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Simulation of a Diels–Alder reaction on a
quantum computer
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The simulation of chemical reactions is an anticipated application of quantum computers. Using a Diels–

Alder reaction as a test case, in this study we explore the potential applications of quantum algorithms

and hardware in investigating chemical reactions. Our specific goal is to calculate the activation barrier

of a reaction between ethylene and cyclopentadiene forming a transition state. To achieve this goal, we

use quantum algorithms for near-term quantum hardware (entanglement forging and quantum

subspace expansion) and classical post-processing (many-body perturbation theory) in concert.

We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute accurate

activation barrier in the reaction between cyclopentadiene and ethylene by accounting for both static

and dynamic electronic correlation. This work illustrates a hybrid quantum-classical computational

workflow to study chemical reactions on near-term quantum devices, showcasing the potential for

performing quantum chemistry simulations on quantum hardware to predict activation barriers in

agreement with those predicted by CASCI.

1 Introduction

The Diels–Alder reaction, discovered by Otto Diels and Kurt
Alder in 1928, remains a fundamental and extensively studied
transformation in organic chemistry.1–5 The synthetic versati-
lity of the Diels–Alder reaction is evident in its widespread use
for the construction of complex natural products6–8 and the
design of novel materials.9–14 This reaction occurs between a
conjugated diene and an alkene, referred to as a dienophile,
and produces a cyclic compound, typically a six-membered
ring. The reaction’s efficiency and precise control over stereo-
chemistry have established it as an indispensable tool for
organic chemists seeking streamlined routes to elaborate mole-
cular structures.15,16 The extensive applicability of the Diels–
Alder reaction in organic synthesis, combined with its intricate
mechanistic aspects, positions it as a focal point for ongoing
investigation and innovative advancements.17–20

The widespread importance and unique challenges of the
Diels–Alder reaction make it a valuable testbed for near-term
quantum computing algorithms21–25 and hardware. First,
breaking and formation of bonds in the course of the reaction
may lead to electronic wavefunctions with a multireference
character, which can be captured to zeroth order by accurate

active-space calculations. The energetics of the reaction then
arise from a complex interplay between static and dynamic
electronic correlation, the latter resulting from configurations
with electrons occupying orbitals outside the active space.
Finally, the reactivity and selectivity of the Diels–Alder reactions
hinge on the characteristics of their transition states, which are
typically more sensitive to approximations in the solution of the
Schrödinger equation than reactants and products, due to the
presence of partial bonds. Therefore, accurate calculations of
the Diels–Alder reaction pose a substantial challenge to quan-
tum computing algorithms, since they require accounting for
both static and dynamic electronic correlation in reactants,
products, and transition states.

In this work, we study the prototypical example of a Diels–
Alder reaction, between cyclopentadiene and ethylene reacting
in a synchronous ‘‘aromatic type’’ fashion where the reorgani-
zation of p bonds in cyclopentadiene and ethylene (Fig. 1)
during bond formation leads to a bridged six-membered ring
compound.26 We explore the significance of this Diels–Alder
reaction as a compelling testbed for the validation, combi-
nation, and refinement of quantum computing algorithms for
near-term quantum devices. To that end, we employ hybrid
quantum-classical algorithms to solve the Schrödinger equa-
tion in an active space on a quantum computer, and then
recover dynamical electronic correlation through classical post-
processing. For active-space simulations, we use a qubit-
reduction technique27–30 called entanglement forging (EF)28,31,32

to define a variational ansatz in the context of the variational
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quantum eigensolver (VQE) method.33,34 To improve the quality of
active-space simulations beyond the level of accuracy afforded by
EF, we use a quantum subspace expansion (QSE)35,36 based on
single and double electronic excitations from the EF wavefunction.
For recovering dynamical electronic correlation, we integrate EF
and QSE with second-order perturbation theory (PT2).37,38 We
demonstrate the proposed algorithmic workflow (active-space
calculations on quantum computers and classical post-
processing exemplified by perturbation theory to recover dyna-
mical electronic correlation) on classical simulators and quan-
tum hardware, using up to 8 qubits and error mitigation
techniques39–41 to compute the activation energy of the Diels–
Alder reaction. To provide accurate results, our framework
requires an accurate solution of the Schrödinger equation in
the active space, and an accurate description of dynamical
correlation. The active-space Schrödinger equation is solved
by a combination of EF and QSE, each having approximations
(EF in the use of bitstrings and an ansatz,28 and QSE in the use
of single and double electronic excitations only).36 Dynamical
correlation is captured by second-order perturbation theory,
which is also approximate. When these approximations break
down, accurate results cannot be expected. The primary goal of
this work is to showcase the effectiveness of our approach in
capturing the key aspects of electronic structure problems,
while also recognizing its inherent approximations and limita-
tions. Our approach seeks to offer a practical framework for

quantum computing applications in electronic structure the-
ory, emphasizing the balance between accuracy and computa-
tional efficiency, and guiding future advancements.

The structure of this work is as follows: first, we detail the
methods employed, emphasizing simulations on quantum
hardware, including error mitigation techniques and measure-
ment optimization. We then present and discuss results for
predictions of the activation energy of the reaction on quantum
simulators and quantum devices. The Appendices includes
additional details of the workflow used in this study.

2 Methods
2.1 Active-space selection

In the Diels–Alder reaction, active electrons are defined as
those participating in the breaking/formation of bonds as the
reaction unfolds. The orbitals involved in the reaction involve
two p bonds contributed by the diene reacting with one p bond
contributed by the ene counterpart. These undergo conversion
into partial p bonds in the transition state, prior to the
formation of two s bonds and one p bond in the product.
Overall, this process involves a 6 electron, 6 orbital active
space (here denoted AS(6e,6o)). Through the work of Houk
and co-workers42 on the retro reaction of norbornene breaking
into cyclopentadiene and ethylene, it is known that the

Fig. 1 Left panel: Schematics of (a) the reactant molecules, (b) the transition state, and (c) the activation barrier denoted by DE‡. The right three panels
show the active-space orbitals for both reactants and the transition state (MP2 natural orbitals). A grey box highlights the AS(6e,6o) p space of the
reactants and transition state.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 3

1.
01

.2
6 

11
:5

0:
58

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cp01314j


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 25181–25191 |  25183

breaking/formation of bonds in a Diels–Alder reaction can be
studied in an active space of 8 electrons in 8 orbitals, AS(8e,8o).
Therefore, in this work, we simulate AS(8e,8o) of MP2 natural
orbitals around the highest occupied natural orbital–lowest
unoccupied natural orbital (HONO–LUNO) frontier,43 as shown
in Fig. 1. We note that most of the active-space orbitals of the
transition state have reactant-like character, consistent with the
fact that the transition state has an ‘‘early’’ nature. In particu-
lar, within the AS(8e,8o) active space shown in Fig. 1, one can
recognize an AS(6e,6o) (enclosed in a gray box), spanned by the
p and p* orbitals of the reactants and transition state, respec-
tively. In the remainder of this work, we therefore study the
AS(6e,6o) alongside the larger AS(8e,8o) active space.

2.2 Classical methods

We conducted classical electronic structure simulations using
an aug-cc-pVTZ basis set44 with PySCF.45,46 We obtained initial
the optimized coordinates for the reactants and transition state
from the prior study by Levandowski et al.26 Our CASCI calcula-
tions were performed using active spaces comprising MP2
natural orbitals. The CASCI energies for the active spaces of
AS(6e,6o) and AS(8e,8o) were 45.7 kcal mol�1 and 43.5 kcal mol�1,
respectively (Fig. 2). These values were compared to those obtained
in previous computational studies47,48 as well as with data from
various studies reporting experimental (Exp) activation barriers
derived from the retro-Diels–Alder reaction and the heat of

formation for norbornene. Specifically, the reported experimental
values span a range of 19.9 to 23.7 � 1.6 kcal mol�1 in the gas
phase (521–570 K)49–53 and the challenges in measuring the
forward barrier arise due to competition with the dimerization
of cyclopentadiene which possesses an experimental barrier
between 14.9 and 16.9 kcal mol�1 in the gas phase.54 A compre-
hensive study analysis and in-depth discussion can be found in
Guner et al.47 The difference between the active-space energies and
the experimental values underscores the significance of account-
ing for dynamical correlation to align the theoretical results with
the experimental data. Consequently, we conducted second-order
perturbation theory calculations to incorporate dynamical correla-
tion. The activation barriers were found to be 6.5 kcal mol�1 and
8.9 kcal mol�1 for the active spaces of AS(6e,6o) and AS(8e,8o),
respectively. CASSCF and CASSCF + PT2 calculations followed a
similar trend. These classical electronic structure calculations
serve as a reference point for evaluating the accuracy and precision
of the quantum-classical algorithms employed in this study.
Notably, the method that gets the closest to the experimental
values is CCSD which suggests that the system under study is
adequately described by a single reference wavefunction with
dynamical correlation effects.

2.3 Quantum algorithms overview

The workflow illustrated in Fig. 3 uses a hybrid quantum-classical
approach. First, we carry out active-space calculations using the
VQE method, on quantum hardware, using the EF method to
formulate a variational ansatz and reduce the number of qubits
from 2N to N, where N is the number of active-space orbitals. We
then extract the density matrix of our system through tomographic
measurements of the ground state on the quantum computer and
we project it into the Hilbert space with the correct particle and
spin number. The obtained projection (denoted as the CI vector in
Fig. 3) is used as a starting point for QSE and PT2. This approach
allows us to improve the quality of EF ground-state results and
mitigate errors from the quantum device.

2.3.1 Entanglement forging. Entanglement forging (EF) is
a qubit reduction technique that enables the simulation of electro-
nic systems using only half the qubits required by a conventional
simulation in the Jordan–Wigner representation, by mapping a
spatial orbital to a single qubit instead of two. EF reduces the
number of qubits by separately simulating electrons of opposite
spins, and accounting for the correlation between opposite-spin
electrons with classical post-processing based on a finite set of
electronic configurations (bitstrings). EF was first demonstrated for
the simulation of the water molecule28 and later applied to study
the excited-state dissociation of the sulfonium cation,31 as well as
excitations in aromatic heterocycles.32 EF involves two steps: first,
the identification of a subset of bitstrings to establish an initial
multiconfiguration approximation of the electronic ground state;
second, the selection of an appropriate quantum circuit.

In the EF algorithm, the active-space Hamiltonian is
expressed as a linear combination of tensor products,

H ¼
X
m

Âm � B̂m; (1)

Fig. 2 Classical computational results for AS(6e,6o) (light green), AS(8e,8o)
(dark blue), and various single-reference methods with differing treatments of
electronic correlation (SCF, MP2, DFT with M06-2X functional, CCSD,
CCSD(T), and CISD), using the aug-cc-pVTZ basis set. Active-space methods
included CASCI with natural orbitals, CASCI with natural orbitals combined
with PT2 corrections to account for dynamical correlation, as well as CASSCF
and CASSCF with PT2 corrections. The inclusion of dynamical correlation is
essential to obtain realistic results.
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where Âm and B̂m act on a and b spin-orbitals, respectively.
The target wavefunction is represented by a Schmidt decom-
position,

Cyj i ¼
X
k

lkÛðyÞ xkj i � ÛðyÞ xkj i; (2)

in which the operator Û(y) is a parameterized unitary, lk is a set
of Schmidt coefficients, and |xki are qubit computational-basis
states represented by bitstrings.

To approximate the ground-state energy of our system, we
evaluate the expectation value of Ĥ

Cy Ĥ
�� ��Cy

� �
¼
X
klm

l�kllAklmBklm: (3)

In eqn (3), the matrices Aklm and Bklm are defined as

Aklm = hxk|Û†(y)ÂmÛ(y)|xli, (4)

Bklm = hxk|Û†(y)B̂mÛ(y)|xli. (5)

The bra and ket states hxk| and |xli are computational basis
states labelled by bitstrings. For k = l, Aklm and Bklm are expecta-
tion values, that can be easily measured on quantum hardware.
For k a l, they can be written as linear combinations of

expectation values,

Aklm ¼
X3
p¼0

ð�iÞp
4

jp
kl Âm
�� ��jp

kl

� �
; (6)

where the superposition states are

jp
kl

�� �
¼ xkj i þ ip xlj iffiffiffi

2
p : (7)

Fig. 4 illustrates the 8-qubit EF circuit used in this work. The
quantum circuits used in this study comprised two-qubit ‘‘hop-
gates’’ that are both hardware-efficient and preserve the particle
number. In Fig. 4 the ‘‘hop-gates’’ are organized in a brick-wall
configuration. Details of the other circuits run in this study can
be found in Appendix.

2.3.2 Quantum subspace expansion. To improve the accu-
racy of the EF results, we used the QSE method36,55–57 by
applying single and double electronic excitations to the wave-
function obtained from EF as follows,

|Ci = a|cEFi + bkiâ
†
kâi|cEFi + gkibjâ

†
kâ†

bâjâi|cEFi. (8)

The coefficients a, bai, and gaibj were optimized variationally.
In eqn (8), â†

k/âi are the creation and annihilation operators,
respectively for an electron in an occupied/virtual spin-
orbital k/i.

In this work, we focused on single and double electronic
excitations within the same set of orbitals used to describe the

Fig. 4 Top: 8-qubit quantum circuit corresponding to the TS in AS(8e,8o)
with state initialization run on a 27-qubit ibm_auckland device. A brick-
wall arrangement of hop-gates (green), and measurement of single-qubit
Pauli operators X, Y, and Z. Bottom: The hop-gate is compiled into single-
qubit and CNOT gates. Two-qubit unitaries (highlighted in pink) transform
the initial state |00i into various states, such as |10i, |01i, and |fpi for p = 0,
1, 2, and 3, corresponding to single-qubit gates (R0 = I, R1 = ZS, R2 = Z, and
R3 = S).

Fig. 3 Schematic representation of the hybrid approach workflow.
Active-space calculations are performed on a quantum computer, fol-
lowed by classical post-processing. After conducting an active-space
variational calculation with entanglement forging (EF), we conduct an
active-space quantum subspace expansion calculation to refine the EF
results and second-order perturbation theory (PT2) to account for dyna-
mical electron correlation. To quantify and mitigate the errors occurring
on quantum devices, we extract the density operators of the quantum
states prepared by the device using tomography. We then project the
density operator in the subspace of the Hilbert space with appropriate
particle number and spin. We use the resulting projection (referred to as a
CI vector) as a starting point for the QSE and PT2 calculations in lieu of the
original density operator.
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ground state. This flavor of QSE can be regarded as a multi-
reference CISD method, where the wavefunction, prepared on a
quantum device, is not a single Slater determinant but a
correlated electronic state. We classically realize a variational
subspace spanned by a set of quantum states {cI} as |cIi =
ÔI|cEFi, where ÔI A {I,â†

kâi,â
†
kâ†

bâjâi}, which can be generated via
additional measurements and post-processing. The Hamilto-
nian is then diagonalized within the new state space, by solving
the generalized eigenvalue problem Hc = ScE and obtaining a
variational estimate of the ground state energy. More specifi-
cally, obtaining the expansion coefficients c requires computing
the matrix elements

Hij = hcEF|Ô†
I ĤÔJ|cEFi = Tr[Ô†

I ĤÔJr̂], (9)

Sij = hcEF|Ô†
I ÔJ|cEFi = Tr[Ô†

I ÔJr̂]. (10)

We employ a quantum device to compute the matrix ele-
ments Hij and Sij by measuring the operators Ô†

I ĤÔJ and Ô†
I ÔJ

respectively. Following,31 we conduct quantum state tomogra-
phy on the EF circuits by performing measurements on up to
n = 8 qubits in the 3n eigenbases of X, Y, and Z Pauli operators.
Through this operation, we obtain a Bloch vector aP = Tr[Pr],
where P is an n-qubit Pauli operator, and use it to calculate the
matrix elements Hij and Sij. We then use a classical computer to
solve the generalized eigenvalue equation Hc = ScE and obtain
approximate eigenpairs. The benefit of this approach is that
QSE integrates into the VQE without necessitating any modi-
fications to the quantum circuit, at the cost of additional
measurements. Notably, it does not increase the depth of the
quantum circuit required for preparing |cEFi. This character-
istic is beneficial, especially for near-term quantum hardware
subject to qubit coherence times and two-qubit gate errors.
We remark that quantum state tomography is not required to
measure the operators in eqn (9). However, it is necessary to
implement the classical post-processing operations described
in the forthcoming Section 2.6.

2.4 Hardware calculations

All EF calculations were executed on the 27-qubit ibm_auck-
land device, using the Qiskit Runtime library to interface the
code with quantum devices. Jobs consisting of 300 circuits, and
10 000 shots for each circuit, were submitted on quantum
hardware. Readout39 and dynamical decoupling40 error mitiga-
tion techniques were employed to reduce noise originating
from readout and quantum gates, respectively. Particle number
was conserved through CI vector projection. Additional details
can be found in Appendix.

2.5 Error-weighted Pearson correlation analysis

Quantum chemistry experiments on near-term quantum com-
puters demand extensive time and resource utilization, under-
scoring the importance of achieving optimization in both
aspects without compromising result fidelity. To optimize
circuit time while maintaining performance, we conducted an
in-depth analysis of quantum state tomography experiments on
multiple IBM Quantum processors. Our approach involved

calculating the Pearson correlation coefficient between quan-
tum hardware results and the ground truth statevector, varying
the number of shots, or alternatively, the number of circuit
repetitions. Understanding the optimal number of shots
required to achieve high-fidelity results enables the optimiza-
tion of time and resources on near-term quantum computers
without compromising result fidelity.

To that end, we first simulated tomography circuits for
ethylene, cyclopentadiene, and the transition state using Qiskit
Aer, representing the resulting statevector as a binary string of
zeroes and ones, serving as a ground truth vector. Next, we
selected several 27-qubit IBM quantum Falcon processors,
including ibm_algiers, ibm_cairo, and ibm_hanoi. The experi-
ments were executed using Qiskit Runtime, employing an
optimization level of 3, readout error mitigation, and dynami-
cal decoupling techniques. The variable explored in this study
was the number of shots used in each experimental instance.
The number of shots was systematically varied, and for each
experimental instance, a Bloch vector was computed along with
its associated errors. Subsequently, for every shot value, the
resulting Bloch vector from the hardware run was correlated
using the error-weighted Pearson correlation coefficient
rweighted, defined as follows:

rweighted ¼

Pn
i¼1

wi Xi � �Xweighted

� �
Yi � �Yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
wi Xi � �Xweighted

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Yi � �Yð Þ2
s ; (11)

In eqn (11) X and Y represent two sets of data, namely
simulator and hardware block vectors, wi are weights, Xi is the
i-th data point in X, and Yi is the i-th data point in Y. The mean
of Y ( %Y) and weighted mean of X (Xweighted) are expressed as:

�Y ¼ 1

n

Pn
i¼1

Yi; (12)

�Xweighted ¼

Pn
i¼1

wiXi

Pn
i¼1

wi

: (13)

In eqn (13), the weights are calculated as follows:

wi = 1 � ei
2, (14)

where wi is the weight for the i-th data point in X, and ei is the
associated error.

2.6 Perturbation theory

An active-space calculation, carried out with an accurate solver
and in carefully selected active space, can capture static corre-
lation but not dynamical correlation arising from electronic
interactions involving electrons in the inactive orbitals. A way
of accounting for dynamical correlation is to combine active-
space quantum computation with classical post-processing
on the full basis set. An example is complete active-space
second-order perturbation theory (CASPT2). Within CASPT2,
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the Hamiltonian is written as a sum of two terms Ĥ = ĤD + V̂,
where ĤD is the Dyall Hamiltonian, i.e., the sum between
the active-space Born–Oppenheimer Hamiltonian and the
restriction of the Fock operator to the non-active space, and
V̂ = Ĥ � ĤD is treated as a perturbation. The second-order
energy contribution is

DEPT2 ¼ �
X
na0

Cn V̂
�� ��C0

� ��� ��2
En � E0

; (15)

where (Cn,En) are the eigenpairs of the Dyall Hamiltonian, and
n = 0 labels the ground state. Implementing the exact
(or uncontracted) NEVPT2 has a combinatorial cost with
active-space size due to the sum over the excited states. This
limitation can be remedied using strongly-contracted NEVPT2,
which requires high-order ground-state reduced density matrices
(RDMs), or partially-contracted NEVPT2, which approximates the
sum over the excited states.38

Implementing CASPT2 based on quantum computing data,
specifically tomographic measurements, poses two challenges:
first, active-space simulations conducted in the Fock space may
break particle number conservation and other symmetries due
to device noise, with detrimental impact on the accuracy of the
ground and excited electronic states; second, statistical uncer-
tainties need to be propagated from active-space quantities to
DEPT2, leading to imprecise results. In this work, we (i) sample
the ground-state density matrix using quantum-state tomogra-
phy and subsequently extract a configuration interaction (CI)
vector by normalizing the density matrix’s row/column entries
for each sample. The resulting CI vector approximates the QSE
wavefunction but has an exact particle number and consider-
ably reduced statistical uncertainties. We then (ii) use each

sampled CI vector as the input of a conventional CASPT2
calculation, and finally (iii) average the resulting PT2 energies.

3 Results and discussion
3.1 Active-space quantum calculations

In Fig. 5, we present active-space calculations with EF and EF +
QSE, carried out on classical simulators. In EF simulations,
two bitstrings were used for the reactants and the transition
state, respectively. These bitstrings, derived through a Schmidt
decomposition of the FCI wavefunction, corresponded to the
Hartree–Fock and HONO–LUNO excitation bitstrings. Given the
relatively small size of the problem and the availability of the
FCI solution, obtaining the FCI bitstrings and using them in
our EF calculations allowed us to assess the effectiveness of
the EF method. When analysis of the FCI wavefunction is
unavailable, bitstring selection becomes challenging, highlight-
ing an area for improvement in this work. In such instances,
bitstring selection can be approached through educated guess-
work informed by additional classical calculations (e.g., CCSD,
MP2) that provide insights into the system’s wavefunction.

We further investigated the impact of a third bitstring for
simulations of the transition state. Notably, simulated forged-
VQE results for the transition state with 3 bitstrings resulted in
lower energies, as shown in Fig. 5. This is expected because, as
we include more bitstrings, we can achieve a more accurate
representation of the electronic wavefunction. However, adding
a third bitstring had a modest impact on the EF + QSE energy,
which was approximately equal to the CASCI energy for both
2 and 3 bitstrings. Therefore, for computational efficiency,
hardware calculations were executed using only two bitstrings
for the transition state.

Fig. 5 Quantum simulations: VQE performed using the EF + QSE (denoted as VQE + QSE) for active-space AS(6e,6o) (green) and AS(8e,8o) (blue). The
VQE calculations were performed with the EF wavefunction. Entanglement forging simulations were performed with 2 bitstrings (abbreviated as bts) for
reactants and either 2 or 3 bitstrings for the transition state. The combination of entanglement forging and QSE results in a substantial reduction of
approximately 10 kcal mol�1 in the activation barrier. This result differs from classical CASCI calculations by 1.4 kcal mol�1 for both AS(6e,6o) and
AS(8e,8o). Additionally, the introduction of an extra bitstring in entanglement forging for transition state calculations demonstrates minimal impact on the
activation barrier.
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To investigate the multi-reference nature of our EF + QSE
method, we performed CISD calculations in the active
spaces of (6,6) and (8,8). The activation barriers obtained were
43.7 kcal mol�1 and 43.5 kcal mol�1, respectively. These results
are very close to the energy values obtained using CASCI
(45.7 and 43.5 kcal mol�1, respectively) and the EF + QSE method
(47.1 and 44.9 kcal mol�1, respectively) in the same active spaces.
This suggests that the CISD method approximates MR-CISD in this
context and that the multi-reference character of the EF method
may not significantly impact the accuracy of activation barriers for
the chosen active spaces of the Diels–Alder reaction.

Hardware calculations, mitigated with readout and dynami-
cal decoupling error suppression techniques, were further
processed to ensure particle number preservation by extracting
a CI vector representation as discussed in the previous section.
The results obtained in combination with QSE, closely matched
the CASCI and statevector simulation results (Fig. 7). The
associated statistical uncertainties for the activation barriers
were 0.01 kcal mol�1 for both active spaces, with errors increas-
ing with system size, but effectively cancelling out for the
activation barriers. For example, when calculating absolute
energies for ethylene AS(2e,2o), cyclopentadiene AS(4e,4o),
and the transition state AS(6e,6o), respective errors were
0, 3.6 � 10�6, and 1.6 � 10�5 kcal mol�1. Notably, the largest
deviations in absolute energies were observed in the transition
state, as expected due to its more complex electronic structure,

compared to reactants. The primary limitations of our
approach stem from the intrinsic design of the EF method,
which is optimally suited for simulating systems with low
entanglement in the ground state. The EF method exhibits
quadratic scaling with the number of bitstrings, fifth power
scaling with the number of orbitals/qubits, and linear scaling
with the number of parameters. Given this computational cost,
it is advantageous to minimize the number of bitstrings
and optimize the circuit width (number of qubits) and depth
(layers of parametrized gates). Additionally, when based on CI
vectors, the implementation of the QSE method incurs a
significant measurement cost, impeding scalability. Specifi-
cally, it requires 3n measurements, where n is the number of
qubits, in the eigenbases of the X, Y, and Z Pauli operators.

3.2 Pearson correlation shot analysis

Through additional optimization of hardware experiments and
detailed Pearson correlation analysis58 for reactants and the
TS, a trend emerged across the three quantum devices (ibm_
algiers, ibm_cairo, and ibm_hanoi). The correlation between
the hardware results and the ground truth statevector showed a
significant improvement as the number of shots increased
(Fig. 6). However, our results also reveal a noticeable point of
diminishing returns, and this point is contingent upon the
circuit complexity inherent in the molecular system under
investigation. For the TS, characterized by a high degree of

Fig. 6 Relationship between Pearson correlation (y-axis) and the number of shots (x-axis) for ethylene (Eth), cyclopentadiene (Cyc), and the transition
state (TS) using data from ibm_algiers, ibm_cairo, and ibm_hanoi (from left to right). The data represent computational basis states x0 and x1, where
x0 is the Hartree–Fock bitstring and x1 is a HONO–LUNO bitstring (e.g., for the transition state, xk A {|1111000i,|1110100i}). Superposition states

jp
01

�� �
¼ x0j i þ ip x1j ið Þ

� ffiffiffi
2
p

are marked as fp
01, where p = 0, 1, 2, 3 respectively.
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circuit complexity, it became evident that even at the upper
limit of 10 000 shots, there existed the potential for further
enhancement in the quality of the result by gathering of
additional shots. In contrast, for experiments involving cyclo-
pentadiene with a moderate level of circuit complexity, an
approximate shot count of 1000 proved to be sufficient to reach
a quality plateau. Notably, ethylene, which possesses the least
complex circuit, achieved a plateau with only 500 shots.

3.3 Perturbation theory

After applying the PT2 correction to the activation barrier
energies, the results were found to be consistent with classical
CASPT2 energies, as illustrated in Fig. 7. The statistical uncer-
tainties for the activation barriers were 3.7 � 10�3 and 6.7 �
10�3 kcal mol�1 for the AS(6e,6o) and AS(8e,8o), respectively.
The low error bars are due to state projection, which reduces
statistical fluctuations on the input of the PT2 calculation.
Furthermore, the extraction of CI vectors from tomographic
measurements yields a pure state (as opposed to a density
operator) and ensures the correct number of electrons and
spin. A detailed comparison between VQE and QSE, and VQE
and QSE with CI vector purification in Table 2 shows that state
purification significantly reduces errors.

4 Conclusion

In this study, we used the Diels–Alder reaction of cyclopenta-
diene with ethylene as a testbed for performing near-term
simulations of reactions on quantum hardware. We computed
the activation barrier of the reaction with an integrated combi-
nation of quantum algorithms for active-space calculations
(entanglement forging, EF, and quantum subspace expansion,

QSE) and classical post-processing to recover dynamical elec-
tronic correlation (second-order perturbation theory, PT2).
We demonstrated this computational workflow on classical
simulators and quantum hardware, using up to 8 qubits and
error mitigation. Additionally, insights derived from the Pear-
son correlation analysis enhanced our understanding of opti-
mal shot selection and its impact on result fidelity in quantum
experiments. Economization of hardware experiments is an
important research area,59,60 and the obtained insights con-
tribute to a more efficient and accurate implementation
of quantum algorithms for chemistry on current quantum
hardware.

Our results pinpointed drastic approximations in the
EF Ansatz, which overestimates the activation barrier by
B20 kcal mol�1 compared to CASCI. We resolved the discre-
pancies between active-space quantum computing simulations
with the chosen ansatz and CASCI by combining QSE with EF.
However, in the systems we have studied, CASCI (and any other
active-space calculation) overestimates the activation energy,
due to omission of dynamical electronic correlation. To over-
come this limitation, we integrated EF and QSE with PT2,
obtaining activation energies in agreement with CASPT2 within
B1 kcal mol�1. These results, however, differ appreciably from
experimental data and other classical calculations (CCSD,
CCSD(T), DFT) due to the approximation of PT2.

While our findings present compelling evidence of the
effective application of the QSE method in refining ground-
state approximations and enhancing the accuracy of VQE
calculations, several important points should be noted about
our methodology. Firstly, tomographic measurements are not
scalable to larger system sizes. To address this issue, future
work entails employing measurement optimization strategies
such as Pauli grouping61–63 and cumulant approximation.64,65

Fig. 7 Comparative analysis of classical CASCI and CASCI + PT2 calculations, quantum simulations (Sim), and hardware calculations (HW) for active
spaces AS(6e,6o) (green) and AS(8e,8o) (blue) with and without second-order perturbation theory (PT2) for dynamical correlation. Quantum hardware
results, employing error mitigation techniques, exhibit consistency with statevector simulations and classical CASCI calculations.
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While the development of measurement reduction techniques
is a very active area of research, a comprehensive investigation
of these methods and their integration with the QSE framework
was beyond the scope of this work. Future research could
greatly benefit from exploring these avenues, as this would
significantly reduce the computational demands associated
with current implementations. Second, the classical CI vector
sampling approach relies on classical representations of quantum
information, thereby limiting its scalability. Additionally, among
the methods that can be tested on Diels–Alder reactions in future
research are: (i) embedding techniques43,66,67 to define active
regions and correlate them with their environment, (ii) variational

ansatzes to solve for the Schrödinger equation in the active space
seeking a balance between accuracy, computational cost, and
hardware compatibility,68–71 (iii) approaches for recovering dyna-
mical correlation, such as transcorrelated,72–74 downfolding,75

similarity transforms,27 and subspace methods,57 and (iv) the
sub-space quantum diagonalization (SQD) technique.76 The latter
method partially recovers noiseless configuration samples, enhan-
cing the robustness of the quantum-selected CI procedure77

against noise. By leveraging classical distributed computing to
process noisy samples from a quantum processor, SQD can
produce good approximate solutions for practical problems that
exceed the sizes amenable to exact diagonalization.

Our work highlights a Diels–Alder reaction as a compelling
testbed for quantum algorithms and hardware, as it allows
us to gauge their effectiveness in accounting for static and
dynamical electron correlation in non-trivial situations (e.g.
transition states), exposing and quantifying algorithmic
approximations, and indicating areas and directions of
improvement.
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Appendices
Appendix A: Entanglement forging hardware calculations.
Additional details

Entanglement forging calculations on quantum hardware
were performed for the reactants and transition state in
the Diels–Alder reaction. The details on the number of qubits,

Table 1 Key parameters in the study, including the number of qubits,
variational parameters (one for every hop-gate and two for the Schmidt
coefficients), the configuration of single- and two-qubit gates, and the
depth. Specifically, for each two-qubit unitary (denoted by Uj?i in Fig. 4),
hop-gate, and measurement, there are 4, 4, 2 single-qubit gates and 1, 3, 0
two-qubit gates, respectively. The circuit depth signifies the number of
layers of quantum gates executed in parallel for computation completion.
Tomography experiments on quantum hardware were run using Qiskit
Runtime, which executes quantum circuits in sessions. Each Runtime job
session on ibm_auckland contained a maximum of 300 circuits

System Qubits Parameters Gates Depth Circuits

C2H4(2e,2o) 2 3 (12,4) 10 54
C5H6(4e,4o) 4 4 (21,7) 10 486
C5H6(6e,6o) 6 8 (42,19) 20 4374
TS(6e,6o) 6 8 (42,19) 20 4374
TS(8e,8o) 8 14 (72,37) 30 39 366

Fig. 8 Additional quantum circuits run in this study: (a) 2-qubit circuit for active space AS(2e,2o) for ethylene, (b) 4-qubit circuit for an active space
AS(4e,4o) for cyclopentadiene, and (c) 6-qubit circuit representing active space AS(6e,6o) for cyclopentadiene and TS. The definitions of the two-qubit
unitary Uj?i

� �
and the ‘‘hop-gate’’ are described in Fig. 4.

Table 2 Comparison between VQE + QSE, VQE + QSE with CI vector
projection/purification, and VQE + QSE + PT2 with CI vector projection.
Results were obtained using statevector (abbreviated SV) and ibm_auck-
land quantum hardware (abbreviated HW)

Method DE‡ (6e,6o) DE‡ (8e,8o)

SV (VQE + QSE) 47.10 44.95
HW (VQE + QSE) 46.52 � 2.10 44.49 � 4.04
HW (VQE + QSE + proj.) 47.52 � 0.01 45.24 � 0.01
HW (VQE + QSE + proj. + PT2) 5.45 � 0.004 7.85 � 0.007
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parameters, gates, circuit depth and the total number of
circuits are provided in Table 1. The quantum circuits for the
reactants and transition state are shown in Fig. 4 and 8.

Appendix B: CI vector purification

We employed state projection and CI vector extraction as a
noise mitigation/purification technique. The evaluation of
noise in states by CI vectors significantly contributes to the
reduction of error bars. These CI vectors represent pure states
with the correct number of electrons and spin, enhancing the
fidelity of our quantum computational analyses.
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