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Light-induced bi-directional switching of thermal
conductivity in azobenzene-doped liquid crystal
mesophases†
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Marcel S. Claro, a Gustavo Rama, b Vı́ctor Leborán,c

Marı́a del Carmen Giménez-López b and Francisco Rivadulla *a

The development of systems that can be switched between states with different thermal conductivities is one

of the current challenges in materials science. Despite their enormous diversity and chemical richness,

molecular materials have been only scarcely explored in this regard. Here, we report a reversible, light-triggered

thermal conductivity switching of E30–40% in mesophases of pure 4,40-dialkyloxy-3-methylazobenzene. By

doping a liquid crystal matrix with the azobenzene molecules, reversible and bidirectional switching of the

thermal conductivity can be achieved by UV/Vis-light irradiation. Given the enormous variety of photoactive

molecules and chemically compatible liquid crystal mesophases, this approach opens unforeseen possibilities

for developing effective thermal switches based on molecular materials.

Introduction

Controlling the thermal conductivity of a material using an
external stimulus could change the way we deal with the problem
of thermal dissipation in microelectronics or the efforts to
increase the efficiency of thermoelectric energy conversion
devices. During the last few years, this research focused mostly
on solid-state devices, particularly ferroelectrics: ferroelectric/fer-
roelastic domain walls are effective phonon scatterers, whose
density can be regulated by an electric field and/or strain.1–3

In a soft-matter side approach to the problem, Ishibe et al.4

showed that block copolymers may be engineered to show a
reversible change in their thermal conductivity, although in
this case is linked to the transition temperature between
different types of ordering. Tomko et al.5 achieved a large and

reversible switching of the thermal conductivity of bio-polymer
networks upon hydration/dehydration cycles.

On the other hand, Shin et al.6 use UV/Vis irradiation cycles
to tune the thermal conductivity of photoresponsive polymers.
Light modulates the p–p interactions among the polymer
aromatic rings and triggers an actual crystal-to-liquid transi-
tion, resulting in a B60% change in the thermal conductivity.7

This is a very controllable approach, which allows remote
control of the thermal conductivity of the system, and whose
only drawback is, perhaps, the lack of full reversibility of the
liquid crystal (LC)-to-isotropic liquid (IL) in some photo-
responsive polymers, which is sometimes compromised due
to the lack of orientational mobility of the trans isomers at
room temperature.8

This could be overcome by synthesizing azobenzene deriva-
tives that self-assemble into 3D crystals or liquid crystals (LC)
mesophases at or close to room temperature;9 these form
photo-active mesophases whose thermal transport could be
directly modified by UV/Vis irradiation.

Here we report large (up to 40%) reversible switching of the
thermal conductivity of photochromic 4,40-dialkyloxy-3-methyl-
azobenzene derivatives by isothermal UV/-Vis illumination at
room temperature.

More important, we demonstrate that photoactive 4,40-dialkyl-
oxy-3-methylazobenzene molecules can be doped into achiral LC
matrixes to induce a complete and reversible molecular reorgani-
zation of the mesophase under UV/Vis irradiation and therefore a
large change in the thermal conductivity of the whole system.
Depending on the molecular arrangement of the host mesophase,
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either a reversible increase or decrease of the thermal conduc-
tivity may be achieved upon UV/Vis illumination (bi-directional
switching). The use of photoactive molecular machines10

showing a light-dependent photoresponse to control the ther-
mal conductivity of LC opens a new path for the design of
molecular bi-directional thermal switches.

Results and discussion

Azobenzene-based molecules undergo reversible isomerization
between the thermodynamically stable, rod-like trans configu-
ration and the bent cis molecular structure, when irradiated
with UV/visible light (Fig. 1a). Norikane et al.11,12 showed that
inserting a methyl group at the meta-position of one of the
benzene rings, breaks the molecular symmetry of dialkyloxy-
chain azobenzenes, and drastically reduces the energy for the
photoinduced crystal-to-liquid phase transition. For instance, a
reversible transformation into a viscous IL was demonstrated
by Norikane et al.11 in 4,40-dialkyloxy-3-methylazobenzene
derivatives with 6, 10, and 12 carbon atoms in the alkyl chain,
after irradiating the samples at room temperature with 365 nm
light (E100 mW cm�2). However, no transition was observed in
the totally symmetric structures, either the 4,40-dialkyloxy-
azobenzene or the 4,40-dialkyloxy-3,6-dimethylazobenzene,
under the same conditions.

Therefore, this family of asymmetric molecules could provide
a good starting point in the search for photochromic molecular
materials where reversible thermal conductivity states can be
achieved under mild conditions. To prove this hypothesis, we
synthesized a series of 4,40-dialkyloxy-3-methylazobenzene rod-
like derivatives with –OR= –OCnH2n+1 n = 3, 5, 6, 8, 10, and 14

(Fig. 1b; see the ESI† for details of the synthesis). NMR spectro-
scopy confirmed that the trans isomer is the thermodynamically
stable phase for all the alkyl chain lengths (only E10% of the cis
isomers remain in the n = 5 phase at room temperature; see
NMR data in the supporting information). The limits of thermal
stability of the crystalline and N-LC phases were studied by
differential scanning calorimetry (DSC) and polarized optical
microscopy (POM); see Fig. S2–S4, ESI†). Increasing the length of
the alkyl chain in the rod-like molecule induces preferential
alignment along one spatial direction, destabilizing the 3D-
crystal in favor of a Nematic LC (N-LC).

DSC measurements and thermal conductivity, k(T), curves
are shown in Fig. 2 for the n = 6, 8, and 10 azobenzene
derivatives. The n = 6 system transits directly from a 3D crystal
to an IL at E358 K, while for the n = 8 and n = 10, there is an
intermediate N-LC between the 3D crystal and the IL.

The k(T) of the azobenzene derivatives was monitored con-
tinuously in a cryostat during heating/cooling cycles at 1 K min�1

(see the ESI† and ref. 13 for further details of our experimental
setup and the 3o method used to measure k).

As shown in Fig. 2, k(T) shows an excellent sensitivity to the
molecular rearrangements occurring during thermal cycling.

The value of k in the 3D crystal is quite low, E0.2–0.3 W m�1 K�1,
similar to amorphous polymers and molecular liquids,14 and it
is only slightly larger than in the trans-IL occurring at high
temperature, despite the lack of translational symmetry in the
latter. The lower k in the N-LC than in the IL confirms the
planar alignment of the mesophase.15,16

In Fig. 3 we show the effect of UV/Vis illumination on k for
n = 10 (similar qualitative behavior was observed in the other
systems studied in this work). Irradiation of the film with UV
light (365 nm, E160 mW cm�2) at room temperature

Fig. 1 (a) Scheme of the light-induced isomerization between the rod-trans and the bended-cis molecular structures of the azobenzene derivatives
studied in this work. (b) Phase diagram of the 4,40-dialkyloxy-3-methylazobenzene derivatives with the number of C-atoms in the alkyl chain; N-LC and
IL refer to nematic liquid crystal and isotropic liquid, respectively. The transition temperatures that mark the stability limits of each phase were obtained
from DSC experiments (see Fig. 2 and the ESI†). (c) Scheme of the different phases, related to the two molecular isomers, achievable with temperature
and UV/Vis light irradiation. The images were taken on a polarized optical microscope (POM); see Fig. S2–S4 (ESI†).
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transforms the crystal into cis-IL (see also Fig. S1, ESI†), with a
reduction of the k of E30–40%. Once UV irradiation stops, this

phase change remains stable for hours in the dark, before
recovering to the original phase after thermal relaxation of the

Fig. 3 (a) Relative variation of k in n = 10 at 313 K under UV/Vis illumination. The transition corresponds to the isothermal 3D crystal-to-IL
transformation, as shown in the POM images on the right. Relative variation of k in n = 10 at 320 K (b), and n = 8 at 340 K (c), under UV/Vis illumination.
At these temperatures, light drives the transition between the N-LC and the IL, as shown in the POM images at the right. Note the smaller thermal contrast
compared to the 3D crystal to IL shown in panel (a).

Fig. 2 (a, c and e) Differential Scanning Calorimetry (DSC) and thermal conductivity (b, d and f) for the 4,4 0-dialkyloxy-3-methylazobenzene with n = 6,
8, and 10 carbon atoms in the alkyl chains. The sharp peaks at the lower temperature on the DSC heating runs correspond to a transition between two
different 3D crystal structures, while the second one marks the transition between a 3D crystal and IL (n = 6) or between a 3D crystal and a N-LC (n = 8
and 10).11 The broader peak at E343–347 K in n = 8, 10 marks the stability limit of this mesophase before melting into an IL. These transitions are perfectly
visible in the thermal conductivity experiments (b, d and f). The temperature range of stability of the different phases is indicated by the color bars at the
bottom of each panel (blue, green, and grey for the 3D crystal, N-LC and IL, respectively); see also the phase diagram of Fig. 1b).
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cis azobenzene isomer. The recovery of the thermal conductivity
can be accelerated by irradiating the IL with visible light
(445 nm, E150 mW cm�2). As shown in Fig. 3a), this process
can be repeated many times, demonstrating its reversibility.

Note that the observed reduction of E30–40% upon illumi-
nation means that k in the cis-IL (E0.2 W m�1 K�1) is
considerably smaller than in the trans-IL (E0.27 W m�1 K�1).
We have measured a decrease of E 2% in the density of the cis-
IL compared to trans-IL, which seems too small to account for
such a large change in k (E15–20%). Thus, this observation
suggests a much less effective intermolecular (most likely p–p)
interactions among the bent molecules in the liquid.7

On the other hand, apart from a large thermal contrast
between two or more states, an ideal thermal switch must
transform among them as fast as possible upon application

of an external stimulus. In this case, although the crystal-to-
liquid transition occurs within few minutes, the full recovery of
the original thermal conductivity takes more than an hour. This
is due to the low mobility of the large molecules at room
temperature, which must diffuse through the liquid and reor-
ganize to form back the trans crystal. This process is even more
difficult in the case of molecules with longer alkyl chains. The
recovery of the higher k phase can be accelerated by reducing
the length of the alkyl chains, and above all, by cycling between
the higher mobility trans-N-LC and the cis-IL (Fig. 3b and c).

The speed of the process is shown in more detail for the
different phases in Fig. 4 (see also Fig. S10, ESI†).

Following these results, we hypothesized that the 4,40-
dialkyloxy-3-methylazobenzenes could be used as molecular
machines to control the spatial arrangement of an achiral LC
matrix, and hence its thermal conductivity. Doping a LC net-
work with light-sensitive molecules has been used previously by
several groups to induce macroscopic displacements, through
cooperative bending, and transitional, and rotary motions of
the molecules of the LC,17–20 but this approach has never been
applied to control the thermal conductivity of a mesophase.

To probe the viability of this hypothesis, we first searched
for a system with a large thermal contrast between the LC
mesophase and the IL, which is also chemically and structurally
compatible with the 4,40-dialkyloxy-3-methylazobenzenes
synthesized in this work.

We identified 4-octyl-40-cyanobiphenyl (8CB) as a suitable
candidate for this study.21 DSC analysis shows that 8CB pre-
sents a smectic mesophase (Sm-LC) at room temperature,
which is transformed into N-LC at E306 K, and then to an IL
at 314 K (see the ESI† for a complete characterization of the
pure 8CB and 8CB:azobenzene mixture; Fig. S13–S18, ESI†).22

Our thermal conductivity experiments confirmed a reduction of
E15–20% between the Sm-LC and IL phases; the N-LC phase of
8CB also shows a lower thermal conductivity than its IL (Fig.
S14, ESI†). These results are in very good agreement with
Marinelli et al.15, and confirm the planar orientation of the

Fig. 4 Time-dependence of thermal conductivity during recovery of the
ordered trans-phase, with visible light illumination of the isotropic-liquid in
the cis-configuration. The figure shows the traces for the IL-to-3D crystal
in n = 10, and the IL-to-N in the n = 10 and n = 8 (the same samples shown
in Fig. 3). The curves have been displaced vertically for clarity. The recovery
of the thermal conductivity is completed in 3 min for the IL-to-N of n = 8.
The temperature of each experiment, as in Fig. 3, is 313 K (IL-to-3D crystal,
n = 10), 320 K (IL-to-N, n = 10) and 340 K (IL-to-N, n = 8), respectively.

Fig. 5 (a) DSC heating and cooling scans of 8CB:azobenzene dispersion, identifying the thermal stability of the smectic, and nematic phases. (b)
Temperature dependence (heating and cooling runs) of the thermal conductivity of 8CB:azobenzene, demonstrating the thermal contrast between the
different phases observed in the DSC scan. The differences in the actual temperature of the transition temperatures measured by DSC and thermal
conductivity are due to the different scan rates (10 K min�1 in DSC and 1 K min�1 in thermal conductivity).
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LC (director perpendicular to heat flow). Also, the similar values
of the heat capacity and sound velocity reported for the
different phases of 8CB15,23 suggest that the lower k in the N-
phase is related to shorter lifetime of vibrational coupling
modes across the planar order.

8CB was doped with 4% w/w of the n = 6 4,40-dialkyloxy-3-
methylazobenzene; the DSC and k(T) analysis showed that this
level of doping does not affect the transition temperatures or
stability of the mesophases of pure 8CB (Fig. 5).

The 8CB:azobenzene Sm-LC was irradiated at 290 K with UV
light while measuring the thermal conductivity. The results,
shown in Fig. 6(a), demonstrate a reduction of E15% consis-
tent with a transition between Sm-LC and IL. This confirms that
isomerization of the azobenzene into the cis state, induces a
cooperative molecular motion which destabilizes the entire
bulk Sm-LC mesophase of 8CB.

Irradiating the system at 300 K, within the N-LC stability
region, this phase transforms into the IL, resulting in an
increase of the thermal conductivity of E5%, Fig. 6(b) (see also
Fig. S16 and S17, ESI†).

The results presented in Fig. 6 show that fast and reversible
bi-directional switching of the thermal conductivity may be
achieved in achiral LC hosts doped with the adequate photo-
responsive molecules.

Finally, as shown in Fig. 7, three different thermal states can
be accessed in UV/dark irradiation cycles in 8CB:azobenzene:
after UV illumination ceases, azobenzene molecules in the IL
recover their trans rod-like structure in the dark, and the whole
system relaxes into the Sm-LC through an intermediate phase
of lower thermal conductivity. POM images (Fig. S18, ESI†) also
show the rapid transition to this intermediate phase in the
dark, before relaxing slowly to the Sm-LC.

Although the intermediate phase cannot be univocally iden-
tified from POM, it does show the same thermal conductivity as
the N-phase in Fig. 5(b). Therefore, the most plausible situation
is that the system relaxes in the dark very fast from IL-to-N, and
slowly adopts the more ordered Sm-LC phase.

Given the different thermal conductivities between the three
phases, three different thermal states can be achieved in a
single UV/dark run in this composite molecular system.

Conclusions

Pure 4,40-dialkyloxy-3-methylazobenzene molecular materials
can be switched between higher/lower thermal conductivity
states under mild UV/Vis irradiation conditions around room
temperature.

Fig. 6 Room temperature light-triggered thermal conductivity switching of 8CB:azobenzene molecular system. Irradiating the Sm phase (E 290 K) with
UV light, transforms the system to the IL, reducing its thermal conductivity (a). On the other hand, irradiation of the N phase (E 300 K) with UV light,
transforms the system to the IL and increases its thermal conductivity (b), in perfect agreement with the results in Fig. 5. (c) Bi-directional switching of the
thermal conductivity is demonstrated in this figure: either an increase or a decrease of the thermal conductivity can be achieved upon UV illumination of
a partially ordered mesophase of 8CB:azobenzene system. Both changes are reversible after illumination with visible light.

Fig. 7 UV/Dark cycles of 8CB: azobenzene molecular system at E290 K.
Three different thermal states can be identified in this case, associated with
the different k values of the Sm-LC, N-LC and IL, as observed in Fig. 5(b).
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These photochromic molecules may act as light-driven
molecular machines which reversibly operate over the bulk
order of conventional LC mesophases, allowing reversible
access to more than two thermal states and bi-directional
switching of their thermal conductivity. Larger thermal con-
trasts may be observed in homeotropically aligned LC.

The variety of available LC, with different mesophases which
could be accessed through doping with chemically compatible
photoactive molecules, might open a new area of research for
the design of molecular materials with multiple, accessible,
thermal states around room temperature.

Methods

4,40-Dialkyloxy-3-methylazobenzene derivatives were synthe-
sized following a modification of a previously described
route11 (see the ESI† for a detailed description of the synthetic
procedure). 4-Octyl-40-cyanobiphenyl (8CB), was purchased
from Sigma-Aldrich and used without further purification.

Structural characterization of these compounds was per-
formed by 1H-NMR using Bruker Advance DRX-500 and Varian
Mercury-300 spectrometers. The recorded spectra are in agree-
ment with the literature data.11,12

Polarized optical microscopy (POM) images were taken
using a Leica DM2700 M microscope, equipped with a Linkam
stage and a LNP96-S liquid nitrogen pump that allow precise
control of temperature. UV-Vis absorption spectra were
recorded on a Jasco V-630 spectrophotometer, coupled with a
Jasco ETC-717 temperature controller. DSC measurements were
carried out using a TA Instruments Q200 calorimeter. Thermal
conductivity measurements were performed in a liquid nitro-
gen cryostat using a 3o method, with a home-made setup as
described in ref. 13. Further details of all the procedures are
provided in the supporting information accompanying
this paper.

Data availability

All data, and materials used in the analyses are available, upon
reasonable request.
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