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Mechanism-based and data-driven modeling
in cell-free synthetic biology

Angelina Yurchenko, abc Gökçe Özkul,abc Natal A. W. van Riel,def

Jan C. M. van Hest gh and Tom F. A. de Greef *abcij

Cell-free systems have emerged as a versatile platform in synthetic biology, finding applications in

various areas such as prototyping synthetic circuits, biosensor development, and biomanufacturing. To

streamline the prototyping process, cell-free systems often incorporate a modeling step that pre-

dicts the outcomes of various experimental scenarios, providing a deeper insight into the underlying

mechanisms and functions. There are two recognized approaches for modeling these systems:

mechanism-based modeling, which models the underlying reaction mechanisms; and data-driven

modeling, which makes predictions based on data without preconceived interactions between system

components. In this highlight, we focus on the latest advancements in both modeling approaches for

cell-free systems, exploring their potential for the design and optimization of synthetic genetic circuits.

1. Introduction

Synthetic biology has traditionally aimed to design novel biological
systems by constructing and implementing genetic circuits into
living cells.1 This approach is intended to regulate the behavior of
an organism by installing desired functions.2 However, introduc-
tion of exogenous genes into a host cell burdens its metabolic
processes, reduces cell growth, and hence limits the production of
the target product.3 Moreover, the prototyping process of new
genetic circuits in vivo is laborious and expensive.4,5 Therefore, to
overcome these challenges, cell-free protein synthesis (CFPS) has
emerged as a synthetic biology breadboard.6,7

CFPS aims to reconstruct the transcription–translation
(TXTL) mechanism of living cells (Fig. 1(a)), using either

purified components8 or cell lysate that aims to provide the
necessary components for the TXTL machinery.9 CFPS offers
numerous advantages over cell-based systems which include
the ability to synthesize toxic products,10 elimination of com-
petition between synthetic and endogenous circuits,1 and alle-
viation of membrane transport limitations.6 Additionally, CFPS
allows for more precise control over reaction conditions, which
diversifies its application to prototyping genetic parts,6,7 bio-
sensor development,10,11 biomanufacturing,5 educational pur-
poses,12 and even constructing artificial cells.13 To facilitate
and rationalize the prototyping process, CFPS often incorpo-
rates a modeling step that predicts the outcomes of different
experimental scenarios and allows one to gain a deeper under-
standing of underlying mechanisms.4

Mechanism-based modeling is a widely used modeling
technique that describes TXTL dynamics by constructing a
coupled system of rate equations of the underlying reac-
tions.14 Usually, this modeling approach is represented by
ordinary differential equational models (ODE) based on
Michaelis–Menten, Hill, and mass-action kinetics.4 The main
advantage of this modeling technique is the ability to transfer
knowledge of molecular interactions into kinetics, which sim-
plifies the interpretation of the model output.15 While ODE
models provide a high level of explainability and the ability to
construct a model based on predefined interactions, their
major limitation lies in estimating kinetic parameters. The
presence of covariance among parameters hinders accurate
parameter estimation in this type of modeling.4,14,16,17

Another, more modern, modeling approach for CFPS sys-
tems is data-driven modeling, also known as machine learning.
Unlike traditional ODE models, machine learning does not
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consider any predefined interaction between molecules but
instead learns the relationship between input and output data.18

By training on multi-dimensional datasets, machine learning can
reveal high-level interactions between reaction components, cap-
turing the complexity of CFPS.19 In comparison to ODE models
that study reaction components individually, therefore neglecting
their explicit interactions with each other,17 machine learning is
less biased when trying to understand the system’s overall com-
plexity. However, because this approach is data-dependent, its
major limitations are size and variability of training datasets.
These factors directly influence accuracy of a developed model
and, hence, explainability of obtained predictions.20

In this highlight, we focus on the state-of-the-art mechanism-
based modeling and machine-learning approaches in CFPS, along
with their potential to design and optimize novel cell-free genetic
circuits. We first introduce a mechanism-based modeling
approach, focusing on the types of reactions used for the different
cell-free systems, followed by a discussion on the parameter

estimation process. Then we review the integration of machine
learning into the optimization of CFPS systems.

2. Mechanism-based modeling

Mechanism-based modeling attempts to make models of bio-
logical systems through assumptions regarding their under-
lying mechanisms.21 Within the context of modeling CFPS
systems, ordinary differential equation (ODE) models are the
preferred choice due to their proficiency in capturing the
dynamic behavior of genetic circuits over time while maintain-
ing computational efficiency.22 ODE models encompass a sys-
tem of differential equations that model the rate of change of
various chemical species within CFPS systems.23 This frame-
work facilitates predictions regarding system behavior under
diverse conditions, including variations in DNA template and
enzyme concentrations or external stimuli. Additionally, ODE
models are instrumental in experimental design and offer
valuable insights for optimizing cell-free systems.24

2.1 Reactions in cell-free protein synthesis

In the modeling of CFPS, the selection of reactions and the
corresponding species significantly influence the simulated
expression of the target gene (Fig. 1 and 2). Multiple types of
reactions can be employed to model CFPS, falling into four
primary categories: main reactions (TXTL, aminoacylation),
posttranslational processes (protein folding and maturation),
maintenance reactions (resource use, energy recovery), and
decay reactions (mRNA and protein degradation) (Fig. 1(a)).
The specific choice of reaction species, however, is contingent
upon the modeling goals and may vary depending on the
desired level of details (Fig. 1(b)).

In this section, we focus on examining the impact of
incorporating various types of reactions into ODE models for
CFPS, by providing examples from literature, focusing on
different modeling objectives, and emphasizing key insights
found with the specific model structure.

2.1.1 TXTL and degradation reactions. Transcription and
translation reactions are fundamental for the modeling of
CFPS, enabling the portrayal of genetic information flow from
DNA to mRNA and subsequently to protein, aligning with the
Central Dogma. The incorporation of decay reactions within
the CFPS model holds significant importance in capturing
system kinetics, as it represents phenomena such as protein
and mRNA degradation. This integration enhances the fidelity
of the model, offering a comprehensive understanding of
the temporal dynamics inherent in CFPS and facilitating the
refinement of experimental conditions for optimal protein
synthesis.25

To capture the dynamics of mRNA and protein synthesis in a
cell-free system, Karzbrun et al. developed a coarse-grained
model by considering reactions involving transcription, trans-
lation, and mRNA and protein degradation.26 The authors show
that the rate of mRNA production depends on the binding
kinetics of RNA polymerase to DNA and the length of

Fig. 1 Components of an ODE model for CFPS system. (a) Scope of
possible reactions for modeling cell-free gene expression. The main
reactions aim to illustrate the fundamental principles of the central dogma
and encompass transcription, translation, and aminoacylation processes.
Maintenance reactions are centered on illustrating the kinetics of resource
use and energy regeneration. When integrated with the main reactions,14

they contribute to intricate interactions within system components,
thereby enhancing the capability to build predictive models. Decay reac-
tions in the context of CFPS systems primarily focus on degradation
processes related to mRNA and proteins, though they are not limited
solely to these components. Posttranslational processes are directed
towards the modification changes that proteins undergo after their synth-
esis. The directional arrows in a diagram indicate direction of interaction
between various species of reactions. (b) Common molecular species
involved in TXTL which are used in equations. The integration of various
molecular species into a model relies on both the granularity of the model
and the specific research outcomes sought.
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synthesized mRNA. In contrast, the rate of protein synthesis
depends on the binding of ribosomes to mRNA and the length
of the protein. However, because the model does not account
for resource depletion, simulated dynamics are only relevant
for the first hour of the experiment, before the depletion of
resources and buildup of metabolites (Fig. 2(a) and (b)).

2.1.2 Aminoacylation and energy use. Aminoacylation
represents a critical phase in protein synthesis, wherein trans-
fer RNAs (tRNAs) are charged with essential amino acids
needed for the translational phase of protein synthesis. The
lagged pace at which charged tRNAs are delivered tends to
impede translation, thereby resulting in diminished protein
production.27 In line with numerous reactions involved in
protein synthesis, aminoacylation necessitates a considerable
expenditure of energy. Consequently, it becomes imperative to
incorporate energy use and regeneration reactions into CFPS
models to sustain the efficiency of this molecular mechanism.28

Mavelli et al. designed a kinetic model describing protein
synthesis in the (protein synthesis using recombinant ele-
ments) PURE system8 that takes into account transcription,
translation, aminoacylation, energy recovery, and transcrip-
tion and translation degradation.28 The composition of the

proposed model results in accurate prediction of mRNA
kinetics, but with some lack of accuracy in predicting protein
kinetics which is potentially stemming from an oversimplified
representation of the translation process.28 Nevertheless, the
model successfully captures the fundamental principles of cell-
free TXTL and can be utilized to identify crucial components of
the system. Consequently, ribosomes, translation factors,
tRNAs, RNA polymerase, DNA, and NTPs are identified as the
most influential species for achieving high productivity. Addi-
tionally, based on the simple energy recovery equation, it is
evident that a significant portion of energy is consumed during
transcription. To achieve more efficient energy utilization,
it is recommended to reduce the concentration of DNA,
while ensuring that there is no significant decline in protein
production.28

2.1.3 Resource use. In contrast to synthetic genetic circuits
in living cells, where resources are continuously replenished,
the amount of resources in a cell-free system is fixed and;
therefore, can deplete over time.14 The incorporation of
resource reactions into a model of GFP expression (Fig. 2(c)
and (d)) allows a more in-depth understanding of the process
and; therefore, can identify limiting factors of CFPS. Hence,
kinetic models of cell-free gene expression need to include
resource reactions as these reactions influence the dynamics of
the main reactions.

Stögbauer et al. developed a kinetic model capturing the late
phase of expression in the PURE system based on eight free
parameters and considering transcription, translation, protein
maturation, RNA degradation, and resource decay reactions.14

In their work, the resources involved in transcription and
translation processes are represented as two distinct pools
comprising various components such as polymerases, ribo-
somes, tRNAs, NTPs, and potentially other unknown factors.
These resource pools are incorporated into TXTL reactions and
are subject to degradation. The authors found that in the PURE
system, ribosomes, rather than NTPs specifically, were respon-
sible for synthesis degradation. Adding fresh ribosomes after 3
hours of the experiment successfully restored GFP expression.
Importantly, this effect was not observed in an Escherichia coli
lysate system, suggesting an important difference in protein
expression between E. coli lysate and the PURE system. Further-
more, it was demonstrated that the transition from a linear
response phase to a saturation phase in protein yield is a result
of resource exhaustion. The timing of this transition is depen-
dent on the concentration of the DNA template, as only a
fraction of mRNA is successfully translated into protein.

By generalizing the model of Stögbauer,14 Chizzolini et al.29

designed a kinetic model that accounts for resource use and;
therefore, enables the screening of genetic constructs to iden-
tify those with the desired activity. This advanced model
incorporates parameters related to the activity of biological
parts (the strength of transcriptional promoters and ribosome
binding sites (RBSs)). Additionally, it includes two noise para-
meters specifically designed to account for batch-to-batch
variations, which arise due to fluctuations in the concentra-
tions of DNA templates and components of the PURE system.

Fig. 2 Influence of model composition on simulated dynamics of cell-
free GFP expression in the PURE system; (a) structure of model developed
by Karzbrun26 that includes TXTL reactions with and without protein
maturation processes; (b) simulated dynamics of the model developed by
Karzbrun.26 Simulation of GFP expression dynamics shows that incorpora-
tion of protein maturation processes results in delayed appearance of
detectable GFP. Protein and mRNA synthesis do not reach a steady state
due to the absence of resource use reactions that limit synthesis. (c)
Structure of model developed by Stögbauer14 that includes TXTL, resource
use, and protein maturation reactions; (d) simulated dynamics of the
model developed by Stögbauer.14 Protein synthesis reaches a steady state
coinciding with the depletion of translational resources (TL-resources), as
indicated by the red rectangular highlight. Notably, overall mRNA concen-
tration decreases over time, even in the presence of available transcrip-
tional resources (TX-resources), as indicated by the yellow rectangular.
This underscores the importance of providing a more comprehensive
description of resource use.
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The model successfully predicted the expression levels of red
(RFP), green (GFP), and blue (BFP) fluorescent protein encoding
constructs with strong promoters and RBS. However, the same
model lacked accuracy for constructs with moderate and weak
strength promoters and RBSs, resulting in an average absolute
difference between predictions and experimental data of 32%
for RFP, 11% for GFP, and 17% for BFP. When the model was
used to predict the behavior of a genetic cascade, the model
correctly identified parts responsible for a high yield but was
not able to predict the variability in protein synthesis. Lastly,
the model was tested on a two-gene repressor circuit. The
authors found that the predicted data for transcription and
translation correlates well with the experimental data. However,
the predicted absolute concentrations are overestimated, which
was explained by the absence of factors that account for RNA
folding.

Marshall and Noireaux30 developed a simple kinetic model
that captures the basic mechanism, distinct regimes, and
resource limitations associated with in vitro gene expression.
Similar to the work by Stögbauer et al.,14 their model is based
on three differential equations representing the intricate pro-
cesses of transcription, translation, mRNA degradation, and
protein maturation. However, their approach incorporates
resource utilization through the inclusion of two conservation
reactions (for RNA polymerase and ribosomes), which assumes
the absence of resource degradation and maintain a constant
total concentration of resources. The research demonstrates
that protein production follows three distinct regimes: transi-
ent, steady state, and plateau, the latter signifying the cessation
of gene expression. Furthermore, the study reveals that the
maximum rate of protein production, which is influenced by
plasmid concentration, exhibits two regimes: linear and satura-
tion. In the linear regime, an increase in plasmid concentration
results in a proportional increase in protein production. How-
ever, the transition to the saturation regime occurs when
augmenting of the plasmid concentration no longer results in
a higher rate of protein production. This shift is primarily
attributed to the depletion of ribosomes associated with mes-
senger RNAs. Building upon this key insight, the researchers
utilize their findings to develop a load calculator capable of
determining the optimal DNA concentration considering var-
ious factors such as promoter strengths, UTR strength, and
gene length.

Moore et al. developed a detailed model that takes into
account the shared use of resources such as NTPs and 3-PGA
secondary energy sources needed for regeneration of NTPs,
amino acids, RNA polymerase, and ribosomes.31 This model
accurately predicts CFPS from previously non-modeled bacter-
ial species and can be used as a tool for prototyping novel
genetic constructs. The model describes transcription as a
three-step process that includes the binding of RNA polymerase
to the promoter, promoter escape, and transcription elongation.
Similarly, translation is also modeled as a three-step process
involving ribosome binding to the RBS, translation initiation, and
translation elongation. Moreover, the model incorporates reactions
for mRNA degradation, NTPs degradation and regeneration, and

inactivation of ribosomes. Using this modeling framework
researchers identified that overall protein yield can be
increased by improving the metabolism of the secondary
energy source. Additionally, the model suggests that transcrip-
tional capacity could be a limiting factor in protein synthesis.

Singhal et al. proposed a comprehensive computational
toolbox for generating deterministic mass action kinetics
models of genetic circuits within a cell-free system.4 The tool-
box includes reactions for transcription (modeled as a four-
stage process), translation (modeled as a six-stage process),
protein maturation, RNA degradation, consumption and regen-
eration of resources (amino acids, RNA polymerase, ribosomes,
NTPs), and transcriptional regulation reactions. In addition,
the toolbox incorporates a library of parts, including DNA,
mRNA, protein, small molecules, and other miscellaneous
species, that can be used to create a circuit model. The toolbox
was employed to model an incoherent feed-forward loop (IFFL)
circuit under different experimental conditions, demonstrating
its applicability. However, while the generated model success-
fully predicted the qualitative behavior of the cell-free genetic
circuit, it faced limitations in accurately capturing the quanti-
tative aspects of the circuit’s behavior. The authors hypothe-
sized that these discrepancies may stem from the parameter
estimation procedure, which involves splitting parameter infer-
ence into multiple stages. In this procedure, a subset of para-
meters is optimized in each stage while parameters from the
previous stage are fixed.

2.1.4 Protein folding and maturation. Within the modeling
of CFPS systems, protein maturation holds significant impor-
tance, as evidenced by investigations of the production of
fluorescent proteins like GFP and mCherry.14,29,30 The empha-
sis on protein maturation arises from the fact that these
proteins, akin to numerous others, require a specific delay to
achieve their active state, characterized by the postponed
emergence of detectable fluorescence (Fig. 2(a) and (b)).14 Thus,
protein maturation is a limiting process and should be con-
sidered in models of CFPS systems.

To capture the dynamics of GFP cell-free expression in the
PURE system, Carrara et al.32 advanced the model by Mavelli
et al.8 by including posttranslational processes, protein folding
and maturation, which were found to be limiting. Although the
model successfully predicted the final protein concentration,
the production rate slightly deviated from the true rate. This
mismatch can be attributed to the inadequate consideration of
cooperativity and nonlinearity that are present in the system.32

2.2 Parameter estimation

In the context of ODE models, parameters often represent fixed
constants with respect to time33 and are proportional to the
rates of the underlying reactions.34 Accurate parameter estima-
tion is a keystone in correlating a model to experimental data,
enabling reliable inferences and predictions. Parameter estima-
tion involves determining the values of unknown parameters in
a given model using available data.24,35

The process of parameter estimation is iterative (Fig. 3) and
involves several steps to refine and improve the parameter
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values of the model. The process starts with an initial estimate
of parameter values derived from literature or expert knowl-
edge. Following the initial estimate, an uncertainty analysis of
the parameters is conducted to quantify the uncertainty within
the current model structure and its subsequent impact on the
predictions.36 Methods like sensitivity analysis, identifiability
analysis, and bootstrapping are employed for determining
parameter uncertainty.33,35,37 The results of the uncertainty
analysis determine the next steps in the parameter estimation
process. These findings may necessitate a refinement of the
model through reparameterization, a process in which specific
parameter values are either fixed or eliminated. Additionally,
the uncertainty analysis can guide the generation of new
experimental data with higher information density to improve
the parameter estimates.17 Once the necessary model modifica-
tions have been made and/or new experimental data has been
generated, initial parameter values are adjusted with the use of
appropriate estimation methods. Commonly used estimation
approaches include maximum likelihood estimation, which aims
to find parameter values that minimize the discrepancy between
model predictions and experimental data, and Bayesian inference,
which combines prior knowledge about parameters with experi-
mental data to estimate posterior distributions of parameters.24,33

After parameter estimation, it is crucial to conduct another round of
uncertainty analysis to assess the uncertainty in the newly estimated
parameters and evaluate the overall model certainty.35 This iterative
process continues until the desired level of certainty is achieved,
which could be related to specific performance metrics, prediction
accuracy, or addressing particular research questions.24,33,37 By
following this iterative process of parameter estimation, uncertainty
analysis, and model refinement, the model can be continuously
improved, resulting in more reliable and accurate predictions.17

In this section, we focus on methods for parameter estima-
tion, followed by a discussion of the two most popular methods
for the identification of parameter uncertainty, i.e., sensitivity
and identifiability analysis. We end with a discussion of stra-
tegies to increase the certainty of predictions.

2.2.1 Parameter estimation techniques. There are two
major approaches used for addressing the parameter estimation
problem: maximum likelihood estimation and Bayesian infer-
ence. These are two statistical methods, both of which involve
the use of optimization algorithms in their implementation.

The goal of maximum likelihood estimation is to determine
the optimal set of parameters for a dynamic model to achieve
the closest match to the experimental data. This process entails
maximizing a likelihood function, which quantifies the agree-
ment between model predictions and actual observations.24 To
achieve this maximization, various optimization algorithms
are commonly employed. These algorithms encompass a wide
range of techniques, including gradient descent, differential
evolution methods,38 genetic algorithms,39 particle swarm
optimization,40 simulated annealing,41,42 multiple shooting
methods,43,44 enhanced scatter search,45 Kalman filtering,34

and agent-based non-linear least-squarer optimization.17

In contrast, Bayesian inference aims to determine the pos-
terior distribution of parameter values. This posterior distribu-
tion represents updated beliefs about the parameters after
incorporating both prior knowledge and observed data, which
enables simultaneous assessment of parameter values with a
determination of parameters’ uncertainty. Sampling methods
such as Markov Chain Monte Carlo (MCMC) are commonly
used to approximate the posterior distribution of parameters.
There are many variations of MCMC algorithms, such as
Metropolis–Hastings, adaptive, parallel tempering, and parallel
adaptive. These variations offer different strategies and enhance-
ments to improve the efficiency and effectiveness of MCMC
estimation. To gain a comprehensive understanding and compare
these methods, we refer the reader to the survey conducted by
Valderrama–Bahamóndez and Fröhlich.46

For complex posterior distributions that are challenging to
evaluate using sampling methods, the estimation process often
relies on one of the optimization algorithms described above.
These algorithms aim to minimize the Kullback–Leibler diver-
gence between the approximate distribution and the true
posterior distribution, enabling effective exploration and char-
acterization of posterior distributions.47

2.2.2 Uncertainty analysis
Sensitivity analysis. Sensitivity analysis is a common practice

used for determining parameter uncertainty.33 Sensitivity ana-
lysis determines how the model output varies in response to
changes in the model’s parameters. There are two major types
of sensitivity analysis: local and global.48,49 Local sensitivity
analysis involves assessing the impact of small changes around
a default parameter value on the model output. This effect is
quantified using sensitivity coefficients, which are calculated as
the first-order partial derivatives of the system output concerning
the input parameters. Methods for the calculation of the deriva-
tive include finite difference approximation, direct differential

Fig. 3 The main steps of parameter estimation. The estimation process is
iterative and continues until the desired level of certainty is achieved. It
begins with an initial guess of parameter values derived from literature or
expert knowledge, followed by uncertainty analysis that quantifies the
uncertainty in the model parameters and its impact on predictions. The
results of uncertainty analysis guide reparametrization and potential data
generation. Various parameter estimation methods such as maximum
likelihood estimation, Bayesian inference, or evolutionary algorithms can
be employed. Another round of uncertainty analysis evaluates the uncer-
tainty in newly estimated parameters. This iterative process enhances the
reliability and accuracy of the evolutionary model’s predictions.
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method, adjoint sensitivity analysis, and metabolic control
analysis.49 Local sensitivity analysis is typically performed by
perturbing one parameter at a time, and it does not provide
insights into the interdependencies among parameters. In
contrast, global sensitivity analysis quantifies the significance
of model inputs and their interactions in relation to the model
output. Methods of global sensitivity analysis include parameter
space sampling (Latin hypercube sampling), multi-parametric
sensitivity analysis, partial rank correlation coefficient analysis,
Morris sensitivity analysis method, Weighted average of local
sensitivities, Sobol sensitivity analysis, Fourier amplitude sensi-
tivity test, and Random sampling high-dimensional model
representation.49 For a deeper exploration of differences between
local and global sensitivity analysis, along with recommendations
on their implementations, we direct the reader to Zi’s extensive
review.49

Identifiability analysis. Parameter identifiability refers to the
ability to determine the values of the model parameters without
ambiguity and serves as a key approach for determining para-
meter uncertainty.37 There are two types of parameter identifia-
bility: a priori (structural) and a posteriori (practical). Structural
identifiability implies the possibility of finding unique values
for parameters taking into consideration the structure of the
model.50 Several approaches commonly employed for this
purpose include sensitivity analysis, differential algebra, differ-
ential geometry, power series expansion, generating series,
and seminumerical methods.37 However, the majority of these
methods are only suitable for models with low-dimensional
parameter space due to high computational costs. While struc-
tural identifiability implies the possibility of determining a
unique set of parameters from noise-free data, practical iden-
tifiability refers to the precision with which parameters can be
estimated from the present data.37 The lack of practical iden-
tifiability often arises from two primary factors: the parameter’s
negligible influence on the system,51 which can be assessed
through sensitivity analysis, and potential interdependencies
among parameters,51 which can be evaluated by examining
the collinearity of parametric sensitivities51 using Fisher
information matrix17,24 or by performing a Profile likelihood
analysis.33,37

2.2.3 Methods for reducing parameter uncertainty. After
assessing the level of parameters’ uncertainty, several methods
can be implemented to increase the certainty of parameter
estimation and; therefore, certainty and accuracy of the model
predictions. The following methodologies can typically be
employed (Fig. 3):

1. Reparametrization or simplification of the model via
elimination of parameters.52

2. Inferring values of nonidentifiable parameters from other
sources.52

3. Implementation of optimal experimental design in order
to increase the quality of the data.17,24

The reparametrization approach is meant to reduce model
complexity by eliminating redundant parameters, so the num-
ber of nonidentifiable parameters is reduced by the number of

total correlated sets, leading to improved estimation outcomes.
Joubert et al.52 highlighted that, while simplification of
the parameter space can be an effective strategy in over-
parametrized models, it cannot be implemented for parameters
that are essential for a model.

In cases when nonidentifiable parameters are essential for a
model and therefore cannot be eliminated, one possible
solution is to infer parameter values from literature or bio-
chemical databases. The concept behind this approach is that if
the value of one unknown parameter within a correlated set is
known, it disrupts the correlation between parameters. Joubert
et al.52 emphasized that, even if parameter values are acquired
from the existing literature, they might still necessitate recali-
bration using experimental data. Therefore, caution should
always be exercised when undertaking such recalibration to
ensure accuracy and reliability.

The final approach tackles the challenge of acquiring a
sufficiently comprehensive dataset to enable precise parameter
estimation.24 It entails employing optimal experimental design
(OED),53 a methodology that formulates dynamic experiments
strategically to yield experimental data with the highest attain-
able statistical quality for parameter estimation. OED focuses
on devising experiments that optimize the precision, efficiency,
and information content of the resulting data, leading to
enhanced accuracy in parameter estimates.

The study conducted by van Sluijs et al.17 demonstrates the
effectiveness of employing a microfluidic-based OED in dis-
rupting covariation among parameters, consequently increas-
ing the accuracy of parameter estimation in cell-free genetic
networks. The central concept behind the proposed methodol-
ogy is to leverage OED to identify optimal inflow patterns of
inputs into a microfluidic device, resulting in higher informa-
tion density in the experimental data. To determine the inflow
pattern, researchers carefully analyzed parameter identifiability
from a database of in silico experiments, focusing on the inflow
patterns that have the most significant impact on the distribu-
tion of individual parameters (i.e., a pattern that minimizes the
determinant of the Fisher information matrix). By controlling
the inflow pattern of reporter, activator, and repressor DNA
constructs into a microfluidic device, authors were able to
increase the information density and disrupt covariance
between parameters, leading to more accurate estimations of
the parameters of the model of incoherent feed-forward loop.
This advancement highlights the considerable potential of OED
in the forward design of intricate cell-free genetic networks.

3. Data-driven modeling

In contrast to mechanism-based modeling, a data-driven
approach known as machine learning departs from construct-
ing models based on predefined reaction mechanisms. Instead,
it leverages computational algorithms to discern patterns from
available data.54 Machine learning is broadly classified into two
types: supervised and unsupervised learning.55 In supervised
learning (Fig. 4(a)), algorithms are trained using labeled
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datasets, known as training datasets, to infer the mapping
between features (X) and corresponding labels (Y). During
training, algorithms investigate the statistical relationships
between features and labels, optimizing parameters through
gradient descent and minimizing a chosen loss function to
enhance predictive accuracy. Commonly used loss functions
include root-mean-squared error (RMSE), mean-squared error
(MSE), mean absolute error (MAE), and coefficient of determi-
nation (R2). This type of machine learning is versatile for
predictive modeling across a range of outcomes, including binary
responses (e.g., distinguishing good or bad riboregulators56) and
categorical labels (e.g., determining the on, off, or on/off state of
an RNA switch57) for classification problems, and continuous
values (such as protein yield58) for regression problems.19 The
most commonly used supervised algorithms include linear regres-
sion, Ridge regression, Lasso regression, logistic regression,

support vector machines, decision trees, ensemble methods,
K-nearest neighbors, artificial neural networks, and naı̈ve
Bayes.54

Unsupervised learning (Fig. 4(b)), on the other hand, oper-
ates without labeled datasets. Instead, it uncovers structures
and patterns within unlabeled data (i.e., data that only contains
features), enabling insights into the inherent organization of
the data without explicit guidance.54 For instance, unsuper-
vised methods such as clustering can be used for identifying
distinct groups of data, such as protein sequences with similar
properties59 and gene clusters,60 while dimension reduction
methods such as principal component analysis and indepen-
dent principal component analysis can be used for data visua-
lization and exploratory data analysis.61

An important subset of machine learning that is useful for
modeling cell-free systems is deep learning, also known as
representation learning. This method enables the utilization
of large, high-dimensional data sets for both supervised and
unsupervised modeling purposes.20,55 By using artificial neural
networks, deep learning extracts intricate patterns from the
input data. For instance, it can discern secondary-structure
motifs from RNA sequences, enabling accurate predictions of
RNA function.56 The most commonly used neural network
architectures include multilayer perceptrons (MLP), convolu-
tional neural networks (CNN), recurrent neural networks, trans-
formers, and graph neural networks. To gain a broader
overview of the deep learning methods, we refer readers to
surveys conducted by Beardall et al.20 and Greener et al.62

In the past decade, supervised, unsupervised, and especially
deep learning machine learning models have shown to be
incredibly versatile in the field of synthetic biology. They are
useful in areas such as sequence design,56,57,63 protein struc-
ture prediction,64 and image recognition.65 Nevertheless,
within the context of CFPS, their utilization has predominantly
centered around system optimization and sequence design,
which constitutes the primary focus of this section.

3.1 Optimal experimental design

System optimization is a crucial step within the context of CFPS
to fully harness its inherent potential.66 To tackle the optimiza-
tion challenge, various experimental methods have been
devised. One commonly employed approach, known as One
Factor at a Time (OFAT), involves fine-tuning the system’s
components one by one. However, OFAT often falls short of
achieving optimal performance,67 primarily due to its vulner-
ability to the initial values assigned to individual variables.66

One promising solution to address these limitations involves
adopting an optimal experimental design approach known as
Bayesian optimization, also referred to as active learning, and
widely recognized in the machine learning community.68–70

Bayesian optimization is a form of supervised learning that
strategically selects the most informative data points for label-
ing, thereby reducing the necessary number of experiments to
optimize the biological objective function that either does not
have a defined functional form or is expensive to query. This
function serves as a mathematical representation of a specific

Fig. 4 Common types of machine learning algorithms. (a) Supervised
learning. In supervised learning machine learning, a model is trained on a
labeled dataset consisting of features (X) and their corresponding labels (Y).
Each column (X1, X2, X3, and X4) corresponds to a specific feature (e.g.,
specific buffer component), and each row is one observation (e.g., one
buffer composition) with its corresponding output label (e.g., protein
yield).20 The model’s predictions (Ypred) are obtained from the unseen
dataset. This dataset consists of the same features as the training dataset
but with different data points (X0). Different colors of data points in datasets
correspond to specific concentrations of compounds, with increased
concentration levels manifesting as deeper, more intense colors. (b) –
Unsupervised learning. In unsupervised learning, algorithms are trained on
datasets that contain only features (e.g., X1 and X2) without any labeled
output values. These algorithms identify patterns and structures within the
data. For instance, clustering algorithms that are illustrated here group
similar data points based on their feature values, which results in clustering
data into three distinct groups.

ChemComm Highlight

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ni
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

5.
02

.2
6 

10
:2

9:
30

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc01289e


This journal is © The Royal Society of Chemistry 2024 Chem. Commun., 2024, 60, 6466–6475 |  6473

biological process, that maps input features X to corresponding
labels Y.70–72

Bayesian optimization is an iterative process (Fig. 5) that
begins with the training of a machine-learning model using a
training dataset. This model serves as a surrogate model that
helps to approximate a biological objective function.72 After
training, the model predicts labels and assesses uncertainty for
unlabeled data points. These predictions and uncertainty
values guide the acquisition function, which selects the most
informative data points for further examination. These chosen
data points are then labeled with the assistance of an oracle,
often portrayed as a human domain expert, and merged into
the initial labeled dataset. This iterative process continues until
the desired outcome is reached.68–70

The common choice for the acquisition function in synthetic
biology problems58,71 is the upper confidence bound (UCB),
which assigns a higher priority to data points with larger
uncertainty estimates, as these are deemed more likely to offer
valuable information for refining the model. Other types of
acquisition functions include the probability of improvement,
expected model change, variance reduction, Fisher information
ratio, and estimated error reduction.69

Borkowski et al.58 demonstrated that implementation of
Bayesian Optimization for lysate-based buffer optimization
increases GFP production by 34 times in comparison with
initial buffer composition. Their investigation focused on

11 buffer components, including Mg-glutamate, K-glutamate,
amino acid mix, tRNA, CoA, NAD, cAMP, folinic acid, spermi-
dine, 3-PGA, and NTPs. Utilizing an ensemble of MLPs as a
predictive model, they achieved an R2 value of 0.93. This model
was further utilized for investigation of the dependence
between the yield and the component concentration through
a mutual information score, a method that quantifies mutual
dependence between two variables. Their analysis revealed that
Mg-glutamate, K-glutamate, amino acids, spermidine, 3-PGA,
and NTPs exert a significant influence on protein synthesis.

In addition to Borkowski et al.,58 Pandi et al.71 extended this
approach for a variety of cell-free systems by introducing
METIS, a user-friendly and versatile machine-learning work-
flow. METIS facilitates data-driven optimization of a biological
objective function, even with limited datasets, due to the
utilization of the XGBoost regressor73 as a predictive model,
which shows good performance even with small datasets. To
showcase METIS’s utility in optimizing different biological
objective functions, the algorithm was applied to genetic cir-
cuits, transcriptional and translational units, and complex
metabolic networks such as the CETCH cycle. Notably, when
applied to CFPS GFP optimization using similar composition as
Borkowski et al.,58 METIS identified tRNAs and Mg-glutamate
as crucial components for GFP optimization, while cAMP and
NAD were deemed less significant contributors, contrary to the
findings of Borkowski et al.

These cases demonstrate the versatility of BO for optimiz-
ing various types of cell-free systems at different levels of
complexity.

3.2 Sequence design

Recent advances in deep learning have enabled the utilization
of high-dimensional biological data, such as DNA and protein
sequences, for predictive modeling applications. One such
application is the utilization of deep learning models for the
design and optimization of synthetic genetic circuits.

Pandi et al.74 demonstrated the accelerated de novo devel-
opment of antimicrobial peptides (AMPs) in the CFPS pipeline
through the application of deep learning techniques. Their
approach involved a combination of unsupervised and super-
vised deep learning methods, enabling the exploration of
500 000 theoretical sequences and subsequent prioritization
of 500 candidates for CFPS screening. Following screening
experiments, 30 of these AMP candidates were identified as
functional, with 6 showing potent antimicrobial activity against
multidrug-resistant pathogens. Importantly, these peptides
showed no emergence of resistance and minimal toxicity in
human cells. For AMP sequence exploration, they utilized
generative deep learning, an unsupervised method that
uncovers design principles within specific sequences, such as
proteins, and generates novel sequences based on these
learned rules. They employed a variational autoencoder as the
generative model, initially trained on protein datasets from
Uniprot to learn design principles. Through transfer learning,
this autoencoder was fine-tuned to adapt to AMP sequences.
The generated AMPs were then prioritized based on minimum

Fig. 5 Bayesian optimization cycle. The Bayesian optimization cycle
initiates with the training of a machine learning model using an initial
labeled dataset. Following this training, the model predicts labels and
assesses the associated uncertainty for data points within an unlabeled
pool. These predictions and uncertainty scores serve as inputs for the
acquisition function, which strategically chooses the most informative data
points to include in the sample. Subsequently, these highly informative
data points are labeled with the assistance of an oracle (i.e. an experi-
mentalist) and then incorporated into the initial labeled dataset. This
iterative process continues until the desired outcome is achieved.62–64

Different widths of arrows represent the amount of data that goes through
the cycle.
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inhibitory concentration, predicted by a supervised model. For
this supervised aspect, they employed a combination of Con-
volutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN).

Overall, this work showcases a high potential for combining
CFPS and deep learning methods for the high-throughput
development of novel proteins.

4. Conclusions

The rapid growth of cell-free synthetic biology necessitates the
incorporation of the modeling process into design and prototyping
of genetic circuits, enabling alignment with the burgeoning interest
in this field. Both mechanism-based and data-driven modeling
approaches play a pivotal role in modeling CFPS systems, with each
approach finding its specific niche of applicability.

Mechanism-based models, due to their fundamental model-
ing principles, are invaluable for developing a comprehensive
understanding of a system’s behavior and effectively identifying
bottlenecks in the CFPS process. This approach necessitates an
in-depth understanding of the underlying mechanisms which
leads to the need to select appropriate kinetic reactions. With
regards to CFPS reactions, TXTL,26 resource use,4,14,29,30 and
protein maturation14,29,30 are found to be essential for model
structure. Depending on the research objectives, aforemen-
tioned reactions can be described on different levels of granu-
larity, with additional integration of other types of reactions
including aminoacylation,28 energy use,28 and protein fold-
ing.32 Another important factor for the development of a
predictive model is an accurate parameter estimation. This
process is iterative and includes an evaluation step often
involving optimization or Bayesian methods, followed by deter-
mination of the parameters’ uncertainty using techniques such
as sensitivity, identifiability analysis, and bootstrapp-
ing. Improving the certainty of estimated parameters can be
achieved through reparametrization, inferring parameter
values from external sources, and enhancing data quality using
optimal experimental design techniques. Nonetheless, in the
context of this modeling approach, individual system compo-
nents are frequently examined in isolation, potentially introdu-
cing biases that hinder a comprehensive understanding of the
overall system behavior.

Conversely, data-driven modeling relies on the statistical
analysis of input and output data within the CFPS system,
making it particularly advantageous for optimal experimental
design.58 A fundamental prerequisite for the effective deploy-
ment of data-driven models is the availability of informative
and diverse datasets for model training. This condition can
be met through the utilization of Bayesian optimization
techniques.3,71

Furthermore, the rapid advancements in deep learning
techniques have opened a compelling avenue for the applica-
tion of data-driven models in the domain of cell-free synthetic
biology, particularly in the realm of sequence design. In this
context, a machine learning model serves as a tool for

designing, validating, and optimizing genetic sequences with
desired outcomes. A noteworthy example is the utilization of
deep learning methodologies to accelerate the de novo devel-
opment of antimicrobial peptides.74

A notable challenge of data-driven models is the interpretability
of obtained results, which could potentially be addressed with the
use of explainable AI methods. For instance, in sequence design,
examining motifs or partial motifs detected by convolutional filters
and assessing the positional importance of nucleotides can provide
valuable insights into sequence design rules.56,57

Overall, both modeling methods are of paramount impor-
tance in guiding the development of novel synthetic circuits. To
address the limitations inherent in each approach, one promis-
ing solution is the adoption of a hybrid modeling strategy.75,76

This strategy involves amalgamating the interpretability of
mechanism-based modeling with the ability to represent
high-level interactions among reaction components provided
by data-driven models.
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