer learning is also a reasonable approach for
optimizing the use of the DeepPeak model to detect different
types of CTCCs using BSFC. Our preliminary studies with
data from five different experimental days performed with rat
blood spiked with GFP+ CAL 27 CTCCs have also yielded
promising results (CAL 27 is an epithelial squamous cell
carcinoma cell line). Initial testing of an optimized DeepPeak
model led to detection sensitivity of 43.0%, detection purity
of 67.6%, specificity of 98.8%, and overall accuracy of 95.7%
(see ESI† Methods online for greater details). These values
are similar to the ones observed with the MDA-MB-231
CTCCs. Even though these results are derived from a small
preliminary dataset, they highlight that the DeepPeak model
is adaptable to other cell types and can be used for detection
of various types of cancer.

A limitation in the development and application of DL
models is the availability of large, labelled datasets.67 The
acquisition of new annotated training data and subsequent
training of DL models is both expensive and time-consuming.
In recent years, the advancement of transfer learning has
enabled the development of new DL models from scarce
datasets by adapting knowledge acquired from a related,
larger dataset.67 In the development of the DeepPeak model,
efforts for collection and annotation of data primarily
focused on rat blood samples spiked with MDA-MB-231 cells,
generating a large dataset of this type of data. Transfer
learning on smaller datasets is well suited to quickly adapt
the learned knowledge of blood scattering and CTCC
scattering to different blood types and cancer cells. The
benefit of using transfer learning is the possibility to train
reliable models using a small scarce dataset. This is
particularly beneficial when data is hard to collect, a
particular challenge we encounter with human blood
samples. As more diverse data from varying blood types and
cancer cells become available, it will be possible to adapt the
DeepPeak model for broad use, something we are actively
working towards.

The use of deep learning is instrumental in the accurate
and sensitive detection of CTCCs in noisy, label-free blood
scatter data. As a greater number of datasets and optimized
instrumental setups become available, we plan to present a
more advanced BSFC capable of sensitive detection of CTCCs
in whole blood with high throughput. In addition to in vitro
throughput enhancement, we aim to improve in vivo
throughput, addressing one of the major limitations of label-
free confocal detection-based flow cytometry.5,35 In its current
form, label-free BSFC has potential uses in the non-
destructive isolation of CTCCs, ex vivo monitoring of CTCC
dynamics, and ex vivo treatment monitoring. Detection of

CTCs, in addition to CTCCs, could provide greater insights
into tumor stage and therapy effects and have significant
clinical impact. However, label-free detection of CTCs from
blood cell scattering is difficult due to the similarity in size
of CTCs and white blood cells. Additional, scattering-angle
sensitive detection approaches or more sophisticated data
analysis algorithms may enable detection of more subtle
scattering differences for this purpose.63
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