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A general theory of coupled ion–electron transfer (CIET) is presented, which unifies Marcus

kinetics of electron transfer (ET) with Butler–Volmer kinetics of ion transfer (IT). In the limit of

large reorganization energy, the theory predicts normalMarcus kinetics of “electron-coupled

ion transfer” (ECIT). In the limit of large ion transfer energies, the theory predicts Butler–

Volmer kinetics of “ion-coupled electron transfer” (ICET), where the charge transfer

coefficient and exchange current are connected to microscopic properties of the

electrode/electrolyte interface. In the ICET regime, the reductive and oxidative branches

of Tafel’s law are predicted to hold over a wide range of overpotentials, bounded by the

ion-transfer energies for oxidation and reduction, respectively. The probability distribution

of transferring electron energies in CIET smoothly interpolates between a shifted Gaussian

distribution for ECIT (as in the Gerischer–Marcus theory of ET) to an asymmetric, fat-tailed

Meixner distribution centered at the Fermi level for ICET. The latter may help interpret

asymmetric line shapes in x-ray photo-electron spectroscopy (XPS) and Auger electron

spectroscopy (AES) for metal surfaces in terms of shake-up relaxation of the ionized atom

and its image polaron by ICET. In the limit of large overpotentials, the theory predicts

a transition to inverted Marcus ECIT, leading to a universal reaction-limited current for

metal electrodes, dominated by barrierless quantum transitions. Uniformly valid, closed-

form asymptotic approximations are derived that smoothly transition between the limiting

rate expressions for ICET and ECIT for metal electrodes, using simple but accurate

mathematical functions. The theory is applied to lithium intercalation in lithium iron

phosphate (LFP) and found to provide a consistent description of the observed current

dependence on overpotential, temperature and concentration. CIET theory thus provides

a critical bridge between quantum electrochemistry and electrochemical engineering,

which may find many other applications and extensions.
1 Introduction

Charge transfer at the electrode/electrolyte interface is the most fundamental
aspect of electrochemical systems, but its understanding remains incomplete. By
Department of Chemical Engineering and Department of Mathematics, Massachusetts Institute of Technology,

Cambridge 02139, MA, USA. E-mail: bazant@mit.edu

† This is an extended version of the paper presented at the meeting.

60 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023

http://orcid.org/0000-0002-8200-4501
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c
https://pubs.rsc.org/en/journals/journal/FD
https://pubs.rsc.org/en/journals/journal/FD?issueid=FD023246


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 3
1 

M
ee

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2.

02
.2

6 
16

:3
2:

37
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
contrast, the bulk properties of electrodes and electrolytes are increasingly
investigated and modeled at the molecular level. Their atomic structure and
thermodynamic and transport properties can be measured by experiments and
accurately predicted by ab initio quantum mechanical theories and simulations.1

For crystalline electrodes and electrolytes, quantum simulations of bulk proper-
ties have become so accurate that they are beginning to replace experimental
measurements and guide the discovery of new materials.2 Progress is underway to
better understand properties of disordered bulk liquid and solid electrolytes, as
well as the molecular structure of electrode/electrolyte interfaces.3,4

Faradaic reaction rates at electrode/electrolyte interfaces, however, remain
challenging to predict from rst principles. This is partly due to the lack of
a simple mathematical framework with which to describe both ion transfer (IT)
and electron transfer (ET) processes based on quantum mechanics. Here, we
develop such a theory for non-adiabatic charge transfer processes, which unies
Butler–Volmer kinetics of IT with Marcus kinetics of ET in a single quantum
mechanical framework of coupled ion–electron transfer (CIET).

2 A brief history of electrochemical kinetics
2.1 Ion transfer theory

The standard model of charge transfer kinetics in electrochemistry5–8 and elec-
trochemical engineering9,10 is the Butler–Volmer (BV) equation:11,12

I = I0(e
−an~h − e(1−a)n~h) (1)

where I is the reduction current, I0 the exchange current, a the charge-transfer
coefficient or symmetry factor, n the number of electrons transferred, and ~h =

eh/kBT the dimensionless activation overpotential h, scaled to the thermal voltage,
kBT/e. The BV equation has remained unchanged for over a century since the
seminal work of Tafel,13,14 Butler,11,15–18 Bowden19 and Erdey-Gruz and Volmer12,20

on the reaction kinetics of electrolysis, motivated by Tafel's limiting law,13

lnjI j �
(
�a~h as ~h/�N
ð1� aÞ~h as ~h/N

(2)

The BV equation has since been used to describe faradaic reaction kinetics in all
elds of electroanalytical chemistry6,21 and electrochemical systems,9,10 including
batteries, fuel cells, electrodeposition, corrosion, electrocatalysis, and iontronics
(the topic of this Faraday Discussions meeting).

The BV equation is almost universally accepted by experimentalists as the
model of electrochemical kinetics, although empirical modications are oen
required to t experimental data. For example, in order to reveal pure BV kinetics,
it is usually necessary to correct for what are considered spurious “IR drops”
associated with “lm resistance”.9,10 The BV equation has also been extended in
many other ways, e.g. to account for adsorption isotherms of reaction interme-
diates,7,8 Frumkin effects of double-layer charge,5,22,23 and non-equilibrium ther-
modynamics of phase transformations.24

Despite many successes in tting experimental data, the BV equation is
considered to be phenomenological, and it lacks a consistent theoretical frame-
work with which to interpret tted parameters or design improved electrode
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 61
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interfaces. It does not explicitly take into account the microscopic physics of
charge transfer, such as charge solvation, ion coordination, double-layer struc-
ture, electrode band structure, electronic coupling and quantum tunneling
between the acceptor and donor states at interfaces.25,26 As such, quantitative
connections cannot be made between the BV parameters (I0, a) and material
properties, such as dielectric constants, electrode crystal structure, electrolyte
chemistry, etc., which could be validated experimentally or predicted bymolecular
simulations.

Textbook derivations of the BV equation are based on a simple picture of ion
transfer (IT) biased by the local electric eld,6–10 as sketched in Fig. 1. The reaction
complex explores a landscape of excess chemical potential along a spatial reaction
coordinate x between the reduced and oxidized states, while transferring n elec-
trons. The chemical part of the activation barrier is assumed to remain constant
and at xed position,

x‡ = axO + (1 − a)xR (3)

as the reaction is biased by a constant local electric eld, E = −hf/(xR − xO), where
hf is the formal overpotential, and xR − xO is the distance for ion transfer, oen
associated with the thickness of the Stern layer of solvation on the electrode.27–29

Based on this picture of the reactionmechanism, a thermodynamically consistent
derivation of the exchange current yields the formula,

IBV0 ¼ nekBV
0 ðaOaenÞ1�a

aR
a

g‡

(4)

where k0 is an attempt frequency, g‡ is the activity coefficient of the ion-transfer
transition state, and aO, aR and ae are the activities of the oxidized state, reduced
state, and electrons, dened below.24

Although the IT reaction mechanism in Fig. 1 is widely accepted as the justi-
cation for BV kinetics, it contains many theoretical inconsistencies. Although hf

is varied by changing the potential of electrons in the electrode, the model does
not specify exactly when or how electron transfer occurs. Moreover, the activity of
electrons is usually neglected by setting ae = 1, and the electrode band structure,
which provides electrons over a range of different energies, is not considered at
all. The derivation also only applies to moderate overpotentials, much smaller
than the chemical energy barrier. As shown in Fig. 1, larger overpotentials would
result in barrier-less ion transfer, which cannot be described by classical transi-
tion state theory. These limitations of ion transfer theory are well known, but
usually overlooked when tting the BV equation to experimental data. We shall
see that the key to resolving these inconsistencies is a quantum mechanical
treatment of electron transfer (ET).
2.2 Electron transfer theory

An electrochemical reaction, by denition, involves the transfer of at least one
electron between two distinct chemical states. The oxidized state donates an
electron, and the reduced state accepts it. In order to conserve charge, there must
be ions present in either the reduced or oxidized states, or both. In pure ET
reactions, the reactants remain unchanged, except that the oxidized state is
62 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Phenomenological theory of ion transfer (IT) to explain Butler–Volmer kinetics6–10

– and its limitations. The reaction complex is hypothesized to move along a classical
charge-transfer reaction coordinate x (typically the position of an ion) between the
reduced state R and the oxidized state O, as n electrons are transferred to the electrode
(R/O + ne−), in a landscape of excess chemical potential mex.24 The chemical part of the
activation barrier, mex‡ , fixed at position x‡ = axR + (1 − a)xO, is assumed to be independent
of formal overpotential hf, which is postulated to create a constant electric field, E = −hf/
Dx, driving the charge-transfer reaction over a distance, Dx= xR− xO, set by the Stern layer
thickness on the electrode. This construction leads to the BV equation (1) and Tafel's
limiting law for moderate overpotentials, but the model breaks down at large over-
potentials, e.g. as shown for (1− a)nehf > (mex‡ − mexO )eq, when the activation barrier vanishes,
and classical transition state theory no longer applies. The model also fails to explain
exactly when and how electron transfer (ET) occurs, as the proposed reaction mechanism
only accounts for ion transfer (IT). [Adapted from Bazant (2013).24]
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reduced, and the reduced state oxidized, by the transferring electrons. Such
reactions are common in chemistry and biology and are described by quantum
mechanical ET theory.25,26,30–32

The modern theory of ET kinetics was pioneered by R. A. Marcus starting in
195630,33–36 and recognized by the 1992 Nobel Prize in Chemistry.37 Since quantum-
mechanical ET is isoenergetic, Marcus postulated that ET must occur when
uctuations reorganize the solvent (or more generally, the molecular
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 63
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environment) so as to temporarily align the electron energy levels of the diabatic
reduced and oxidized states38,39 and thus allow ET to occur “in the dark” without
absorbing or emitting photons. Importantly, Marcus went beyond earlier models
of non-adiabatic ET and solvent-reorganization developed by Weiss40 to predict
a novel Gaussian dependence of the reaction rate on overpotential, by modeling
the activation barrier for ET as the intersection of two parabolae describing
solvent reorganization in the harmonic approximation.30,33,36,37 Marcus summa-
rized his theoretical predictions for experimentalists at a Faraday Discussion in
1960,41 which he later recognized as a turning point in the eld.37

It is not widely appreciated that the eld of quantum electrochemistry pre-
dated Marcus by a quarter century. In 1931, R. W. Gurney published the seminal
paper on “quantum mechanics of electrolysis” in which he modeled proton
transfer and reduction at a metallic electrode as a process of quantum tunneling
involving electrons sampled from the Fermi–Dirac distribution,42 similar to
modern formulations in quantum electrochemistry.6,25,26 Gurney further assumed
a linear dependence of the proton transfer energy with position, before and aer
“neutralization” by the electron, from which he was able to derive Tafel's law.42

Although the nature of the energy barrier and its dependence on overpotential
were not yet clear, Gurney's theory was a radically “new line of attack” in elec-
trochemistry at a time of apparently some lingering doubts about the atomic
nature of matter, which he felt compelled to acknowledge in his conclusion: “In
deriving these quantities [neutralization potentials] we have used the only avail-
able vocabulary – that of molecular spectroscopy. The existence of denite
molecules is not, however, a necessary assumption.”42

In 1936, J. A. V. Butler adapted Gurney's model for specic adsorption of
protons on a metal electrode and the linear approximation of the energy land-
scape for ion transfer (IT) to derive the BV equation.18 Although quantum aspects
of ET were not fully taken into account, the visionary papers of Gurney and Butler
were the rst to propose a reaction mechanism coupling IT and ET, in the specic
case of the Volmer step in the hydrogen evolution reaction in acidic solutions.43

Below, we shall see that the Gurney–Butler theory corresponds to the limit of
innitely fast ET and holds up to moderately large overpotentials in the Tafel
regime.

Starting in the late 1950s, the modern quantummechanical foundations of ET
theory were laid by Hush,44–46 Levich, Dogonadze, Chizmadzhev and
Kuznetsov26,27,36,47–50 and Marcus30,36,51,52 with later extensions by Calef and
Wolynes,53,54 Schmickler and Santos,25,31 Nazmutdinov,32 Matyushov and Voth,55,56

and many others. These theories mostly assume adiabatic ET, where a single
electron is shared between the reduced and oxidized states in a particular hybrid
wavefunction, as the solvent uctuates to facilitate its gradual transfer. In the
opposite limit of non-adiabatic ET, where the electronic coupling is weak, solvent
reorganization does not always lead to ET, and independent, rare events of
quantum tunneling can occur in parallel between the reactant and all available
diabatic electronic states.38,39

Despite its many successes, ET theory – by itself – fails to provide a consistent
theoretical framework for faradaic reaction kinetics at electrodes. In particular,
ET theory cannot explain the vast experimental literature supporting the BV
equation and, especially, Tafel's limiting law, eqn (2). This is considered by many
64 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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electrochemists to be a fatal aw in our current understanding of quantum
electrochemistry, still awaiting resolution:

“Tafel's law is one of the most tested and veried laws of nature. It is also one
with the broadest applicability. The ability to replicate Tafel's law is the rst
requirement of any theory of electrode kinetics. It represents a lter that may be
used to discard models of electron transfer which predict current–potential
relationships that are not observed.” – J. O. Bockris, A. K. N. Reddy and M. E.
Gamboa-Aldeco (p. 1510).7

Recent electrochemistry textbooks attempt to resolve this paradox by noting
that Marcus theory predicts BV kinetics with a = 1/2 (for symmetric ET), if the
overpotential is much smaller than the reorganization energy (usually on the
order of 100 meV z 4kBT),6,21,25 but this is only an asymptotic limit. The same is
true of more sophisticated models of nonlinear solvation,55,56 related to asym-
metric Marcus–Hush kinetics,57,58 which again rely on the limit of small over-
potentials to justify Tafel's law with a s 1/2.

The persistence of Tafel's law to much larger overpotentials, sometimes
spanning many decades in current with overpotentials reaching the 1 V scale of
chemical bond breaking, is fundamentally inconsistent with the curved Tafel
plots predicted by all ET theories,6–8,62 as shown in Fig. 2, and cannot be explained
by Taylor expansion of the quantum mechanical ET rate equations. Instead,
curvature of the Tafel plot is an unavoidable consequence of the nonlinear shape
of the free energy landscapes for solvent re-organization in the reduced and
oxidized diabatic states, including the parabolic (“harmonic”) shapes introduced
by Marcus:

“The quantum mechanical formulation of electrode reactions still possesses
the Achilles' heel of earlier formulations; it is restricted to nonbond-breaking,
seldom occurring outer-sphere reactions and involves the harmonic approxima-
tion for the energy variation, which is the main reason it cannot replicate Tafel's
law.” (ibid., p. 1523).7

In contrast, the original Gurney–Butler model of electrolysis suggests that rate-
limiting, bond-breaking classical IT is responsible for Tafel's law, but the role of
quantum mechanical ET, the dening aspect of electrochemical reactions, still
remains to be explained, nearly a century later.
2.3 Toward a theory of coupled ion–electron transfer

Motivated by electrolysis and electrodeposition, new theories of faradaic reaction
kinetics have emerged over the past 30 years in which ET is coupled with IT at the
electrode/electrolyte interface.25,31,64 Soon aer Marcus received the Nobel Prize,
Cukier and Nocera introduced the theory of proton-coupled electron transfer
(PCET),65,66 and Schmickler67,68 and Koper69,70 developed quantum mechanical
theories of coupled adiabatic ET and bond-breaking IT reaction kinetics at metal
electrodes, where interactions of the reactant with the solvent and with the metal
depend on its separation from the interface. The literature has focused on situ-
ations, such as PCET71–78 or concerted proton–electron transfer (CPET),69,79–81

where both protons and electrons are treated quantum mechanically, assuming
isolated reactants in a dilute solution at the electrode interface. These theories
have also focused on predicting activation energies and exchange current trends,
rather than the overpotential dependence of the reaction.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 65
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Fig. 2 Failure of quantum theories of electron transfer (ET) to predict Tafel's law as a limit
of the Butler–Volmer equation (BV), eqn (1), the most widely used model of electro-
chemical kinetics.6,8,10,59 In countless experimental studies, reaction rates of oxidation and
reduction, kox and kred, respectively, as well as the faradaic current I at an electrode, have
exhibited persistent exponential dependence on overpotential, h, corresponding to
a straight line “Tafel plot” of lnjIj vs. h over several decades of dimensionless current Ĩ= I/I0
(scaled to the exchange current, I0) and overpotential, ~h (scaled to the thermal voltage,
kBT/e) up to the scale of chemical bond breaking (jhj ∼ 1 eV). In contrast, all quantum
mechanical models of ET predict curved Tafel plots, including (a) symmetric ET for
localized electronic states (Marcus kinetics) or metallic electrodes (Marcus–Hush–Chid-
sey/MHC kinetics) and (b) asymmetric ET for metallic electrodes (asymmetric Marcus–
Hush/AMH kinetics). At best, thesemodels can asymptotically match the linear Tafel plot at
low overpotentials, jhj � l, much smaller than the Marcus reorganization energy l, which
is typically at the scale of 100 meV z 4kBT. [Adapted from (a) Zeng et al. (2014)60 and (b)
Zeng et al. (2015).61]
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Much less attention has been paid to situations, such as ion intercalation,
where the ions behave classically and experience strong interactions in concen-
trated solutions and solids, including phase transformations driven by large
overpotentials. This requires re-formulating theories of charge transfer, including
Butler–Volmer and Marcus kinetics, within a general framework of electro-
chemical nonequilibrium thermodynamics.24,82 In electrochemical engineering,
ion intercalation has long been viewed as an exclusively IT process, described by
BV kinetics9 and leading to capacitive charge storage, analogous to specic
adsorption of ions on surfaces.83

In 2014, Peng Bai and the author suggested a different reaction mechanism, in
which ion intercalation is a fast IT step, facilitated by a slow ET step between
a metallic additive or coating and a poorly conducting host material.84 (Below, I
suggest the term “electron-coupled ion transfer” (ECIT) to describe this reaction
mechanism.) In the case of lithium iron phosphate (LFP), we provided experi-
mental evidence that Li+ intercalation rates extracted from phase-separation
dynamics obey Marcus–Hush–Chidsey (MHC) kinetics,85–87 based on the
hypothesis that Li+ insertion into the crystal is facilitated by non-adiabatic ET
from the metallic carbon coating to form a polaron by reducing a neighboring
iron redox site (Fe3+/Fe2+),63 as shown in Fig. 3. This unorthodox picture of ET-
limited intercalation was immediately met with skepticism. For example, it was
shown that Tafel plots extracted from nonlinear impedance spectra for LFP could
“perfectly obey the Butler–Volmer equation”,88 albeit only aer tting series
resistances and neglecting known heterogeneities arising from phase
separation.89–91 The importance of IT in LFP was also underscored by my earlier
work on driven phase separation modeled by generalized BV kinetics,24,84,90–94

although the overpotential dependence had never been systematically explored.
Perhaps another reason that quantum-mechanical ET theory was never

applied in electrochemical engineering, until recently, was the lack of a simple
rate expression to serve as an alternative to the BV equation. Also in 2014, Yi Zeng
and I addressed this problem by publishing accurate closed-form approximations
for both symmetric MHC kinetics60 and asymmetric Marcus–Hush (AMH)
kinetics61 using matched asymptotic expansions of the Fermi integrals of the
Marcus reaction rate in the limits of large and small reorganization energy. In
contrast to various series expansions of the MHC rate,95,96 the matched asymptotic
approximations are uniformly valid for all parameter values.60 This mathematical
simplication enabled ET theory to be used for the rst time in simulations of
electrochemical systems, such as Li-ion battery cycling97–99 and
electrodeposition.100–102 For battery simulations, Raymond Smith and I also
adapted the generalized MHC formula to include ion-transfer effects in the pre-
factor,97 consistent with the ET-limited CIET rate equation presented below, but
without any microscopic justication.

Recently, Dimitrios Fraggedakis and the author (building on contributions of
Bai, Zeng, Smith, and other students and collaborators) developed the rst
mathematical theory of coupled ion–electron transfer (CIET), where electrons
tunnel quantum mechanically in response to solvent reorganization, coupled
with classical ion transfer based on nonequilibrium thermodynamics,103 based on
the two-dimensional diabatic free energy landscape shown in Fig. 4(top). Under
certain assumptions, shown below to correspond to ET rate limitation, our theory
of the CIET rate for a metal electrode reduces to MHC kinetics with
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 67
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Fig. 3 Kinetics of lithium intercalation in lithium iron phosphate (LFP). (a) Reaction
mechanism defined here as “electron-coupled ion transfer (ECIT)”, in which ion insertion is
limited by electron transfer from the carbon coating to reduce a neighboring iron redox
site and form a neutral polaron. (b) Evidence for Marcus kinetics in LFP from Tafel plots of
the rate constant for reaction-limited nanoparticle phase transformations versus dimen-
sionless overpotential (scaled to kBT/e = 26 mV), fitted to the Marcus–Hush–Chidsey
(MHC) model. [Reproduced from Bai and Bazant (2014).63]
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a concentration-dependent prefactor. This rate expression has been used in
battery simulations,104 which were able to t the raw chronoamperometry data of
Bai63 better than BV kinetics, even with a tted series resistance,103 as shown in
Fig. 4(bottom). This limit of CIET theory was also able to accurately predict the
concentration dependence of the lithium intercalation rate in LFP nano-
particles,105 as revealed by learning the model from a large dataset of operando X-
ray images,106 which we revisit at the end of this paper using the general theory.
The ET-limited theory has been adapted to successfully describe interphase
formation in sodium electrodeposition from solid electrolytes.100 It has also been
used to predict how electronic structure inuences the stability of driven
68 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Fig. 4 (Top) (a) Schematic of coupled ion–electron transfer (CIET) with the two-dimen-
sional landscape of excess chemical potential, shown as (b) a contour plot and (c) a surface
plot, indicating the diabatic reduced and oxidized states for IT separated by the ET surface
at the diabatic crossing, and the minimum energy barrier of the CIET transition state.
(Bottom) Simulations of chronoamperometry using the ET-limited CIET (ECIT) model
based on MHC kinetics for a single particle and a porous electrode with the measured
particle size distribution (PSD), as well as the Butler–Volmer model with and without
a fitted film resistance, compared to the raw experimental data of Bai and Bazant63 for (a)
low voltage pulses, (b) high voltage pulses, and (c) the resulting Tafel plot. [Reproduced
from Fraggedakis et al. (2021).103]
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electrode interfaces, including intercalation and electrodeposition.101 Curved
Tafel plots and morphological transitions seen in recent experiments on lithium
electrodeposition could perhaps also be understood through the lens of CIET,107

although BV kinetics are more typically observed for electrodeposition and elec-
trocatalysis at metal electrodes. In the original CIET paper, we noted several limits
where the CIET barrier could be approximated by that of Butler–Volmer
kinetics,103 but we stopped short of deriving a general theory that could unify BV
and Marcus kinetics in a common formalism based on microscopic material
properties. That is the focus of the present work.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 69
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2.4 Outline

The paper is organized as follows. We begin by developing the general theory of
nonadiabatic CIET kinetics in Section 3. We then consider three distinguished
limits of the theory corresponding to normal Marcus kinetics for large reorga-
nization energy (Section 4), quantum Butler–Volmer kinetics for large ion-transfer
free energies (Section 5), and inverted Marcus kinetics at large overpotentials
(Section 6) leading to a universal reaction-limited current for metal electrodes. We
proceed to derive uniformly valid approximations for the CIET rate by asymptotic
matching of these exact limiting cases in Section 7. Reecting on these results in
Section 8, we derive probability distributions of transferring electron energies
from the CIET rate formula. In Section 9, we discuss possible corrections of the
theory for adiabatic ET. In Section 10, we summarize our simple analytical
approximations for the faradaic current by CIET at a metal electrode. Finally, in
Section 11, we revisit the original motivation for CIET theory by re-analyzing
experimental data for intercalation rates in LFP nanoparticles. We conclude in
Section 12 with a brief outlook on the future of CIET theory.
3 General theory

From the perspective of nonequilibrium thermodynamics, each term in a general
faradaic reaction (eqn (7) below) represents an ensemble of chemical species at
a certain electrochemical potential (e.g. in the grand canonical ensemble at
constant temperature and pressure). In my original work re-formulating Marcus
kinetics in terms of non-equilibrium thermodynamics,24 I dened the activity and
excess chemical potential of electrons as general concepts, but did not explicitly
account for the quantum mechanical properties of electrodes. The theory was
extended for integration over the electronic band structure with Smith104 and,
importantly, in the rst detailed treatment of CIET kinetics with Fraggedakis.103

These papers tacitly assumed non-adiabatic ET limited reactions and did not
explicitly construct all of the thermodynamic variables in the original theory.
Here, we ll in some details, clarify and relax various assumptions, and develop
amore general theory of CIET kinetics, which leads to a similar MHC-like formula
for the case of ET-limited reactions, while also predicting BV kinetics for the more
common case of IT-limited reactions within the same unied quantum
framework.
3.1 Nonequilibrium thermodynamics of charge transfer

3.1.1 Electrochemical potentials and overpotentials. The theory begins with
three denitions of the (diffusional) electrochemical potential mi of species i
based on nonequilibrium thermodynamics:24

mi ¼
vG

v~ci
¼ mQ

i þ kBT lnai þ zief ¼ kBT ln~ci þ mex
i : (5)

The rst is the variational derivative of the free energy functional,
G[{~ci(~x,t)},{fi},T,P], the Gibbs free energy for an open system at temperature
T and pressure P, with respect to the dimensionless concentration ~ci(~x,t) (scaled to
a reference value crefi ), which expresses the free energy required to create a particle
of species i at position~x and time t. The second denition separates departures
70 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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from a reference state electrochemical potential, mQi , into a short-range chemical
contribution depending on the activity ai and a long-range electrostatic contribu-
tion for a species of charge zie in the potential of mean force f. The third denition
expresses the Boltzmann distribution of concentration, ~ci = exp((mi − mexi )/kBT),
in the total “excess” chemical potential

mexi = mQi + kBT ln gi + zief, (6)

where gi = ai/~ci is the activity coefficient. For a set of reactants, mi denotes the sum
of their electrochemical potentials, while ai and ~ci denote the product of their
activities and dimensionless concentrations, respectively.

For the general reduction reaction,

O + e− / R (7)

the activation overpotential, h, is equal to the free energy of reaction DG per
charge transferred,

eh = DG = mR − mO − me. (8)

It is also convenient to dene the formal overpotential, hf, based on excess
chemical potentials of the reduced and oxidized species,

ehf ¼ ehþ kBT ln
~cO
~cR

¼ mex
R � mex

O � me (9)

Note that in our compact notation for the reaction, eqn (7), the oxidized state O or
the reduced state R may involve multiple chemical species,

P
jsjAj, in which case

its concentration, activity and electrochemical potential are given by:24

c ¼
Y
j

c
sj
j ; a ¼

Y
j

a
sj
j ; m ¼

X
j

sjmj (10)

respectively. For example, in the case of the hydrogen evolution reaction in basic
solutions,

2H2O + 2e− / H2 + 2OH− (11)

we have

aO = aH2O
2, mO = 2mH2O

, aR = aH2
aOH−2, mR = mH2

+ 2mOH− (12)

where aH2O z 1, aOH− = 1014−pH (M) and aH2
= PH2

(atm). In the case of lithium
intercalation in iron phosphate,

Li+ + e− / Li(int) = LiFePO4 − FePO4 (13)

we have aO = aLi+ and aR = aLi = aLiFePO4
/aFePO4

, where, for example, the latter
could be described by a regular solution model.24,108 This example also illustrates
our consistent use of diffusional electrochemical potentials in condensed
systems,24 such as mLiint = mLiFePO4

− mFePO4
, which expresses the free energy change

to create an intercalated lithium ion, while removing a vacancy.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 71
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3.1.2 Faradaic current density. The net reduction current density, the rate of
electron consumption per active area of the electrode/electrolyte interface, can be
expressed as the difference of forward (reduction) and backward (oxidation)
current densities,

J = e(kredcO − koxcR) (14)

where kred and kox are the reduction and oxidation rate constants, which depend
on hf and have units of velocity, if we use volumetric concentrations for a rst
order reaction. More generally, if the reaction has order ni in a reactant of
concentration ci, then the units of k are velocity times concentration to the power
ni − 1. For interfacial reactions, it is more convenient to dene the mean area of
a reacting site As and express the current density in terms of dimensionless
concentrations, or mean coverages of the surface sites, as

J ¼ e

As

ðnred~cO � nox~cRÞ (15)

where

nred/ox = kred/oxc
ref
O/RAs (16)

is the frequency of reduction or oxidation, whose inverse is the mean time
between reaction events at a given surface site. The total current I is the integral of
J over the interfacial area A, or simply I = JA for a uniform current density.

As we shall see below, it is natural to scale the CIET reaction frequency to an
effective solvent polarization frequency, ns, for the environment of the donor/
acceptor sites near the electrode/electrolyte interface, which sets the scale for
ET rates. This frequency scale dominates CIET kinetics at very large over-
potentials, which exceed (and effectively eliminate) all barriers to classical IT,
leaving only quantum mechanical ET to limit the overall rate. With this insight,
we dene dimensionless current density as

~J ¼ JAs

ens
¼ ~I ¼ IAs

ensA
(17)

where the last equality assumes a uniform current density. This allows us to
express our results in terms of dimensionless current carried by a pseudo-rst-
order redox reaction,

Ĩ = ~kred~cO − ~kox~cR (18)

where the dimensionless rate constants are given by

~kred=ox ¼
kred=oxc

ref
O=RAs

ns
¼ kred=ox

Dxred=oxns
¼ nred=ox

ns
(19)

in terms of an effective interfacial thickness, Dxred/ox = (Asc
ref
O/R)

−1, which converts
the solvent polarization frequency ns into a characteristic reaction velocity,
Dxred/oxns.

The interfacial coverages of the reduced and oxidized species at the electrode/
electrolyte interface, ~cO and ~cR, will generally be different than in the nearby bulk
phases outside the double layer. Assuming each species has bulk activity ai,b and
72 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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undergoes fast adsorption on a set of discrete sites at the interface, we arrive at
a generalized Langmuir isotherm,24

~ci ¼ ai;be
�wi=kBT

1þ ai;be�wi=kBT
(20)

wherewi is the work of surface adsorption (i=O, R). This general form includes the
Temkin isotherm, commonly used in electrochemistry,7 if wi has a linear depen-
dence on ~ci due to lateral pair interactions, as the regular solution model.24 Frag-
gedakis et al.103 assumed wO = wR, but we will consider the general asymmetric
case, wR s wO. For liquids and solids, surface adsorption is usually fast compared
to transport and reaction kinetics, but for high-temperature gas electrodes, surface
adsorption can be rate-limiting in the overall electrochemical reaction.109,110

3.1.3 Activation barriers for charge transfer. As noted above, radiationless ET
is isoenergetic, facilitated by slow thermal uctuations of the molecular envi-
ronment that bring the reduced and oxidized states to the transition state. For
a given electron energy 3, the reaction complex explores a landscape of excess
chemical potential until it overcomes an activation barrier mex‡ , determined by the
reaction mechanism (below).24 The reduction and oxidation rate constants,

~kredð3Þf e
�DGred

‡

�
kBT

g‡

(21)

~koxð3Þf e
�DGox

‡

�
kBT

g‡

; (22)

respectively, include activation barriers of excess free energy given by

DGred
‡ = mex‡ − mexO − mexe (23)

DGox
‡ = mex‡ − mexR (24)

as well as a common activity coefficient of the transition state g‡, which accounts
for entropic effects on the transition state,24 such as excluded volume of ions and
occupied energy levels of electrons. For consistency with the theory of reaction
kinetics based on nonequilibrium thermodynamics,24 we only require that the
free energy barriers are large compared to the thermal energy,

DGred/ox
‡ [ kBT (25)

so that barrier crossings are rare events at the scale of molecular vibrations, as in
classical transition state theory.1,111,112

The transition state activity coefficient contributes an additional universal
term, kBT ln g‡, to the excess chemical potential of the transition state, mex‡ . The
excess free energy barriers, DGred

‡ and DGox
‡ , generally depend on the excess free

energy of reaction,

DGex = mexR − mexO − mexe = ehf + me − mexe (26)

so as to satisfy the de Donder relation:24
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 73

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 3
1 

M
ee

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2.

02
.2

6 
16

:3
2:

37
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
~kox

~kred

¼ nox

nred
¼ ehf=kBT ¼ ~cO

~cR
eh=kBT : (27)

In principle, the relationship between DGred/ox
‡ and DGex, as well as the transition

state activity coefficient g‡, can be derived from a microscopic model of the
reaction mechanism, such as the phenomenological model of classical ion
transfer used to derive the BV equation in Fig. 1. Since electrochemical reactions
necessarily involve electrons, however, any realistic and predictive model must be
based on quantum mechanics.

3.2 Quantum physics of electron transfer

3.2.1 Activity and excess chemical potential of electrons. Electrons partici-
pating in the reduction reaction (7) are drawn from the Fermi sea of the electrode
with electrochemical potential, me = 3F − efe, where 3F is the Fermi level and fe is
the local electrostatic potential. The probability of nding an electron at energy 3
is given by the Fermi–Dirac distribution,

~ne ¼ 1

1þ eð3�3FÞ=kBT (28)

and the probability of nding a hole at the same energy is

~nh ¼ 1� ~ne ¼ 1

1þ eð3F�3Þ=kBT (29)

These dimensionless lling fractions for energy levels relate the number densities
of electrons and holes (per unit of energy), ne(3) = ñe(3)re(3) and nh(3) = ñh(3)re(3),
respectively, to the electronic density of states, re(3), describing the band structure
of the electrode.

Treating electrons in the same framework as ions using eqn (5), we write

me = mQe + kBT ln ae − efe (30)

and dene mQe = 30F as the Fermi level of the electrode in a reference state in order
to construct the electron activity,

ae ¼ ~ne
~nh

eð3�30
FÞ=kBT (31)

such that ae = 1 for 3 = 30F and ae > 1 for excited states with 3 > 30F. We can also
dene the excess chemical potential of electrons, mexe , via

me � mex
e ¼ 3F � 3 ¼ kBT ln

~ne
~nh

(32)

which allows us to express the excess free energy of reaction as

DGex = ehf + 3F − 3 (33)

where we use the denition of formal overpotential, eqn (9). In eqn (32), the ratio

~ne
~nh

¼ 1þ e�ð3�3FÞ=kBT

1þ eð3�3FÞ=kBT (34)
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is an effective concentration for reactive electrons, which represents the creation
of electron while removing a hole, consistent with the denition of diffusional
electrochemical potential for ions. Equivalently, one could write the reduction
reaction in a more familiar form as

O + e / R + h (35)

where e− = e − h in eqn (7) is the consistent representation of the reactive
electron, when dening diffusional chemical potentials. The two approaches lead
to the same formula for the nonadiabatic ET rate below, rst proposed by
Gurney42 based on eqn (35), but the equivalent formulation of eqn (7) allows us to
consistently dene the activity coefficient of the transition state, based on the
general theory of non-equilibrium thermodynamics of charge transfer kinetics.24

3.2.2 Adiabatic versus nonadiabatic ET. It is important to distinguish the two
types of ET reactions, adiabatic and non-adiabatic, which may be coupled with
IT.25,26 In adiabatic ET, a single electron is shared between strongly coupled
reduced and oxidized states in a hybrid orbital, which slowly adjusts as the solvent
reorganizes causing the electron probability density to shi its weight between
the oxidized (acceptor) and reduced (donor) states. In cases where adiabatic ET is
coupled with either classical IT67–70 or quantum-mechanical proton transfer,65,66

quantum computations can be performed to construct an energy landscape for
specic reactants and solvents, and simple rate expressions can be derived based
on a model Hamiltonian,25,31,32,55,56,113 e.g. generalizing the Anderson–Newns
model for chemisorption on metals.114 In this theoretical framework, the nature
of the ET reaction is governed by the chemisorption function,25,31,32,113

De(3) = pHDA
2re(3) (36)

where HDA
2 = jhjAjVDAjjDij2 is the electronic coupling matrix element between

the wavefunctions of the electron donor and acceptor, jA and jD, respectively, in
the interaction potential, VDA. Inmodels of adiabatic ET, chemisorption functions
are usually dened separately for each band,31 but more generally all bands
should be included in the total electronic density of states re(3). In the wide-band
approximation for metal electrodes25,31 (the most typical situation for faradaic
reactions), the chemisorption function is evaluated at the Fermi level, De(3F).
Adiabatic ET requires strong quantum coupling of the donor and acceptor states,
which remains intact under thermal uctuations, De [ kBT.

In non-adiabatic ET for De � kBT, the reduced and oxidized quantum states
are only weakly coupled and retain their separate “diabatic” chemical identities,
until quantum tunneling of electrons from the band structure causes a transition
between these states at some energy below the diabatic crossing.38 In this regime,
the barrier prole between the diabatic states could in principle be calculated by
constrained density functional theory.39 The non-adiabatic condition is usually
satised for outer-sphere ET between well-separated donor and acceptor wave-
functions, as HDA

2 decays exponentially with separation distance at the Angstrom
scale. Following Levich, Dogonadze and Kuznetsov,26,27,30,36,48 the quantum
tunneling rate can then be approximated as a constant

kT ¼ 2De

ħ
¼ 2pHDA

2re

ħ
(37)
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using rst-order perturbation theory (Fermi's Golden Rule),25,31 where ħ = h/2p
and h = Planck's constant. Since the tunneling rate is smaller than the thermal
quantum frequency, kT � kBT/h, non-adiabatic electron transfer is a rare event at
the scale of molecular vibrations. When non-adiabatic ET is coupled with ion
transfer,103 therefore, it is possible to express the rate as an integral over the band
structure of a generalized Marcus rate expression, accounting for both the posi-
tions of the ions and the reorganization of the solvent. As the environment
uctuates, the electronic coupling between the reduced and oxidized states
remains weak and affects only the prefactor of the reaction rate via a constant
tunneling probability.

3.2.3 Nonadiabatic CIET kinetics. For non-adiabatic CIET at an electrode, we
express the reduction and oxidation rate constants as

~kred ¼
ðN
�N

~ke
g‡

~ne
~nh
e
�DGred

‡

�
kBTred3 (38)

~kox ¼
ðN
�N

~ke
g‡

e
�DGox

‡

�
kBTred3 (39)

where ~ke is the dimensionless ET coefficient, scaled to the solvent polarization
frequency, ns. This formulation can describe weakly adiabatic ET, where ~ke is
approximately independent of electron energy,25,31,52 but it is most accurate for
non-adiabatic ET in the limit of weak coupling, described above. In that case, the
electron transmission coefficient is independent of electron energy 3 and
approximately given by,

~ke ¼ HDA
2

ħns
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p (40)

where l is the solvent reorganization energy.25,26,31,32 More general expressions for
~ke are available for weakly adiabatic ET with multiple crossings based on Landau–
Zener theory.26,58,115 Note that ~ke / 1 for adiabatic ET.

The present theory contains some signicant clarications and extensions
compared to the original CIET theory of Fraggedakis et al.103 In the reduction rate,
eqn (38), we have dened the dimensionless concentration of electrons as ñe/ñh,
to be consistent with our denition of diffusional electrochemical potential of
electrons, mexe , in eqn (32), as well as the dimensionless concentrations of the
reduced and oxidized chemical species, ~cR and ~cO, respectively, in the reduction
current, eqn (14). The diffusional electrochemical potential enforces the Pauli
exclusion principle for fermions by requiring that the creation of a particle always
destroys a hole, as expressed by Fermi–Dirac statistics in eqn (32). Consistent with
the way the reduction reaction is written, eqn (7), we do not include a hole in the
reduced state. However, it is still necessary to integrate over the possible energies
of electrons created by the oxidation reaction, eqn (39), since the activation
barrier DGox

‡ is electron energy dependent. We also choose the solvent polariza-
tion frequency ns as the natural frequency scale for CIET with non-adiabatic ET, in
which case the CIET rate scales with the quantum tunneling frequency, kT.

In general, the CIET free-energy barriers for oxidation and reduction,
DGox

‡ (x,DGex) and DGred
‡ (x,DGex), respectively, depend on both the ion transfer

coordinate, x, and the excess free energy of reaction, DGex(hf,3), which in turn
depends on the formal overpotential, hf, and the electron energy, 3, sampled from
76 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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the band structure, according to eqn (33). In order to derive these relations, we
must postulate a mechanistic model for the CIET transition state, which
combines classical IT and quantum mechanical ET.
3.3 Transition state for coupled ion–electron transfer

3.3.1 Activity coefficient of the CIET transition state. We begin by specifying
the activity coefficient of the CIET transition state as the product of ionic and
electronic terms:

g‡ = gIT
‡ gET

‡ (41)

which express general entropic contributions that are assumed not to depend
on the microscopic reaction coordinates introduced below. These contributions
are rooted in the exclusion of certain states of the molecular reactants,
including ions and neutral species, as well as the electrons. The IT term
gIT
‡ mainly reects excluded volume constraints on ion transfer, which we

assume do not depend on the IT reaction coordinate of the CIET transition state
(x‡ below). For example, in cases of ion adsorption, intercalation or electrode-
position, we could set

gIT
‡ ¼ 1

1� ~c
; (42)

so that (gIT
‡ )

−1 = 1 − ~c is equal to the probability of nding a vacancy among
reactive ions with coverage ~c on the electrode/electrolyte interface.24 Other choices
for gIT

‡ might express volume exclusion among random loose packings of hard
spheres, e.g. via the Carnahan–Starling equation of state.116

In contrast, there is only one choice for the ET term gET
‡ to enforce the Pauli

exclusion principle, which prohibits any two electrons from sharing the same
quantum state. By analogy with eqn (42), we must set gET

‡ to the inverse hole
concentration,

gET
‡ ¼ 1

~nhð3Þ ¼
1

1� ~neð3Þ (43)

to reect excluded energy constraints on electron transfer in the electrode.
Consistent with the notion of diabatic states in ET theory,38 we assume that
gET‡ does not depend on the solvent reorganization coordinate at the CIET tran-
sition state (q‡ below), because the band structure of the electrode remains
unchanged by isoenergetic ET. Summarizing these general considerations, we
express universal entropic contributions to the excess free energy of the CIET
transition state as

mex,ent‡ = kBT ln g‡ = kBT ln gIT
‡ − kBT ln ñh(3) (44)

for IT and ET, respectively. For a given model of gIT
‡ , there may be additional

specic entropic contributions to the excess chemical potential landscape of the
reaction mechanism, which could contribute to temperature dependence of the
free energy barriers, DGred/ox

‡ , derived below, although it is always possible to
redene gIT

‡ to incorporate all entropic contributions to the excess chemical
potential of the transition state, mex‡ , consistent with eqn (6).
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 77
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Substituting eqn (44) and (40) into eqn (38) and (39), we arrive at more familiar
expressions for non-adiabatic reduction and oxidation rates in quantum elec-
trochemistry,25,26 rst introduced by Gurney42 and developed in detail by Levich,
Dogonadze and Chizmadzhev:26,27,36,48,50

~kred ¼ ~ke
gIT
‡

ðN
�N

e
�DGred

‡

�
kBT ~nered3 (45)

~kox ¼ ~ke
gIT
‡

ðN
�N

e
�DGox

‡

�
kBT ~nhred3 (46)

with an important new prefactor (gIT
‡ )

−1 that accounts for the entropic barrier (e.g.
from excluded volume) for IT at the transition state.24,103 The more standard
appearance of ñe in the reduction rate and ñh in the oxidation rate corresponds to
writing the net reduction reaction in the form of eqn (35), where an electron is
replaced by a hole, when the faradaic reaction occurs. We have also made the
standard approximation that the solvent polarization frequency, ns, and the
electronic coupling, HDA

2, are independent of the IT coordinate x, which should
be a good approximation for outer-sphere non-adiabatic ET. As such, the electron
transmission coefficient, ~ke, has been factored out of the integrals above.

3.3.2 Free energy barrier for nonadiabatic CIET. We postulate that the reac-
tion complex in eqn (7) explores a landscape of excess chemical potential mex driven
by thermal noise.24 Following Fraggedakis et al.,103 we construct a two-dimensional
landscape, mex(q,x), where x is again the IT reaction coordinate, and q is the ET
reaction coordinate, which describes reorganization of the solvent (or more gener-
ally, the electronic environment), as shown in Fig. 5. Following Marcus,33,37 we
postulate separate, overlapping landscapes for two diabatic quantum states,38 the
initial state O + e− and the nal state R of the reduction reaction, making harmonic
approximations of parabolic dependencies on the reorganization coordinate,

mex
1 ðq; xÞ ¼ mex

1 ðqO; xOÞ þ f1ðq; xÞ þ kO

2
ðq� qOÞ2 (47)

mex
2 ðq; xÞ ¼ mex

2 ðqR; xRÞ þ f2ðq; xÞ þ kR

2
ðq� qRÞ2 (48)

where mex1 (q,x) = mexO (q,x) + mexe (q,x) and mex2 (q,x) = mexR (q,x). The functions, f1(q,x) and
f2(q,x), describe the excess free energy of IT – without ET – in the diabatic basis
starting from local minima at the oxidized state, f1(qO,xO) = 0, or the reduced state,
f2(qR,xR) = 0, respectively. The excess free energy of reaction, eqn (33), is given by,

DGex = mex2 (qR,xR) − mex1 (qO,xO). (49)

The set of possible ET transition states corresponds to the intersection of the two
diabatic IT surfaces,

mexET(x) = mex1 (q‡,x) = mex2 (q‡,x). (50)

The most likely CIET transition state corresponds to the minimum of mexET(x), which
is attained at the IT coordinate, x‡. At each IT coordinate x, ET can occur either non-
adiabatically, by quantum tunneling at an excess chemical potential just below
mexET(x), or adiabatically, through a shared electronic state in the diabatic basis.38 As
78 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Free energy landscape for coupled ion–electron transfer (CIET)103 between diabatic
reduced (Red) and oxidized (Ox) states.38 The excess chemical potential of the reaction
complex, mex(x,q), is a function of the ion-transfer coordinate x (typically the position of
a reactive ion) and the Marcus solvent reorganization coordinate, q. The oxidized ground
state at (xO,qO) consists of the oxidized species and an electron in the electrode, and the
reduced ground state at (xR,qR) corresponds to the reduced species. The green paths
indicate ion transfer (IT) without electron transfer (ET), while the black paths indicate ET
without IT. The orange activation barrier surface is formed by the intersection of Marcus
parabolae at q‡(x), where fast, iso-energetic ET is facilitated by slow IT. The lowest energy
path in red corresponds to CIET over the saddle point at q‡(x‡). [Adapted from Fig. 4b of
Sood et al. (2021)117 by Daniel Cogswell.]
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long as the electron coupling is weak compared to the reorganization energy, HDA
2

� l, both limits lead to similar rate expressions, except for the prefactor. As noted
above, the prefactor in eqn (45) and (46) is for non-adiabatic ET.

To further simplify the problem, we make several assumptions, which can be
relaxed in some cases (below). Following most of the quantum electrochemistry
literature, we assume symmetric ET with kO = kR = k, which ensures the existence
of a unique transition state from the intersection of pairs of Marcus parabolae
with the same curvature. We also assume a separable free energy with f1(q,x) z
f1(qO,x) and f2(q,x) z f2(qR,x), which implies that ion transfer occurs indepen-
dently from solvent relaxation. These are both good approximations, whenever ET
and IT are physically separated at the Angstrom scale of quantum tunneling. For
example, the reduced state could consist of a polaron (separated ion–electron
pair) in an ion-intercalation electrode.63,103 For electrodeposition or electro-
catalysis at metal electrodes,31 these approximations break down when the
transferring ion is itself reduced for inner-sphere, adiabatic CIET,118 but they may
still hold for cases of outer-sphere or weakly adiabatic CIET.119

In principle, CIET theory can be extended (below) for the general case of
asymmetric ET with kO s kR, but this requires circumventing the mathematical
fact that parabolae with different curvatures may not intersect to determine
a well-dened transition state. The most common theoretical framework for
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 79
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asymmetric ET is based on asymmetric Marcus–Hush (AMH) theory.51,57,58,61,120

The AMH theory expands the solvent reorganization landscape mex(q,x) for small
overpotentials and large reorganization energies to obtain the rst cubic correc-
tions to theMarcus parabolae in the variable q. These terms are straightforward to
add to the general CIET free energy landscape, eqn (47) and (48), but complicate
the analysis and lose validity at large overpotentials, where the diabatic states do
not cross. Let us thus postpone the discussion of AMH theory in CIET and focus
on symmetric ET, kO = kR = k, while allowing for strong asymmetry in IT.

In the general case of symmetric ET and separable IT, we can solve for the ET
activation barrier, mexET(x), from the intersection of the Marcus parabolae, which
occurs at the solvent reorganization coordinate,

q‡ðxÞ ¼ 1

2
ðqO þ qRÞ þ DGex þ f2ðqO; xÞ � f1ðqR; xÞ

kðqR � qOÞ : (51)

For small values of the driving force, jDGexj < l, the barrier surface lies in the
normal region, qO < q‡(x) < qR, as shown in Fig. 5. For large values of the driving
force, jDGexj > l, which are always possible for some range of electron energies,
the barrier surface lies within the Marcus inverted region, where either q‡(x) < qO
or q‡(x) > qR (not shown in the gure).

Substituting eqn (51) into eqn (47) and (48), we arrive at the ET activation
barriers (at the diabatic crossings) for oxidation, eqn (24), and reduction, eqn (23),
respectively:

DGET
redðxÞ ¼ mex

1 ðq‡; xÞ � mex
1 ðqO; xOÞ

¼ f1ðqO; xÞ þ 1 ðDGex þ f2ðqR; xÞ � f1ðqO; xÞ þ lÞ2 (52)

4l

DGET
ox ðxÞ ¼ mex

2 ðq‡; xÞ � mex
2 ðqR; xRÞ

¼ f2ðqR; xÞ þ 1 ðDGex þ f2ðqR; xÞ � f1ðqO; xÞ � lÞ2 (53)

4l

where we dene the usual Marcus reorganization energy for ET,37

l ¼ k

2
ðqR � qOÞ2 (54)

which arises from the general CIET theory, as a result of our assumptions of
symmetric harmonic reorganization for ET and separable IT dependence in the
free energy landscape. Under these approximations, the solvent polarization
frequency can be expressed as 2pns ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=ms

p
,

ns ¼ 1

2p

ffiffiffiffiffiffi
k

ms

s
¼ jqR � qOj

p

ffiffiffiffiffiffiffiffi
l

2ms

s
(55)

where ms is an effective mass for harmonic oscillations along the solvent reor-
ganization coordinate, q.

For subsequent analysis, it is convenient to rewrite the CIET barriers as

DGET
red=ox ¼ f þ ðl� DGexÞ2

4l
þ Df 2

4l
� DGexDf

2l
(56)

in terms of the combined variables,
80 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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f ðxÞ ¼ 1

2
ðf1ðqO; xÞ þ f2ðqR; xÞÞ (57)

Df(x) = f2(qR,x) − f1(qO,x) (58)

which correspond to the mean and difference of the IT barriers for reduction and
oxidation, when ET occurs at a given IT coordinate x.

Fraggedakis et al.103 postulated that Df(x‡) z 0 at the CIET transition state,
which leads to the original Marcus barriers for ET,

DG
red=ox
‡ ¼ DGET

red=oxðx‡Þ ¼ DGIT
‡ þ ðl� DGexÞ2

4l
(59)

but with an extra term for an effective IT barrier, DGIT
‡ = �f (x‡), which contributes

a common Arrhenius prefactor to kred and kox. However, no conditions were given to
justify this postulate, and no formula was given for DGIT

‡ . Instead, the effective IT
barrier was expressed empirically as DGIT

‡ = aITDEIT in terms of an overall ion
transfer energy, DEIT, multiplied by a phenomenological IT coefficient, aIT z 1/2,
inspired by the Butler–Volmer equation.103 In this context, one might expect aIT
to be a symmetry factor,

x‡ = aITxO + (1 − aIT)xR (60)

reecting the position of the effective IT barrier relative to that of the oxidized and
reduced states.6,7 However, it would still be unclear whether the energy DEIT
corresponds to reduction or oxidation, except in the symmetric case of equal IT
energies with aIT = 1/2. Of course, rather than making arbitrary postulates about
the transition state, it would be more satisfying and consistent to derive such
quantities systematically from the general theory.

In principle, the CIET free energy landscape mex(q,x) could be predicted by ab
initio molecular dynamics (AIMD) quantum mechanical calculations, e.g. using
constrained density functional theory (CDFT) to compute the diabatic
states,38,39,121–124 from which the most probable solvent reorganization coordinate,
q‡(x), and barriers, DGox

‡ (x) and DGred
‡ (x), for CIET could be obtained numerically for

each IT coordinate x and inserted into the integrals for the reduction and oxidation
rates, kred and kox. In general, the excess free energy landscapes for IT in the
oxidized and reduced diabatic states, f1(q,x) and f2(q,x), respectively, may depend on
the ET solvent reorganization coordinate q, as well as the IT coordinate x.

In the following sections, we consider three asymptotic limits of CIET theory,
which correspond to rate limitation by either IT or (normal or inverted) ET. These
universal limiting cases generalize and unify Butler–Volmer and Marcus kinetics,
respectively. We then proceed to derive a simple, uniformly valid formula for all
parameter values by asymptotic matching of these limits.

4 Marcus kinetics of electron-coupled ion
transfer (ECIT)
4.1 Symmetric normal electron transfer

Here, we show that theMarcus IT barrier, eqn (59), augmented by a certain IT barrier,
eqn (62), can be derived from the general CIET theory in the limit where the ET step is
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 81
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rate limiting and the overpotential is small enough to remain in the normal region of
Marcus kinetics. To be clear, nonadiabatic ET by quantum tunneling is still instan-
taneous and isoenergetic, but the prerequisite solvent reorganization is slow
compared to IT, which may begin before ET but is rapidly completed aer ET. We
refer to this CIET reaction mechanism as “electron-coupled ion transfer” (ECIT).

In the regime of Normal ECIT, we require that both the effective IT free energy
barrier, DGIT

‡ , and the magnitude of the formal overpotential, ejhfj (converted to
an energy by the electron charge e), are smaller than the reorganization energy:

l [ DGIT
‡ ,ejhfj,kBT,De (Normal ECIT) (61)

where l [ kBT is required by eqn (25) and De � kBT for nonadiabatic ET. In this
regime of CIET theory, we shall see that the IT barrier can be expressed explicitly
in terms of the diabatic free energy landscapes as

DGIT
‡ ¼ f ðx‡Þ ¼

1

2
min

x
ff1ðqO; xÞ þ f2ðqR; xÞg (62)

where x = x‡ is the IT coordinate of the transition state, which minimizes
DGIT

‡ . Given specic models for f1(q,x) and f2(q,x), such as the linear approxima-
tions introduced below, we can use eqn (62) to determine x‡ for a specic reaction.

For a given value of x‡, let us show that the CIET barriers, DGred/ox
‡ , indeed

approach the Marcus form proposed by Fraggedakis et al., eqn (59), with
DGIT

‡ = �f (x‡) given by eqn (62) in the asymptotic limit of Normal ECIT, eqn (61).
Our goal is to prove that the rst two terms in eqn (56) dominate in the asymptotic
limit of eqn (61). We begin by stating the triangle inequality, jDfj# 2�f , since f1, f2
$ 0, which helps us show that the third term in eqn (56) is asymptotically
dominated by the rst term:

ðjDf j=2Þ2
lf

#
f
2

lf
¼ f

l
� 1 (63)

Bounding the fourth term, which directly couples the ET coordinate q and the IT
coordinate x, is more subtle. By the same argument as in eqn (63), the fourth term in
eqn (56) is also asymptotically dominated by the rst term, but only in the limit of
small driving force, jDGexj� l, shown in Fig. 6(a). Given the denition,DGex= ehf + 3F
− 3, this condition is satised at small formal overpotentials, ejhfj� l, for the most
probable electrons and holes participating in the reaction, which have energies near
the Fermi surface in the assumed limit of small thermal energy, eqn (25).

On the other hand, if the driving force is large enough to enter theMarcus inverted
region, jDGexj [ l, as shown in Fig. 6(c), then the approximation of Fraggedakis
et al., eqn (59) and (62), breaks down, although in a subtle way. In this regime, the
fourth term becomes asymptotically dominated by the second term:

2jDGexDf j
ðl� DGexÞ2 #

4
���f ���.���DGex

���
ð1� l=jDGexjÞ2 �

l=jDGexj
ð1� l=jDGexjÞ2 � 1 (64)

where we use eqn (63) in the second step, which establishes the same approxi-
mation for almost all values of the parameters, seemingly even in the limit of large
overpotentials. However, this is not correct, since the approximation always
breaks down for electrons (or holes) whose energies are close to the point of
82 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Fig. 6 Physics of ET-limited nonadiabatic CIET, or “electron-coupled ion transfer” (ECIT),
at a metal electrode, where the Marcus reorganization energy l is much larger than the ion
transfer barrier, DGIT

‡ , thermal energy kBT and chemisorption function, De. The path of the
reaction complex (red) is shown in the landscape of excess chemical potential mex(q,x)
from Fig. 5 viewed along the IT coordinate x from the oxidized state xO to the reduced state
xR in (a)–(c). The same paths are shown in (d)–(f) viewed along the ET reorganization
coordinate q from qO to qR. The theory assumes that ET occurs close to the diabatic
crossing, either by quantum tunneling or via adiabatic states with weak electronic coupling
HDA � l (red curves in (d)). The oxidized state has IT energy f1(qO,x) (green), and the
reduced state has IT energy f2(qR,x) (blue). The CIET barrier is mex‡ (x) = mex(q‡,x) (orange).
Three cases are depicted for the excess free energy of reaction,DGex= ehf + 3F− 3, the sumof
the formal overpotential hf and the electron energy 3 below the Fermi level 3F. In (a) and (d), for
unbiased ECIT with DGex = 0, the rate limiting process is ET with a large barrier l/4 (for
symmetric ET) in addition to the small IT barrier DGIT

‡ z �f(x) (light blue). In (b) and (e), electrons
at DGex = −l are able to make barrierless ET transitions, which dominate in the limit of large
negative overpotentials, and facilitate IT at a constant rate. In (c) and (f), for DGex < −l, the
reaction complex enters the Marcus inverted region with a larger ET barrier and smaller
contribution to the total current. (Inset) Tafel plot showing the scenarios (a)–(c)/(d)–(f) for
reduction, where the Tafel slope is aET for the beginning of the negative reduction branch and 1
− aET for the positive oxidation branch. On both sides, the brief Tafel regime transitions to
Marcus ECIT reaction limit current, when the overpotential exceeds the reorganization energy.

Paper Faraday Discussions

This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 83

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ee
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

2.
02

.2
6 

16
:3

2:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 3
1 

M
ee

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2.

02
.2

6 
16

:3
2:

37
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
barrierless ET, where ±DGex z −l, shown in Fig. 6(b). In this case, the second
term in eqn (56) vanishes, and, although the fourth term is still asymptotically
bounded by the rst term:

jDGexDf j
2lf

z
ljDf j
2lf

# 1 (65)

(where we use the triangle inequality again), it cannot be neglected. While only
a small range of electron or hole energies can complete barrierless ET, it is well
known that these contributions dominate in the Marcus inverted region for an
electrode. Below, we shall describe the new regime of inverted ECIT. For now, we
have shown that in the regime of Normal ECIT, eqn (61), the integration over all
electron energies 3 in eqn (45) and (46) can be performed using only the rst two
terms of eqn (59) for the CIET barrier.

The resulting asymptotic rate expression for symmetric Normal ECIT is
given by:

~kred=ox ¼ ~ke
gIT
‡

e�D ~G
IT
‡

ðN
�N

e�ðehfþ3F�3�lÞ2
�
4lkBT

1þ e�ð3�3FÞ=kBT reð3Þd3 ðNormal ECITÞ (66)

where we dene D~GIT
‡ = DGIT

‡ /kBT. The Normal ECIT rate formula is identical to
the Marcus expression for pure, symmetric ET at an electrode36,51,60,86,125 (re =

constant), except for an important new IT-dependent prefactor, which contains
the activity coefficient gIT and effective free energy barrier DGIT

‡ for IT. Recall that
the current is given by eqn (14) in terms of the kred and kox.

For an ideal metal electrode with a uniform density of electronic states (re =
constant), we recover the ~hf-dependence of MHC kinetics85 with an IT-dependent
Arrhenius prefactor,

~kred=oxz ~k0e
�D ~G

IT
‡ ~k

MHC

red=ox ðNormal ECIT; metalÞ (67)

where we dene the dimensionless characteristic rate constant,

~k0 ¼ 2~ke~re

ffiffiffiffiffiffi
p~l

p
gIT
‡

¼ HDA
2re

ħnsgIT
‡

¼ kT

2pnsg
IT
‡

(68)

with dimensional form,

k0 ¼ kT

2pgIT
‡

¼ 2

gIT
‡

De

h
(69)

and where we adopt the uniformly valid approximation of Zeng et al.60 for the
integrals in eqn (67) to dene the dimensionless MHC rate,

~k
MHC

red=ox ¼
1

2ð1þ e�~hf Þ erfc
0
@~l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
~l

p
þ ~hf

2

q
2
ffiffiffi
~l

p
1
A (70)

in terms of the dimensionless variables, ~hf = ehf/kBT, ~l = l/kBT, and ~re = rekBT.
Although various series expansions of the MHC integrals are available for
different asymptotic limits of the parameters,95,96 the closed-form approximation
of eqn (70) has the advantage of being simpler and uniformly valid for all values of
l and hf. Compared to the MHC integral, eqn (67), the maximum relative error of
eqn (70) is around 5%, while maintaining high accuracy for large and small ~l, as
84 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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well as large formal overpotentials, ~hf, since it was derived by asymptotic
matching of exact results for these limiting cases.60

The analytical approximation of the Normal ECIT rate for a metal electrode,
eqn (67)–(70), is convenient for calculations of important quantities, such as the
dimensionless exchange current,

~I0 ¼
~k0

4
e�D

~G
IT
‡

�
~cO~cR

~cO þ ~cR

�
erfc

0
BBBB@
~l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
~l

p
þ ln2

�
~cO
~cR

�s

2
ffiffiffi
~l

p
1
CCCCA ðNormal ECIT; metalÞ

(71)

which is dened by the linear response, Ĩ ∼ Ĩ0~h, where ~h = ~hf + ln(~cR/~cO) is a small
total overpotential, j~hj � 1. In contrast to phenomenological BV theory, eqn (4), the
exchange current for ECIT does not have simple power-law dependence on the
reactant concentrations, ~cO and ~cR. CIET kinetics is also non-separable, in the sense
that the current cannot be expressed as a function of overpotential times a function of
concentrations, in contrast to the separable form of the phenomenological BV
equation, eqn (1). Note that for the typical low-temperature regime, ~l [ 1, the
exchange current for symmetric ECIT has an Arrhenius temperature dependence,
~I0 � e�D~G

ECIT
‡ , with

D ~G
ECIT

‡ ¼ D ~G
IT

‡ þ
~l

4
(72)

where the second term is the classical Marcus activation barrier for
symmetric ET.

Eqn (66) is themain of Fraggedakis et al.,103 but here we clarify its range of validity,
eqn (61), and provide an explicit formula for the effective IT barrier in eqn (62). The
analytical approximation for normal ECIT at metal electrode, eqn (67)–(70), has
already been widely used in modeling Li-ion batteries,98,99,104,105,126–128 metal
electrodeposition100–102 and solid-oxide fuel cells,110 but without a clear understanding
of its applicability and microscopic interpretation provided here. Since the (scaled)
MHC rates tend to unity at large formal overpotentials,

lim
~hf/�N

~k
MHC

red ¼ lim
~hf/N

~k
MHC

ox ¼ 1; (73)

the Normal ECIT rate for a metal electrode also extrapolates to a constant,

lim
~hf/HN

~kred=ox ¼ ~k0 e
�D ~G

IT
‡ ðNormal ECIT; metalÞ (74)

but it is important to recognize that this limit is not physically valid, since it
exceeds the range of validity of Normal ECIT, ejhfj � l. Even when ET is slow
compared to IT, DGIT

‡ � l, a more general analysis of CIET theory is required to
account for Inverted ECIT at large overpotentials, which leads to a somewhat
different formula for the limiting reaction rate (below).
4.2 Asymmetric normal electron transfer

Although the vast majority of ET models are symmetric, as noted above, there has
been growing interest in the asymmetric Marcus–Hush model,51,120 led by Compton
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 85
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et al.57,58,129–131 for faradaic reactions involving inner-sphere ET. The AMH model
introduces cubic terms in the free-energy landscape, which approximate the different
nonlinear solvation characteristics of the reduced and oxidized states.55,56 While the
intersection of these diabatic surfaces is not always guaranteed at large over-
potentials, the transition state always exists – by denition – for asymmetric Normal
ECIT, by restriction to sufficiently small overpotentials.

For inner-sphere ET, the vibrational force constants are generally different for
the reduced and oxidized states. In AMH theory,51,120 this asymmetry is controlled
by a new dimensionless parameter, g, which can be expressed in terms of the
inner-sphere reorganization energy li as

g ¼ li

l

P
s

ksðDqsÞ2D ~kP
s

ksðDqsÞ2
(75)

where we dene the dimensionless difference

D ~k ¼ kO;s � kR;s

kO;s þ kR;s

(76)

and the harmonic mean

ks ¼ 2kO;skR;s

kO;s þ kR;s

(77)

of the inner-shell force constants, kR,s and kO,s, of the reduced and oxidized states
along the generalized solvent coordinate, Dqs, of the sth phonon mode.58 The sign
of g determines whether the larger force constants are in the oxidized (g > 0) or
reduced (g < 0) states, while g = 0 for the symmetric case.

For asymmetric Normal ECIT in the AMH approximation, the generalization of
the quadratic CIET barrier, eqn (59), is a cubic function of DGex:

DG
red=ox
‡ ¼ DGIT

‡ þ l

4

�
1� DGex

l

�2

þg

4
ðDGexÞ

"
1�

�
DGex

l

�2
#
þ g2l

16
(78)

where the effective IT energy barrier is given by

DGIT
‡ ¼ min

x
fð1� aETÞf1ðqO; xÞ þ aETf2ðqR; xÞg (79)

in terms of the ET symmetry factor

aET ¼ 1

2
þ g

4
(80)

which is obtained by linearizing eqn (78) in the limit jDGexj � l. A hallmark of
CIET is that the weights for the IT energies of the reduced and oxidized states,
f1(qO,x) and f2(qR,x), in the effective IT barrier DGIT

‡ are determined by the assumed
symmetry of solvent reorganization controlling ET.

For a metal electrode, the rate integrals for asymmetric Normal ECIT can be
approximately evaluated as

~kred=oxz ~k0e
�D ~G

IT
‡ ~k

AMH

red=ox ðasymmetric Normal ECIT; metalÞ (81)
86 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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using the asymptotic approximation of Zeng et al.61 for AMH kinetics:

~k
AMH

red=oxz
~k
MHC

red=ox$exp

(
� g~hf

4~l

"
1�

�
~hf

~l

�2
#
� g2~l

16

)
(82)

which reduces to MHC kinetics for g = 0.
Although nonlinear solvation effects in ET can break symmetry in the reduc-

tion and oxidation rates, they still cannot explain Tafel's law. The symmetry
factor, aET, was derived by linearization for small values of DGex and does not hold
at large formal overpotentials. In order to predict linear Tafel plots, one must
consider CIET rate limitation by asymmetric IT.

5 Butler–Volmer kinetics of ion-coupled
electron transfer (ICET)

Ion transfer tends to be asymmetric when coupled with nonadiabatic ET, since
the compensating electron occupies different wavefunctions in the reduced and
oxidized states, leading to differences in both the electrostatic energy and coor-
dination chemistry of the ions. As such, we can generally characterize the IT
barriers for reduction and oxidation with distinct free energy differences, bred and
box, respectively. Without loss of generality, we assume f1(q,x) # bred and f2(q,x) #
bred in the CIET landscape of excess chemical potential, eqn (47) and (48).
Assuming the coupled ET is characterized by a reorganization energy, l, we now
turn our attention to the opposite limit of IT rate limitation,

bred/ox [ l,ejhfj,kBT,De (ICET) (83)

which we refer to as “ion-coupled electron transfer” (ICET), when ET occurs suddenly
in response to slow IT, as shown in Fig. 7. (The term “ICET”was perhaps rst used by
Daniel Nocera in 2022, private communication.) Here we develop a detailed theory for
the nonadiabatic case, but we argue below that similar results hold for adiabatic
ICET. In contrast to ECIT, eqn (61), which corresponds to a regular limit of CIET
theory, the ICET limit, eqn (83), is singular and must be treated with care.

As noted in the introduction, Butler18 was the rst to consider what we call
“ICET” in the singular limit of innitely fast ET, l/ 0. In that case, as illustrated
in Fig. 7, the parabolic ET contributions to the CIET activation barriers diverge in
eqn (52) and (53) for all values of the IT coordinate x as l / 0:

lim
l/0

DGET
redðxÞ ¼

(
f1ðq0; x‡Þ if x ¼ x‡
N if xsx‡

(84)

lim
l/0

DGET
ox ðxÞ ¼

(
f2ðqR; x‡Þ if x ¼ x‡
N if xsx‡

(85)

except at special values of x = x‡ where those terms identically vanish. These
transition state values of the IT coordinate are determined implicitly by inter-
sections of IT free energy landscapes for reduction and oxidation, shied by the
overpotential:

DGex + f2(qO,x‡) = f1(qR,x‡) (86)
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 87

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Fig. 7 Physics of IT-limited non-adiabatic CIET, or “ion-coupled electron transfer” (ICET),
at a metal electrode, where the ion transfer barrier, DGIT

‡ , exceeds the reorganization
energy l, thermal energy kBT and chemisorption function, De. In this limit, the path of the
reaction complex (red) is shown in the two dimensional landscape of excess chemical
potential mex(q,x), shown in Fig. 5, viewed along the IT coordinate x from the oxidized state
xO to the reduced state xR, in (a)–(c), and the dependence on the ET solvent reorganization
coordinate q is shown for the same cases in (d)–(f). The oxidized state has IT energy f1(qO,x)
(green), and the reduced state has IT energy f2(qR,x) (blue). The CIET barrier is
mex‡ (x) = mex(q‡,x) (orange). Three cases are depicted for the excess chemical potential
applied between the reduced and oxidized states, DGex = ehf + 3F − 3, which is the sum of
the formal overpotential hf and the electron energy 3 below the Fermi level 3F, sampled
from the band structure of the electrode re(3) according to the Fermi–Dirac distribution
ñe(3): in (a) and (d) for unbiased ICET with DGex = 0, the rate limiting process is IT with
a large barrier box (in the reduction direction) in addition to the small ET barrier l/4 (light
blue). In (b) and (e) for moderate overpotentials, DGex < 0, Butler–Volmer kinetics holds for
ICET. In (c) and (f) at even larger driving force,DGex <−box− l, the reaction complex enters
theMarcus inverted region of ECIT, as the ion sits at the oxidized state before ET triggers IT
to complete the reaction. (Inset) Tafel plot showing the scenarios (a)–(c) for reduction,
where the Tafel slope is aIT= bred/(bred + box) for the negative reduction branch and 1− aIT
for the positive oxidation branch. On both sides, the straight-line Tafel regime transitions
to a reaction limited current for Inverted ECIT, when the overpotential exceeds the ion-
transfer energy.
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Of course, we must assume (for now) that such intersections exist, which is ex-
pected up tomoderately large overpotentials,−box <DG

ex < bred, and guaranteed if
f1(qO,x) and f2(qR,x) are also monotonic functions.

The general formula eqn (86) determines the transition state IT coordinate,
x‡(DG

ex), for any intersecting f1(qO,x) and f2(qR,x) in the limit l / 0, but we now
introduce a critical approximation, which leads to BV kinetics for sufficiently
small but nite l. Following Gurney42 and Butler,18 it is convenient to assume
linear dependence of the IT free energy landscapes,

f1ðqO; xÞ ¼ bred

�
x� xO

xR � xO

�
(87)

f2ðqR; xÞ ¼ box

�
xR � x

xR � xO

�
(88)

as sketched in Fig. 8, but we make this approximation in the general quantum-
mechanical framework of CIET theory, eqn (47) and (48). We assume asym-
metric IT and symmetric IT with small but nite l, in the ICET regime, eqn (83),
for general situations as sketched in Fig. 7. Note that bred and box have units of
energy, since we have rescaled the IT reaction coordinate x by the total
displacement, (xR − xO), from the oxidized state to the reduced state.

By minimizing the free energy barrier, we nd that the transition state occurs
at the following coordinates,
Fig. 8 Free energy landscape of IT-limited CIET, which we refer to as “ion-coupled
electron transfer” (ICET), in the linear approximation of the ion-transfer coordinate x

dependence of free energy of the diabatic reduced and oxidized states, eqn (87) and (88),
respectively. For nonadiabatic ET, this approximation enables a quantum mechanical
derivation of the Butler–Volmer equation, eqn (1), with the charge transfer coefficient (or
symmetry factor), a, given by eqn (91) and the exchange current I0 given by eqn (101) and
(102). The quantum BV equation based on nonadiabatic CIET theory is valid for IT rate
limitation, eqn (83), where the IT free energies bred/ox are much larger than the reorga-
nization energy l, thermal energy kBT, formal overpotential ejhfj, and electronic coupling
jHDAj. [Adapted from Fig. 5a of Fraggedakis et al. (2021).103]
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q‡ = aITqR + (1 − aIT)qO (89)

x‡ ¼ aITxO þ ð1� aITÞxR þ ðlð1� 2aITÞ þ DGexÞðxR � xOÞ
ðbred þ boxÞ

(90)

where the charge transfer coefficient (or symmetry factor) for IT takes the Gurney–
Butler form,7,18,42

aIT ¼ bred

bred þ box

: (91)

Using eqn (33), the free energy barriers for ICET can then be expressed in
terms of the formal overpotential, hf, and the electron energy relative to the Fermi
level, 3 − 3F:

DGred
‡ = aITDG

ex + DGICET
‡ (92)

DGox
‡ = −(1 − aIT)DGex + DGICET

‡ (93)

as well an overall activation energy for ICET controlling the reaction rate
prefactor,

DGICET
‡ ¼ DGET

‡ þ DGIT
‡ (94)

which is the sum of a contribution from ET

DGET
‡ ¼ aITð1� aITÞl ¼ bredboxl

ðbred þ boxÞ2
(95)

and another from IT

DGIT
‡ ¼ aITð1� aITÞðbred þ boxÞ ¼

bredbox

bred þ box

: (96)

The ET part of the ICET activation energy, eqn (95), is an asymmetric general-
ization of the Marcus barrier for symmetric ET, DGET

‡ = l/4 for aIT = 1/2, which
also arises in our result for the ECIT barrier above in eqn (72). The IT part of the
ICET activation energy, eqn (96), is likewise an asymmetric generalization of the
activation energy for symmetric ECIT, eqn (62), since we have

DGIT
‡ = (1 − aIT)f1(qO,x) + aITf2(qR,x) (97)

which does not depend on x in the linear approximation. This expression also
matches the expected IT barrier for asymmetric ET-limited CIET, eqn (79), if we set
aET = aIT= a, which supports the physical picture that IT is the dominant source of
asymmetry in CIET.

Substituting into eqn (45) and (46) and using eqn (33) and (14), we can derive rate
expressions for ICET,

~kred ¼
 

~ke
gIT
‡

e
� ~DGICET

‡

!
e�aehf=kBT

ðN
�N

eað3�3FÞ=kBT ~neð3Þreð3Þd3 ðICETÞ (98)

~kox ¼
 

~ke
gIT
‡

e
�~DGICET

‡

!
eð1�aÞehf=kBT

ðN
�N

e�ð1�aÞð3�3FÞ=kBT ~nhð3Þreð3Þd3 ðICETÞ (99)
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where D~GICET
‡ = DGICET

‡ /kBT. By converting from formal to total overpotential
using eqn (9), we nally arrive at the BV equation (for one electron transfer),

Ĩ ICET = Ĩ ICET0 (e−a~h − e(1−a)~h) (100)

with all parameters determined by the quantum theory of ICET. The charge
transfer coefficient, a = aIT, is given by eqn (91), as predicted by Gurney–Butler
theory,7,18,42 but CIET theory also provides a quantum-mechanical formula for the
BV exchange current for ICET, given by

~I
ICET

0 ¼ ~ke ~NeðaÞe�D ~G
ICET
‡

 
~cO

1�a~cR
a

gIT
‡

!
(101)

where we dene a dimensionless prefactor

~NeðaÞ ¼
ðN
�N

eað3�3FÞ=kBT

1þ eð3�3FÞ=kBTreð3Þd3 (102)

which can be interpreted as the relative number of electronic states participating
in ET as a function of a, the charge transfer coefficient for IT.

The quantum-mechanical BV exchange current density predicted by ICET
theory, eqn (101) and (102), differs from that of phenomenological IT theory, eqn
(4), in several fundamental ways. First, the activities aO and aR have been replaced
by concentrations, ~cO and ~cR, respectively. Second, the empirical lumped pre-
factor, nekBV0 ae

n(1−a), has been replaced by the product of the electron trans-
mission coefficient ~ke, the effective number of participating electronic states
Ñe(a), and an Arrhenius prefactor, where the activation energy, DGICET

‡ , is
expressed in terms of both the ET reorganization energy and the mean IT barrier.

The factor Ne(a) rescales the BV reaction rate according to the number of
accessible electronic states near the Fermi level in the band structure of the
electrode, re(3). It is also a sensitive function of the charge-transfer coefficient, a,
because asymmetry in the IT energy landscape increases the range of electron and
hole energies that can contribute to the rate for a given formal overpotential. In
the case of a metallic electrode with re = constant, this integral can be evaluated
by residue calculus,

~NeðaÞ ¼ ~re

ðN
�N

ea~3

1þ e~3
d~3 ¼ p~re

sinðpaÞ ðmetalÞ (103)

to complete a simple analytical formula for the reaction rate. For symmetric IT,
a= 1/2, a minimum of Ñe = p~re is attained, while Ñe /N for highly asymmetric
IT, a / 0 or a / 1, as the number of electrons diverges due to the nearly at IT
energy landscape of either the reduced or the oxidized state. It is important to
recognize that a / 0, 1 is a pathological limit of the ICET model using the
Gurney–Butler linear approximation of the IT free energy landscapes, since the
transition state x‡ for many electron levels will lie far outside the physically
meaningful range, xO # x # xR.

CIET theory thus provides a rigorous, quantum-mechanical derivation of
Butler–Volmer kinetics, including Tafel's limiting law, which claries its range of
applicability and underlying physics (apparently for the rst time). We see that
the BV equation is valid for IT-limited CIET (or ICET) satisfying eqn (83), as long
as the overpotential is not so large that Tafel's law breaks down. For a metal
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 91
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electrode, the quantum-mechanical ICET exchange current has the following
dimensional form:

I ICET0 ¼ I*0 e
�DGICET

‡ =kBT
�
~cO

1�a~cR
a

gIT
‡

�
(104)

where

DGICET
‡ = a(1 − a)(l + bred + box) (105)

and

I*0 ¼ ens
A

As

~ke ~NeðaÞ ¼ eDe

h

A

As

1

sinðpaÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
pkBT

l

r
(106)

The importance of ET in quantum Butler–Volmer kinetics of ICET is underscored
by the presence of the dimensionless Marcus reorganization energy, l, in both the
exchange current prefactor, I*0 , and the activation barrier, DGICET

‡ .
6 Barrierless ECIT at the end of Tafel's law

“In spite of almost a century of conrming data, there is still a frontier in the study of
Tafel's law. Is there an overpotential at which it will break down?” (ibid., p. 1511).7

CIET theory is nally able to answer to this question. As shown in Fig. 8, the
phenomenological derivation of the BV equation clearly breaks down when the
formal overpotential exceeds the chemical barriers for IT. In that case, the tran-
sition state can no longer be identied without considering coupled Marcus
kinetics of ET. The general denition of these barriers is given in terms of the
diabatic free energy surfaces by

bred ¼ maxxO # x# xRff1ðqO; xÞ � f2ðqR; xÞg
box ¼ maxxO # x# xRff2ðqR; xÞ � f1ðqO; xÞg (107)

as shown in Fig. 7. If the formal overpotential further exceeds the following
bounds set by the reorganization energy,

DGex\ � ðlþ boxÞ
DGex . lþ bred

ðInverted ECITÞ (108)

then barrierless transitions become possible, which will dominate the current as
usual, according toMarcus theory formetal electrodes.25,51 CIET theory thus predicts
a universal transition from either Marcus kinetics of Normal ECIT or Butler–Volmer
kinetics of ICET to a new regime of “Inverted ECIT” at large overpotentials, where
Tafel's law breaks down. In the case of ICET at ametal electrode, a constant reaction-
limited current is attained, dominated by barrierless transitions, which are always
possible at large overpotentials for some electrons deep within the Fermi sea. The
scale of this transition region is set by l for non-adiabatic CIET, but below we argue
that the basic concept of a reaction-limited current beyond Tafel's law should still
hold for adiabatic CIET with the scale set instead by De.

The basic physics of Inverted ECIT are sketched in Fig. 7 for the case of a tran-
sition from ICET at low overpotentials to Inverted ECIT at large overpotentials.
When the free energy of reaction leaves the ICET range, −box < DGex < bred, the IT
coordinate of the lowest-energy transition state becomes pinned at a value that
92 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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attains one of the bounds in eqn (107). If the diabatic curves are monotonic across
the IT range, xO < x < xR, then the IT coordinate of the Inverted ECIT transition state
is pinned at its equilibrium value (in the absence of any overpotential):

x‡ �
(
xO for DGex\ � box

xR for DGex . bred

(109)

as the ions await ET to trigger the ECIT reaction. For sufficiently large excess free
energies of reaction satisfying, eqn (108), the diabatic IT curves, f1(qO,x) and
f2(qR,x), no longer intersect, as shown in Fig. 7(c), and the transition state arises in
the Marcus inverted region for ET, shown in Fig. 7(f).

Following our derivation of ECIT kinetics above, the corresponding activation
barriers take the form,

DGred
‡ z

ðlþ box þ DGexÞ2
4l

for DGex\ � box (110)

DGox
‡ z

ðlþ bred � DGexÞ2
4l

for DGex . bred (111)

Compared to the original Marcus theory for ECIT, eqn (59), the excess free energy
of reaction, DGex, is now shied by a certain IT free energy, bred or box, generally
given by eqn (107). Although it may seem counter-intuitive, the reduction (or
oxidation) rate for large negative (or positive) overpotentials is controlled by the
opposite IT free energy for oxidation (or reduction), respectively, which sets the
other side of the ECIT transition state, following ET and prior to IT.

For a metallic electrode (re = constant), the asymptotic activation barriers in
eqn (110) and (112) imply that Tafel's law smoothly transitions to a reaction-
limited current according to shied Marcus ECIT curves, which are generally
different for reduction

Ĩ ∼ ~k0~cO ~kMHC
red (~l,~hf + ~box) for ~hf < −~box (112)

and for oxidation

Ĩ ∼ ~k0~cR ~kMHC
ox (~l,~hf − ~bred) for ~hf > ~bred (113)

based on different shis of the MHC formula, eqn (70). Since ~kMHC
red/ox/ 1 as jhfj/

N, CIET theory thus predicts a universal limited reaction rate for metallic elec-
trodes corresponding to barrierless ECIT,

lim
~hf/�N

~I ¼ ~I
CIET

lim ~cR=O ðmetalÞ (114)

where the dimensionless limiting current in the standard state, (~cR/O= 1), is given
by ĨCIETlim = ~k0, or, with units restored,

ICIETlim ¼ eHDA
2re

ħgIT
‡

A

As

¼ ekT

2pgIT
‡

A

As

¼ 2De

h

e

gIT
‡

A

As

(115)

An important prediction of CIET theory for metal electrodes is that the universal
limiting current is fully quantum mechanical with vanishing activation energy,
i.e. no Arrhenius dependence on temperature. As anticipated above, the universal
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 93
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CIET limiting current differs from the extrapolated limiting current of Normal
ECIT, eqn (74), by the absence of the IT activation energy barrier, DGIT

‡ / 0, which
has been overcome by the applied overpotential. Instead, the CIET limiting
current is set by the quantum tunneling current, ekT, for barrierless transitions
between the donor and acceptor states and scales with the number of reacting
surface sites A/As and the inverse activity coefficient of the IT transition state,
(gIT

‡ )
−1, which is proportional to its excluded volume.

We expect that it would be difficult to unambiguously observe the CIET reaction-
limited current for a given faradaic reaction experimentally. At such large over-
potentials, exceeding all IT and ET barriers for the desired reaction, various side
reactions would likely also be triggered, e.g. contributing to rapid growth of solid-
electrolyte interphase (SEI) or bubble generation on the metal surface. Transport
limitation leading to concentration polarization and ohmic drops from series
resistances are also difficult to avoid, whenever large faradaic currents are achieved.
The key to testing this prediction of CIET theory thus would be to nd ways to slow
down both IT and ET, for example with electrode compositions that suppress IT by
enhancing ion crowding, gIT‡ [ 1, and resistive electrode coatings to limit ET.

7 Uniformly valid approximation for CIET kinetics

In the preceding three sections, we have derived general limiting expressions for
the faradaic current by CIET, regardless of the details of the diabatic free energy
landscape, in three asymptotic limits:

(1) Normal Marcus kinetics of ECIT for l [ bred/ox,ejhfj,kBT,De with a new IT-
dependent prefactor,

(2) Butler–Volmer kinetics of ICET for bred/ox [ l,ejhfj,kBT,De with a new
quantum-mechanical formula for the exchange current, and

(3) Inverted Marcus kinetics of ECIT for ejhfj > bred/ox + l in a new “post-Tafel”
regime, shied by the red/ox IT energies.

Our CIET theoretical framework thus unies and justies the famous limits of
BV kinetics for IT and Marcus kinetics for nonadiabatic ET. More importantly, it
can also provide uniformly valid rate expressions that interpolate between these
limits, for any specic model of the diabatic free-energy landscapes, which leads to
a rich set of new kinetic models for CIET. For accurate predictions, the diabatic
states can be modeled by CDFT or other ab initio quantum calculations, but it can
be evenmore useful (at least for experimentalists and engineers) to develop simple,
uniformly valid analytical approximations for the CIET reaction rates by asymptotic
matching of the results above. The resulting alternatives to (and extensions of) the
BV equation can then be tted to experiments to infer microscopic parameters and/
or used in engineering simulations of electrochemical systems.

Asymptotic matching requires nding mathematical expressions that uphold
known asymptotic limits and interpolate smoothly between them, while
balancing accuracy (to be checked against the full model and/or experimental
data) and elegance (analytical simplicity for modeling and simulation). Uniformly
valid asymptotic approximations of pure ET kinetics are already available in both
symmetric (MHC)61 and asymmetric (AMH)61 forms and were used above to model
the corresponding ECIT limits of CIET kinetics. It is more challenging to develop
such approximations for the general CIET theory, because the free energy land-
scape is two-dimensional and must be described with sufficiently simple
94 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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approximations (e.g. low-order polynomials) to allow evaluation of the Fermi
integrals. In order to do so and illustrate the overall form of a complete CIET
theory, we shall make somewhat more restrictive assumptions, leaving open the
possibility of deriving more accurate, general approximations in the future.

We consider the simplest possible approximation of the free energy landscape,
which imposes strict constraints on the IT coordinate, xO# x# xR, in themodel of
ICET above, motivated by the transition to ECIT in eqn (109). We postulate that
the diabatic free-energy surfaces are parabolic in the ET reorganization coordi-
nate q and linear in the IT coordinate x,

f1ðqO; xÞ ¼ bred

�
x� xO

xR � xO

�
; for xO # x# xR (116)

f2ðqR; xÞ ¼ box

�
xR � x

xR � xO

�
; for xO # x# xR (117)

fi(q,x) = N, for x < xR, x > xO, i = 1, 2 (118)

while diverging outside the allowed range of IT coordinates. These truncated
linear approximations of the diabatic free energy surfaces allow us to derive
uniformly valid asymptotic approximations of the CIET rates for both symmetric
and asymmetric IT.
7.1 Symmetric nonadiabatic CIET

For symmetric IT, where bred = box = b, the free energy barriers in this model can
be written compactly as

DG
red=ox
‡ ¼

8>>>>>>>>><
>>>>>>>>>:

1

4l
ðlþ b� DGexÞ2 for HDGex . b

1

2

�
l

2
þ b� DGex

�
1

4l
ðlþ b� DGexÞ2 � DGex

for jDGexj\b

for � DGex . b

(119)

which satises the De Donder relation, eqn (27), in the form,

DGred
‡ − DGox

‡ = DGex. (120)

These approximate barriers can be inserted into the Fermi integrals to obtain the
CIET rates for a general electrode,

~kred=ox ¼ ~ke
gIT
‡

ðN
�N

e�D
~G
red=ox

‡ ~reð~3Þd~3
1þ e�~3

(121)

where ~3 = (3 − 3F)/kBT. These uniformly valid approximations are nearly exact for
the truncated linear models in eqn (116)–(118). They also reproduce the barriers
derived above in the three asymptotic regimes of the general theory, while
interpolating smoothly between them with continuously differentiable functions.
Aer integration over the electron energies, the rate formulae in eqn (139) thus
possess two continuous derivatives.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 95
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In order to obtain a simple formula, we consider the typical case of a metal
electrode, ~re = constant, and replace the Fermi–Dirac functions with Heaviside
step functions,25,60

1

1þ e�~3
zHðH~3Þ (122)
Fig. 9 Unification of Butler–Volmer and Marcus kinetics: uniformly valid approximation of
symmetric nonadiabatic CIET kinetics at a metal electrode, eqn (123). (a) Linear–log plot of
the dimensionless oxidation rate constant, ~kox, scaled to the universal limiting rate k0 in the
standard state (~cO = ~cR = 1), versus dimensionless formal overpotential, ~hf, scaled to kBT/e,
for three cases of reorganization energy, ~l, and ion transfer free energy, ~b (scaled to kBT).
Dashed curves show the asymptotic approximations for ICET for ~hf < ~b and for ECIT for ~hf >
~b, which have been matched to obtain the uniformly valid approximations (solid curves).
(b) Tafel plot of the absolute value of the CIET current, j~Ij, scaled to the limiting current,
ek0, versus dimensionless formal overpotential for the cases in (a), assuming standard
conditions for the reactants, ~cO = ~cR = 1. For ICET over a wide range of formal over-
potentials, kBT � ehf � b, the theory is able to exactly reproduce Tafel's law, eqn (2), and
predict its breakdown, as explained in Fig. 7.
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which is valid for low temperatures, kBT � l,b, as required for validity of tran-
sition state theory. We also neglect the high-energy Marcus tails for reverse bias
(±DGex > b) in eqn (119), which introduces only exponentially small errors,
slightly violating the De Donder relation, eqn (120). This allows us to perform the
integrals in eqn (139) to obtain closed-form uniformly valid approximations for
the symmetric CIET rate constants (Fig. 9),

~k
uni

red=ox

~k0M
�
~hf

� ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Butler� Volmer ICET kinetics for H~hf\~b:

e�
~l=4ffiffiffiffiffiffi
p~l

p e�ð�~hfþ~bÞ=2

Marcus ECIT kinetics for H~hf . ~b:

1

2

"
erf

 ffiffiffi
~l

p
2

!
� erf

 
~lþ ~b� ~hf

2
ffiffiffi
~l

p
!#

þ e�
~l=4ffiffiffiffiffiffi
p~l

p
(123)

where we scale the rate constants to their universal limiting value k0 in eqn (69)
and introduce an asymptotic matching factor, M(~hf), which interpolates between
the exact prefactors for large and small overpotentials derived above. This factor is
required for mathematical accuracy in the asymptotic limits, but could be set to
M = 1 in most cases, given the crude physical accuracy of the truncated linear
approximation of the diabatic free energy landscape, eqn (118).

If high mathematical accuracy is desired for this physical model, then the
matching factor can be chosen to correct for small errors introduced in eqn (123)
compared to the exact integral formula, eqn (139), resulting from the low-
temperature approximation, eqn (122). At high formal overpotentials, j~hfj [ 1,
the approximation of eqn (123) reaches a limiting rate given by

1

MN

¼ 1

2

"
erf

 ffiffiffi
~l

p
2

!
þ 1

#
þ e�

~l=4ffiffiffiffiffiffi
p~l

p (124)

which slightly over-estimates the correct universal value, ~kred/ox / ~k0, but rapidly
converges in the relevant low-temperature limit, ~l [ 1. For example, M−1

N = 1.2
for ~l = 1, and M−1

N = 1.02 for ~l = 4. For small formal overpotentials, j~hfj � 1, we
must set

M0 ¼ p

2
(125)

in order to recover the exact exchange current for ICET, eqn (101). The transition
from this value to the limiting value should occur for j~hfj > ~b over a range set by ~l,
so we could choose the matching function to be

M
�
~hf

� ¼ M0 �MN	
1þ e�ð~hfþ~bÞ=~l
	1þ eð~hf�~bÞ=~l
þMN (126)

where we control the transition with Fermi–Dirac functions (Fig. 10). The
asymptotic matching prefactor factor, M(~hf), introduces some curvature of the
Tafel plot for ICET, even at low formal overpotentials, which physically corre-
sponds to smoothing of the sharp minima in the truncated linear approximations
of the diabatic free energy landscape.
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Fig. 10 Asymptotic matching function, M(~hf), plotted for the ICET regime with parameters
shown for symmetric cases, eqn (124)–(126), and asymmetric cases, eqn (130)–(132) with l ̃= 5.
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As shown in Fig. 11, this formula smoothly interpolates between BV kinetics of
ICET and Marcus kinetics of ECIT. The theory is thus able to predict Tafel's law
from quantum electrochemistry. Unlike previous ET or IT theories, CIET theory
predicts Tafel's law in the limit of IT rate limitation (ICET) across a wide range of
formal overpotentials, kBT � jehfj � b, while also predicting its failure by tran-
sition to ET limitation (Inverted ECIT) at large overpotentials, jehfj [ b.

7.2 Asymmetric nonadiabatic CIET

For asymmetric IT, where bred s box and thus a s 1/2, we must nd a simple
approximation for the CIET barrier under the truncated linear approximations,
eqn (116)–(118), which reproduces the BV equation and Tafel's law in the ICET
regime of moderate overpotentials, while smoothly transitioning to the exact
limiting current for barrierless ECIT at large overpotentials. As a generalization of
the symmetric case, eqn (119), we propose the following approximations:

DGred
‡ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

a

4ð1� aÞlð2ð1� aÞlþ box þ DGexÞ2

aðð1� aÞlþ box þ DGexÞ

for DGex\ � box

for � box\DGex\bred

1� a

4al
ð2alþ bred � DGexÞ2 þ DGex for DGex . bred

DGox
‡ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

a

4ð1� aÞlð2ð1� aÞlþ box � DGexÞ2 � DGex

ð1� aÞðalþ bred � DGexÞ

for DGex\ � box

for � box\DGex\bred

1� a

4al
ð2alþ bred � DGexÞ2 for DGex . bred

(127)
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Fig. 11 Tafel's law and its breakdown at large overpotentials: uniformly valid approxi-
mation of asymmetric nonadiabatic ICET kinetics at a metal electrode, eqn (128) and (129).
(a) Linear–log plot of the dimensionless oxidation rate constant, ~kox, (~cO = ~cR = 1), versus
dimensionless formal overpotential, ~hf, for three cases of ~l, ~bred and ~box. Dashed curves
show the asymptotic approximations for ICET (−~box < ~hf < ~bred) and for ECIT (~hf <−~box, ~hf >
~bred), which have been matched to obtain the uniformly valid approximations (solid
curves). (b) Tafel plot of the absolute value of the dimensionless CIET current, j̃Ij, versus ~hf
for the cases in (a), assuming ~cO = ~cR = 1.
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where below we shall again neglect the high-energy Marcus tails for reverse bias
(DGex > bred for reduction and DGex < −box for oxidation) with exponentially
small errors, violating the De Donder relation, eqn (120). These approximations
of the barriers are continuously differentiable, so the associated reaction rate
constants will be continuously twice differentiable aer performing the Fermi
integrals. In order to achieve such smooth approximations, we have modied
the curvature of the Marcus parabolae, by replacing l with al/(1 − a), but this
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 99
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only affects the transition from the exact quantum Tafel's law to the barrierless
ECIT limiting current. Moreover, this approximation effectively blurs the
distinction between asymmetric ET and IT at large overpotentials, where we set
a z aIT z aET for the general case of asymmetric CIET.

Again, we take the low temperature limit of the Fermi–Dirac distributions, eqn
(122), and perform the rate integrals, eqn (139), now using the approximate barriers
in eqn (127) to obtain closed-form uniformly valid approximations for the asym-
metric CIET rate constants for reduction,

kuni
red

k0M
�
~hf

� ¼

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Butler� Volmer ICET kinetics for ~hf . � ~box:

e�aðð1�aÞ~lþ~boxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að1� aÞp~l

q e�a~hf

Marcus ECIT kinetics for ~hf\ � ~box:

1

2

2
64erf� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� aÞ~l
q �

� erf

0
B@2ð1� aÞ~lþ ~box þ ~hf

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞ~l

.
a

r
1
CA
3
75

þ e�að1�aÞ~lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að1� aÞp~l

q

(128)

and for oxidation,

kuni
ox

k0M
�
~hf

� ¼

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Butler� Volmer ICET kinetics for ~hf\~bred:

e�ð1�aÞða~lþ~bredÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að1� aÞp~l

q eð1�aÞ~hf

Marcus ECIT kinetics for ~hf . ~bred:

1

2

2
64erf� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að1� aÞ~l
q �

� erf

0
B@2a~lþ ~bred � ~hf

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a~l
.
ð1� aÞ

r
1
CA
3
75

þ e�að1�aÞ~lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að1� aÞp~l

q

(129)

where we have multiplied the oxidation rate by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� aÞ=ap

and the reduction rate byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð1� aÞp

in order to approximate the correct limiting behavior at large over-
potentials. In particular, the dimensionless rate constants now tend to a limiting value,

1

MN

¼ 1

2

�
erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ~l

q �
þ 1

�
þ e�að1�aÞ~lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4að1� aÞp~l
q (130)

which approximates the barrierless ECIT rate, kunired/ox/ k0, in the low temperature
limit, ~l [ 1. In order to recover the exact exchange current for ICET, eqn (101),
we must also set
100 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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e�ð1�aÞða~lþ~bredÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4að1� aÞp~l

q eð1�aÞ~hf (131)

which reproducesM0(1/2)= p/2 for the symmetric case. Since sin(pa)z 4a(1− a)
for 0 < a < 1, the matching factor can be approximated as
M0ðaÞ=M0ð1=2Þz1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞp

, which diverges in the limits of fully asymmetric
charge transfer, a / 0, 1, and thus should be included in the uniformly valid
approximation. The transition to the limiting value should occur for ~hf < −~box for
reduction and ~hf > ~bred for oxidation over a range set by ~l. Once again controlling
these transitions with Fermi–Dirac functions, we choose

M
�
~hf

� ¼ M0 �MN	
1þ e�ð~hfþ~boxÞ=~l
	1þ eð~hf�~bredÞ=~l
þMN (132)

With thesematching factors (Fig. 10) included, the uniformly valid approximations,
eqn (128) and (129), reproduce the exact asymptotic rates for large and small formal
overpotentials and maintain small mathematical errors for all parameter values.
Physically, these corrected approximations predict small curvatures of the Tafel plot
in the ICET regime associated with smoothing the unphysically sharp minima of
the diabatic free energy landscapes in the truncated linear approximations.
8 Distributions of electron energies in CIET
8.1 Gaussian statistics for symmetric ECIT

Following Gerischer,25,31,132 we can interpret the non-adiabatic Normal ECIT rate
probabilistically,

~kred=ox ¼ HDA
2

ħnsgIT
†

e�D
~G
IT
‡

ðN
�N

PET
red=oxð3Þ~ne=hð3Þreð3Þd3 ðECITÞ (133)

as an integral over the conditional probability of ET for each available electron or
hole state in the electrode,

PET
red=oxð3Þ ¼

exp

 
�
�
ehf þ 3F � 3� l

�2
4lkBT

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p (134)

The same statistics, PETred/ox(3), apply to the limit of Inverted ECIT, which corre-
sponds to D~GIT

‡ = 0 in eqn (133). From this perspective, the probability of
nonadiabatic ET from/to state 3 during reduction/oxidation has a normal
Gaussian distribution with mean and variance,

h3i = ehf + 3F ± l (135)

Var(3) = 2lkBT (136)

respectively, as shown in Fig. 12(b).
The Gaussian statistics of symmetric ECIT can also be derived directly from

quantum mechanical transitions of displaced harmonic oscillators (DHO),133,134

which represent the quantum analog of classical transitions between the Marcus
parabolae for the diabatic states for inner-sphere ET, where l is a thermally
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 101
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Fig. 12 Quantum statistics of transferring electron energies for symmetric ICET at a metal
electrode. (a) Uniformly valid approximation of the CIET energy barriers for ~bred = ~box = 20
and ~l= 3, and (b) corresponding electron energy distributions for ~hf = −26, 0, 26.
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averaged spring constant for the vibrations. At nite temperature, the most
probable electron transition occurs at the electron resonance of the Fermi level,
shied by the reorganization energy, as in eqn (135). It is important to stress,
however, that Gerischer's interpretation with Gaussian statistics only holds for
the symmetric Normal ECIT limit of the general CIET theory.
8.2 Modied Gaussian statistics for Asymmetric ECIT

In our general theory of CIET, the transition to ECIT at large overpotentials can
lead to modied Gaussian statistics in the asymmetric case, a s 1/2. In partic-
ular, our uniformly valid approximation of the asymmetric CIET barriers
preserves the Gaussian shape of the distribution of transferring electron energies
but predicts different means,

h3i ¼
(
ehf þ 3F þ lð1� aÞ�a for hf � �box

ehf þ 3F � la
�ð1� aÞ for hf[bred

(137)

and variances,

Varð3Þ ¼
(
2lkBTð1� aÞ=a for hf � �box

2lkBTa=ð1� aÞ for hf[bred

(138)

for the reduction and oxidation reactions, respectively. Examples of these rescaled
Gaussian distributions for ECIT are shown in Fig. 13(a) and compared with the
102 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Fig. 13 Quantum statistics of transferring electron energies for asymmetric ICET at
a metal electrode. (a) Uniformly valid approximation of the CIET free energy barriers
for reduction and oxidation, eqn (127), for a = 0.25, ~bred = 30, ~box = 10, ~l = 3. Linear
regions for ICET are shown in red, and quadratic regions for Normal and Inverted
ECIT are shown in purple for reduction and blue for oxidation. (b) Probability distri-
butions, PCIET

red/ox(~3), for the dimensionless energy of the transferring electron or hole,
~3 = (3 − 3F)/kBT. Over the full range of formal overpotentials for ICET, −box < hf < bred,
the electrons or holes are sampled from a Meixner–Losev skewed hyperbolic secant
distribution, eqn (141), which is peaked at the Fermi level with a fat tail in the direction
of the flatter diabatic free energy landscape, e.g. for lower electron energies (or larger
binding energies) if box > bred or a < 1/2 as shown. For large formal overpotentials in
the Normal and Inverted regimes of ECIT, the electrons or holes are sampled from
Gerischer's shifted Gaussian distributions, eqn (134), with rescaled parameters,
shown for ~hf = − 45, 15.
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CIET barriers. In this model, the reorganization energy under extreme over-
potentials has been rescaled as l/l(1− a)/a for reduction and l/la/(1− a) for
oxidation, so that the local barriers for forward and backward ECIT smoothly
transition from those of ICET and inherit the same asymmetry. This is a different
way to model asymmetric ET compared to the AMH theory described above. Here,
asymmetric solvent reorganization depends on over-potential, as a result of
strong coupling with asymmetric IT.
8.3 General statistics of electron energies in CIET

Whenever IT is signicantly coupled to ET, the quantum statistics of transferring
electron energies are non-Gaussian. This can be seen by rewriting the CIET rate
constants for a metal electrode, eqn (139), as
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 103
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~kred=ox ¼
~keZred=ox

gIT
‡

ðN
�N

PCIET
red=oxð~3Þd~3 (139)

where we dene the probability PCIETred/ox(~3) that an electron or hole with dimen-
sionless energy ~3 = (3 − 3F)/kBT participates in the CIET reduction or oxidation
reaction, respectively:

PCIET
red=ox ¼

1

ZCIET
red=ox

e�D
~G
red=ox

‡ ~re=hð~3Þ
1þ e�~3

(140)

which is normalized by ZCIETred/ox. For example, the uniformly valid approximations
above correspond to different choices of the barriers, eqn (119) and (127), for
symmetric or asymmetric IT, respectively, which smoothly transition between
statistics of ICET and ECIT as j~hfj passes through ~bred/ox. It appears that the
general CIET distributions have not been studied before in probability and
statistics, and their mathematical properties await systematic characterization.
8.4 Meixner statistics of electron energies for ICET

In the symmetric ICET regime for a metal electrode, the conditional probability of
ET is an exponential random variable, whose density multiplies the Fermi–Dirac
distribution to obtain a Meixner distribution135 of electron energies:

PICET
red ¼ sinðpaÞ

p

ea~3

1þ e~3
¼ PICET

ox ¼ sinðpaÞ
p

e�ð1�aÞ~3

1þ e�~3
¼ sinðpaÞ

p

1

e�a~3 þ eð1�aÞ~3: (141)

The normalization factor is given by

ZICET
red=ox ¼

pe�D
~G
ICET
‡ ~reð~3Þ

sinðpaÞ (142)

where D~GICET
‡ is given by eqn (155). In contrast to ECIT, the Fermi level (~3 = 0) is

always close to the most probable energy for electrons or holes involved in
reduction or oxidation by ICET at a metal electrode, respectively, regardless of the
overpotential or reorganization energy. For the symmetric ICET (a = 1/2), the
electron energy (for reduction) or hole energy (for oxidation) are sampled from the
hyperbolic secant distribution

PICET
red=ox ¼

1

2p
sech

�
~3

2

�
(143)

which has mean and variance,

h3i = 3F (144)

Var(3) = (pkBT)
2 (145)

respectively, and excess kurtosis, 2. The latter indicates that the distribution is
leptokurtotic, meaning that it has fat tails and a more sharply peaked central
region compared to a normal (or Gaussian) distribution.

The limiting electron energy distributions are shown in Fig. 12 for symmetric
ICET and in Fig. 13 for asymmetric ICET. For symmetric ICET, eqn (145), the
participating electrons and holes lie within a few kBT of the Fermi level, but for
104 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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asymmetric ICET, eqn (141), the distribution of transferring electron energies is
strongly skewed with a fat tail to favor either electrons far below the Fermi level for
a / 0 or holes far above the Fermi level for a / 1. As noted above, these are
singular limits associated with diverging faradaic reaction rates, as the number of
participating electrons Ñe diverges for a / 0, 1.

It would be interesting to develop quantum mechanical models for the non-
Gaussian statistics of electron energies participating in nonadiabatic CIET,
generalizing the DHO model for Marcus kinetics of nonadiabatic ET.133,134 The
most natural quantum model would involve “displaced linear oscillators”, where
the IT coordinate is described, for example, by the truncated linear wells of
eqn (118). One could also assume bilinear wells of the form,

f1ðqO; xÞ ¼ bred

���� x� xO

xR � xO

���� (146)

f2ðqR; xÞ ¼ box

���� xR � x

xR � xO

���� (147)

or other, more realistic models of the diabatic states with smoothed parabolic
minima in the IT coordinate, in addition to the harmonic approximation for the
solvent reorganization coordinate q in eqn (47) and (48). In the ICET limit, we
expect that such quantum models would yield Meixner statistics of electron
transfer, eqn (141), from rst-order perturbation theory in the semi-classical
limit, while also providing a fully quantum mechanical derivation of the
Butler–Volmer equation.
8.5 CIET effects in photo-electron spectroscopy

The ICET distribution of electron energies, eqn (141), is an example of a gener-
alized hyperbolic secant distribution136 from the Meixner family of stochastic
processes.135,137,138 These distributions have received relatively little attention in
statistics,139 although they are used to describe non-Gaussian uctuations of stock
prices in nancial mathematics.140 In physics, skewed hyperbolic secant distri-
butions have been proposed to t asymmetric peaks in X-ray photoelectron
spectroscopy (XPS) by Losev,141,142 but without any physical justication. The
electron energy distribution for ICET appears to be the rst case of Meixner–Losev
statistics derived from a physical model.

Asymmetric line shapes are commonly observed in both XPS143,144 and Auger
electron spectroscopy (AES)145,146 of metal surfaces, and they are tted to either
cascades of symmetric line shapes or various skewed functions.141,147,148 In XPS
of simple metals, asymmetric line shapes are usually tted to the skewed
Lorentzian shape of Doniach and Šunjić149 (with power-law tails) and attrib-
uted to many-body interactions between conduction electrons and the nal-
state core hole.144,150,151 For chemically-oxidized metal surfaces, similar asym-
metric line shapes are also observed if the oxide lm has a wide band of
conducting states near the Fermi level to accept shake-up electrons, while
more symmetric line shapes are observed for insulating oxide lms.143,152

Interestingly, the Losev line shape141,142 (with exponential tails) has also been
shown to t XPS line shapes for conducting oxide and sulphide lms on metal
surfaces.153
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 105
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The nal state of core-electron photo-emission is an ionized atom (with a core
hole), which feels a strong Coulomb attraction to the metal surface, as it draws in
electrons (and repels holes) in the conduction band near the Fermi level to form
a meta-stable ion-image polaron pair near the surface. This shake-up process of
polaron formation can be viewed as a CIET reaction, where ionized atom transfer
into the surface is coupled with electron transfer from the bulk conduction band
to a nearby, weakly-coupled orbital. The binding energy of the transferring elec-
tron (relative to the Fermi energy) is subtracted from the emitted photo-electron
energy, resulting in a larger apparent binding energy for the original core
electron.

CIET theory provides a simple alternative explanation for the observed trends
in XPS line shapes on metal surfaces. For insulating surface lms, the ET step is
rate limiting and leads to the Gerischer–Marcus Gaussian line shape of ECIT. For
conducting surface lms, the IT step is rate limiting and leads to the Meixner–
Losev line shape of ICET. In that case, the relative ease of reduction, bred < box,
(resulting from the core hole) explains the skew of the distribution to larger
binding energies, a < 1/2, as shown in Fig. 13(b).

Stronger signatures of CIET should be apparent in AES, where ionic relaxation
is known to play an important role in spectra with asymmetric line shapes.145,146

Auger electron photo-emission creates a doubly-ionized atom (with core and
valence holes), which can attract two conduction electrons to form a divalent
polaron by CIET. Given the larger ion transfer energies for divalent ions, the AES
shake-up process is even more likely inuenced by ICET, which again skews the
line shape to larger binding energies.

9 Adiabatic ICET and electrocatalysis

The mathematical theory of CIET developed here is strictly valid only for nonadi-
abatic ET with weak electronic coupling, De � kBT, but we expect some of its key
predictions to be universally valid, even in the opposite limit of strong coupling,De

[ kBT, where ET is adiabatic, involving electrons that are shared in hybrid orbitals
between the diabatic states. In the weakly adiabatic regime, where the electronic
coupling is much smaller than the reorganization energy, kBT < De � l, the level
splitting partly lowers the ET free energy barriers, DGred/ox

ET , compared to the non-
adiabatic CIET theory, as shown in Fig. 6(c)–(e), although the prefactor changes
and becomes roughly independent of the electronic coupling.25,31,154 As such, we
expect similar functional forms for the limits of ECIT and ICET kinetics, but with
a modied prefactor that could in principle be derived from quantum calculations.
In the strongly adiabatic regime, typical of electrocatalysis, the electronic coupling
may become comparable to or exceed the reorganization energy, De > l, effectively
eliminating the Marcus ET barrier, and a modied approach becomes necessary.

Schmickler67 rst proposed a unied quantum theory of adiabatic ET coupled
with IT across the double layer at an electrode/electrolyte interface, based on
a model Hamiltonian with electronic and solvent contributions, H = He + Hsol,
each of which depend on the distance x of the ionic reactant from the electrode
surface. The electronic part of the Hamiltonian He(x) is adapted from the
Anderson–Newns model for chemisorption on metal surfaces for the case of one
electronic state on the reactant exchanging electrons with the electrode, where the
coupling matrix elements depend on x. The solvent Hamiltonian Hsol(x) describes
106 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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quantum harmonic oscillators for inner-sphere and outer-sphere modes per-
turbed by a linear interaction of the reactant and each solvent mode, where the
coupling constants again depend on position x. For a particular choice of the
dominant solvent mode, q, the model predicts a two-dimensional (q,x) energy
landscape, which allows the activation barrier to be calculated, either by a simple
analytical model or a more realistic quantum computation. However, the model
does not account for the applied overpotential, so it is mainly used to predict
trends in the exchange current prefactor with microscopic properties, e.g.
explaining why silver electrodeposition is so fast, despite its large solvation energy
(as a result of close approach of the solvated ion facilitating ET).118

Building on ideas of Savéant,155,156 Koper and Voth extended Schmickler's
adiabatic ET/IT model to account for bond-breaking electron transfer (BBET)
between the reactant and the electrode, inuenced by the overpotential.69 Similar to
the earliest models of Gurney42 and Butler,18 they used Morse potentials in x for the
bond-breaking interactions coupling the reactant electron to the electrode. They
also postulated that the energy of the anti-bonding orbital was equal to the inner-
sphere reorganization energy plus the experimental overpotential, 3a = l + h, for
small overpotentials jhj � l. In this limit, the curved Tafel plot (characteristic of all
ET theories) could be linearized to derive the charge transfer coefficient a as the
degree of electron occupation of the anti-bonding orbital at the transition state,69

similar to Hush's original interpretation of a for adiabatic outer-sphere ET reac-
tions.45 As noted in the Introduction, however, such ET theories are not able to
explain the persistence of BV kinetics at higher potentials leading to Tafel's law.

In summary, since adiabatic ET models must take into account the molecular
details of the electrode/electrolyte interface, they struggle to predict the charge
transfer coefficient, let alone the full overpotential dependence of the reaction rate:

“The potential-energy surface will change when the electrode potential is varied;
consequently the energy of activation will change too. These changes will depend on
the structure of the double layer, so we cannot predict the transfer coefficient a unless
we have a detailed model for the distribution of potential in the double layer.”
– Schmickler and Santos (2010).25

From the perspective of CIET theory, it would indeed seem difficult to make
any general predictions about the form of the reaction rate for strongly adiabatic
ECIT, where De > l [ bred/ox, since the electronic coupling overwhelms all other
barriers and invalidates any use of transition state theory, but this is not the most
common situation.

It is more typical for the IT free energies to be the largest in the system, bred/ox >
De,l,kBT, since they include energies of solvation-shell shedding and chemical-bond
breaking and thus oen exceed 1 eV. Chemisorption functions for ET, by contrast,
are usually much smaller, with the ET rate transitioning from non-adiabatic to
weakly adiabatic around De z 1 meV and to strongly adiabatic for electrocatalysis
around De z 150 meV,154 which may exceed l in some cases. Most systems are thus
in the regime of ICET, already noted above in eqn (83), where the effect of adia-
baticity is relatively small and only becomes important close to the transition state.

As shown in Fig. 14, whenever the linear approximations of the x-dependence
of the diabatic free energy landscapes are valid, we expect BV kinetics to hold for
adiabatic ICET, until a reaction-limited current is reached. Even for strongly
adiabatic ICET with bred/ox [ De > l, the same functional form of the ICET rate
should hold, since the kinetics are dominated by slow classical IT in the diabatic
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 107

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Fig. 14 Physics of strongly adiabatic ion-coupled electron transfer (ICET), where the
chemisorption function (or electronic coupling) is larger than the reorganization energy
and thermal energy, De > l,kBT, but smaller than the ion-transfer free energies, De � bred/

ox. In normal adiabatic ICET (a) and (b), the transferring electron remains in one of the
diabatic states during IT until thermal fluctuations along the coordinate x activate the
reduced and oxidized states to within De of the Gurney–Volmer diabatic crossing, yielding
Butler–Volmer kinetics of ICET. (In contrast, for weakly adiabatic ICET (Fig. 7) or ECIT
(Fig. 6), the orbitals mainly hybridize along the reorganization coordinate q, as in adiabatic
ET theory.) During adiabatic ICET, Tafel's law may hold over a wide range of formal
overpotentials, where the linear approximations of the x-dependence of the IT diabatic
states holds, as shown in (b). At large formal overpotentials, hf <−box− l+De for reduction
or hf > bred + l − De for oxidation, there is a transition to adiabatic Inverted ECIT shown in
(c), which, for a metal electrode, leads to the universal limiting current dominated by
barrierless transitions below the Fermi level.
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states, except within De of the transition state, where the reduced and oxidized
states create hybrid orbitals along the x axis to lower the effective barrier for fast
adiabatic ET, as shown in Fig. 14(a) and (b). In contrast, for weakly adiabatic ICET
(Fig. 7) or ECIT (Fig. 6), the red/ox hybridization occurs preferentially along the
solvent reorganization coordinate, q, blurring the intersection of the Marcus
parabolae. As long as the IT barriers are large, however, the main effect of adia-
baticity is to lower the ICET activation barrier by De:

DGICET
‡ z a(1 − a)(l + bred + box) − De (148)

where De is constant in the wide band approximation for a metal electrode. The
adiabatic correction in eqn (148) is valid as long as the overall barrier exceeds the
thermal energy

DGICET
‡ > kBT (149)

in order to justify the use of classical transition state theory in the CIET derivation.
Wemay expect a similar lowering of the IT barrier byDe to hold for weakly adiabatic
ECIT, eqn (72), as long as the corrected barrier is larger than the thermal energy.
108 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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As with nonadiabatic CIET, whenever barrierless transitions become energet-
ically favorable, they will also dominate the response of a metallic electrode for
adiabatic ICET. At large formal overpotentials, hf < −box − l + De for reduction or
hf > bred + l − De for oxidation, we thus also expect a transition from adiabatic
ICET to Inverted ECIT shown in Fig. 14(c). For a metal electrode, this again leads
to the universal limiting current. In the transition regime, the ICET barrier, eqn
(148), vanishes over a range of formal overpotentials ejDhfj z De + l, in order to
rst overcome the remaining IT barrier reduced by adiabaticity and as well as the
reorganization energy required to achieve the dominant barrierless transition.

Recent progress in quantum electrochemistry has opened the possibility that ab
initio calculationsmay soon be able to test these predictions and further develop the
theory of adiabatic CIET to enable evaluation of its parameters from rst principles.
Chan and Nørskov proposed a simple approximation to convert from constant
charge to constant potential for the electrode, by dividing the free energy along the

reaction path into a chemical part and an electrostatic part, given by
1
2
DQDV , where

the charge DQ can be obtained by density functional theory (DFT) and DV is the
electrode potential relative to computational vacuum (on the other side of the
electrolyte).157,158 Although this approach neglects the polarization of interfacial
dipoles and various details of the electric double layers, it provides a means to
compute the free energy landscape of adiabatic CIET as a function of electrode
potential. In a “computational tour de force”,31 Kronberg and Laasonen recently
used DFT-based constrained MD simulations to calculate the adiabatic free energy
barrier versus applied potential for hydrogen evolution on a platinum electrode, the
Volmer reaction on Pt(111), albeit with relatively large values compared to experi-
ments.159 Over some range of electrode potentials at different surface coverages, the
free energy barriers vary almost linearly with formal overpotential, which would be
consistent with BV kinetics of ICET, and there are also quadratic terms, perhaps
similar to those arising in the more general CIET theory.
10 Summary of CIET kinetics for metal
electrodes

In this section, we summarize the key predictions of CIET theory for faradaic
reaction rates at metal electrodes in wide-band approximation (re z constant),
which is the most relevant limit for electrochemical engineering. Based on our
analysis, we propose to replace phenomenological BV kinetics, eqn (1)–(4), with
one of the following approximations, which correspond to different ordering of
the three characteristic energies in the model, bred,box,l > kBT. The theory was
developed for non-adiabatic CIET, De � kBT, but corrections for weakly adiabatic
CIET are possible if the electronic couplingDe is much smaller than at least one of
three energies governing CIET (bred, box and l).
10.1 Butler–Volmer kinetics of ICET

Ion-coupled electron transfer (ICET) at a metal electrode, illustrated in Fig. 7, is the
most important limit of the general CIET theory, since the free energies of ion
transfer are larger than the other energies in the model for most faradaic reactions:
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 109
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bred/ox [ l,ejhfj,De,kBT (ICET) (150)

In the ICET regime, for formal overpotentials in the range,

−(~box + ~l) � ~hf � ~bred + ~l, (151)

the uniformly valid approximation of the CIET current at a metal electrode has the
asymptotic form of the BV equation,

I = IICET0 M(~hf)(e
−a~h − e(1−a)~h) (152)

multiplied by the matching function, M(~hf), given by eqn (130)–(132), which
imparts slight curvature to the Tafel plot controlled by l. In most cases, one can
setMð~hfÞzMð0Þ ¼ M0ðaÞ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞp

=sinðpaÞto recover the pure BV equation,
which is exact in the limit of negligible reorganization energy, l/box/red / 0.

The charge-transfer coefficient is given by

a ¼ bred

bred þ box

(153)

The parameters bred and box are IT free energies, which generally depend on
temperature. In contrast, the Marcus reorganization energy l has negligible
temperature dependence. These are important predictions of CIET theory that
can be tested experimentally.

The ICET exchange current (including the matching function) is given by

I0 ¼ I ICET0 M

�
ln

~cO
~cR

�

¼ eDe

h

A

As

e�D
~G
ICET
‡

~cO
1�a~cR

a

gIT
‡

0
BB@

M

�
ln

~cO
~cR

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pað1� aÞ~l

q
1
CCA

(154)

The ICET activation energy is

DGICET
‡ = a(1 − a)(bred + box + l) − De (155)

DGICET
‡ ¼

�
bredbox

bred þ box

��
1þ l

bred þ box

�
� De (156)

where we have added the simple correction for adiabatic ICET introduced above,
which lowers the ICET barrier by De and thus amplies the reaction rate. Using
eqn (131) and (132), the factor in parentheses in eqn (154) can be replaced by

M

�
ln

~cO
~cR

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pað1� aÞ~l

q /
1

sinðpaÞ
ffiffiffiffi
p

~l

r
(157)

in the ICET limit, l/box/red / 0, consistent with eqn (106).
10.2 Marcus kinetics of normal ECIT

As shown in Fig. 6, for rate-limiting Normal ECIT at large reorganization energies,
110 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 3
1 

M
ee

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2.

02
.2

6 
16

:3
2:

37
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
l [ bred/ox,jehfj,De,kBT (Normal ECIT) (158)

over the range of formal overpotentials,

ejhfj � l, (159)

the Faradaic current at a metal electrode can be approximated as

IECIT ¼ eDe

h

A

As

e�D ~G
IT
‡

gIT
‡

�
~cO

1þ e~hf
� ~cR

1þ e�~hf

�
erfc

0
@~l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
~l

p
þ ~hf

2

q
2
ffiffiffi
~l

p
1
A: (160)

The IT energy barrier is generally dened as the mean of the diabatic IT free
energies,

DGIT
‡ ¼ 1

2
min

x
ff1ðqO; xÞ þ f2ðqR; xÞg � De (161)

where the rst term reduces to
1
2
minfbred; boxg for the truncated linear approxi-

mation, eqn (118), and
1
4
ðbred þ boxÞ for the uniformly valid approximation of

CIET kinetics, and the second term is a weakly adiabatic correction.
The exchange current is given by

IECIT0 ¼ eDe

h

A

As

e�D ~G
IT
‡

gIT
‡

1

2

�
~cR~cO

~cR þ ~cO

�
erfc

0
BBBB@
~l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
~l

p
þ ln2

�
~cO
~cR

�s

2
ffiffiffi
~l

p
1
CCCCA (162)

Note that we have setM= 1 for the asymptotic limit, ~l[ ~bred/ox, corresponding to
ECIT. Considering the low-temperature expansion of IECIT0 , the total activation
barrier at low overpotentials is given by eqn (72), which is the symmetric case of
eqn (155) for a = 1/2.
10.3 Reaction-limited current for inverted ECIT

In the limit of large overpotentials,

ejhfj [ bred/ox,l,De,kBT (Inverted ECIT) (163)

a metal electrode will exhibit a constant reaction-limited current given by

lim
h/�N

I ¼ ICIETlim ~cR=O (164)

where

ICIETlim ¼ eDe

h

A

As

2

gIT
‡

(165)

is the quantum-mechanical limiting current corresponding to barrierless
nonadiabatic ECIT in the limit of weak electronic coupling, using Fermi's golden
rule. Further developments in the theory of adiabatic CIET will be required to
rene the prediction of the limiting current for more general situations, especially
for electrocatalysis. However, we expect our theoretical framework of CIET to
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correctly predict the conditions for the breakdown of either MHC kinetics of
Normal ECIT or BV kinetics of ICET, including Tafel's law, when the reaction
passes to the Inverted ECIT regime.

10.4 Uniformly valid approximation for CIET

Whenever an experimental system is able to reach large overpotentials and probe
the transition to reaction-limited current, we propose using the uniformly valid
approximation of CIET kinetics, eqn (128)–(132). This may be the simplest
possible analytical approximation that exactly reproduces all of the preceding
limiting cases and smoothly transitions between them. It is strictly valid for
nonadiabatic CIET with small electronic coupling, De � kBT � l,bred/ox, but may
also hold with barriers reduced by De for weakly adiabatic CIET, kBT < De � l,bred/
ox and perhaps even strongly adiabatic ICET, kBT < l < De � bred/ox, as long as the
classical IT barriers are large and dominate the reaction rate.

11 Application to lithium iron phosphate

In this section, we briey illustrate the application of CIET theory to our moti-
vating problem of lithium ion intercalation in LFP. For the reduction of
a monovalent ion such as Li+ by intercalation into a solid electrode, we let ~cR = ~c
be the dimensionless intercalated ion concentration (or lling fraction) in the
solid and ~cO= ~c+ be the dimensionless adsorbed surface concentration (or surface
coverage) given by the adsorption isotherm, eqn (20). As noted above, the key
requirement for ion intercalation is that the CIET transition state excludes one
solid site, or equivalently, involves one vacancy, gIT

‡ = (1 − ~c)−1. From this theo-
retical perspective, we revisit the existing data for the rate dependence on over-
potential, temperature and solid concentration.

11.1 Overpotential and temperature dependence

First, we consider the limiting case of Normal ECIT. As described in the intro-
duction, CIET theory was born out of the hypothesis that ET from a metal coating
(or surface contact) could limit the rate of ion intercalation in a poorly conducting
solid electrode, such as LFP.63 By interpreting the non-monotonic chro-
noamperometry data for LFP porous electrodes (Fig. 4) using a statistical model of
reaction-limited phase transformations,160 Bai and Bazant63 constructed Tafel plots
(Fig. 3) for the rate constants for LFP intercalation versus overpotential (averaging
over the microscopic concentration dependence) and found excellent agreement
with MHC kinetics of ET (using the original integral form87 just before the
analytical approximation of Zeng et al.60 became available). As shown in Fig. 3(b)
and 15(a), the Tafel data over a wide range of overpotentials and three different
temperatures was shown to t the MHC equation with a single value of the reor-
ganization energy, l = 214 ± 1 meV (~l = 8.3 at room temperature) and indepen-
dently tted prefactors for each branch of Tafel data, shown in Fig. 15(b). The small
uncertainty (0.5%) in the tted reorganization energy indicates that the over-
potential dependence of ECIT for a metal surface, eqn (160), captures the shape of
these Tafel curves very well. As noted by the authors, the fact that all of the Tafel
curvatures can be accurately tted (with 0.5% uncertainty) by a single, temperature-
independent reorganization energy provides strong support for the hypothesis of
112 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Fig. 15 Quantitative evidence for LFP intercalation by ECIT. (a) Tafel plots of rate
constants, kred/ox, measured at different temperatures from the population dynamics of
phase separation (assuming reaction limitation) and fitted to the MHC equation for ECIT
(solid lines) with a single value of the reorganization energy, l = 214 ± 1 meV and inde-
pendently fitted prefactors for each Tafel branch. (b) Arrhenius plots of kred/ox revealing
activation energies consistent with the prediction of nonadiabatic CIET theory at low
overpotentials. [Adapted from Bai and Bazant (2014).63]
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ET limitation in these experiments. In contrast, any tted series resistances, which
are routinely invoked to curve Tafel plots with BV kinetics,88 must be temperature
dependent, if they are to represent either ionic or electronic transport processes.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 113
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Further support for the ECIT hypothesis comes from the temperature depen-
dence, shown in Fig. 15(b). Bai and Bazant63 noted that the observed activation
barriers for LFP intercalation in the range 115–230 meV were much larger than
the Marcus prediction, l/4 = 53.5 meV for MHC kinetics. CIET theory is now able
to attribute this discrepancy to the additional barrier DGIT

‡ for ion transfer.103 In
the truncated linear approximation, the general formula for the IT barrier in
ECIT, eqn (161), implies bmin = min{bred ,box} = 2DGIT

‡ = 123–353 meV, where we
assume weak electronic coupling (De � l,bred/ox) for nonadiabatic ECIT. The best
tting activation energy barrier (115 meV) corresponds to an ion transfer energy,
bmin = 123 meV, which is indeed much smaller than the reorganization energy,
l = 214 meV, obtained from the Tafel data, consistent with the hypothesis of
ECIT. Even the highest activation energy (230 meV) would imply bmin z l, so we
conclude that LFP intercalation kinetics in the original experiments63 were
consistent with CIET under at least partial ET limitation, l $ bred/ox.

Despite this consistent theoretical interpretation, the experimental data in
Fig. 15 deviates from symmetric ECIT kinetics, eqn (67), since the rate constant
for oxidation (Li+ extraction) is somewhat larger than that of reduction (Li+

insertion) by roughly a factor of e0.5 = 1.65. There could be several reasons for the
small, observed asymmetry. The diabatic free energy landscapes, eqn (47) and
(48), could have different force constants, kO and kR, approximated by the
generalized AMH model of asymmetric ECIT, eqn (82). Alternatively, we could
assume symmetric ET, kO = kR = k, and shi the formal overpotential by D~h =

Dln(~c+/~c)z 1, which would imply a larger surface coverage~c+ by a factor of ez 2.7
for oxidation versus reduction, assuming the slowest dynamics occurs for ~c / 1
(since concentrations were not measured). Both models would slightly distort the
excellent t of the Tafel plots with MHC kinetics.

Next, we consider the ICET limit of the theory. Although the Tafel data in
Fig. 15 is well tted by MHC kinetics of ECIT, another study of LFP intercalation
kinetics by Heubner, Schneider and Michaelis88 based on nonlinear impedance
spectroscopy found good agreement with nearly symmetric BV kinetics (a = 0.55)
up to 200 meV overpotentials, aer subtracting various series resistances and
neglecting any concentration heterogeneity from phase separation.88 These
experiments could also be consistent with CIET theory in the ICET regime, if box >
bred [ 200 meV [ l, provided that the nonlinear current pulses are large
enough to suppress phase separation by driven auto-inhibitory reactions.82,105,106

Unfortunately, temperature dependence was not measured, so we cannot perform
this consistency check. Using eqn (155), we can at least estimate a consistent
lower bound on the non-adiabatic ICET activation barrier, DGICET

‡ [ (200 meV)/
2 + l/4, which could fall in the range of activation energies from Fig. 15(b)
assuming a small reorganization energy, l � 200 meV, theoretically consistent
with the ICET hypothesis. It is possible to have two different LFP electrodes
exhibit different regimes of CIET kinetics, e.g. if the carbon coating and surface
roughness are different, and we shall see that both ICET and ECIT lead to similar
solid concentration dependence.

Regardless whether ET or IT is rate limiting, further evidence in favor of the
general CIET theory is provided by the values of the inferred parameters, l and
bred/ox, which are quantitatively consistent with microscopic theories of charge
transfer. In support of the ECIT hypothesis, the original paper noted that the
tted reorganization energy, l = 214 meV, is identical to the Marcus outer-sphere
114 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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value calculated from the dielectric properties and crystal structure of LFP,63

according to the reaction mechanism in Fig. 3(a). Here, we also infer the IT free
energies, bmin = 123–353 meV for ECIT or bmin > 200 meV for ICIT, which are
comparable to ab initio calculations of the diffusion barriers for Li+/e− polaron
hopping in the bulk LFP (200–300 meV)161,162 as well as the (adiabatic) oxidation
barriers to extract Li+ from charge-stabilized surface sites (150–200 meV).163 The
fact that surface modication of LFP by sulfur or nitrogen anions lowers the
calculated energy barriers for IT, while also exhibiting faster charge-transfer
kinetics in experiments,163 also supports the hypothesis that CIET is rate limiting.
11.2 Solid concentration dependence

A major challenge in studying reaction kinetics in LFP is its strong tendency to
separate into stable phases of high and low lithium ion concentration,24,90,106 which
makes it impossible to know the active area and surface concentration prole in
order to interpret electrochemical measurements quantitatively. Experiments are
further confounded by reaction heterogeneities associated with fast and slow
regions on the surface,106 e.g. due to variations in surface coatings of active mate-
rials. These effects can only be unraveled by direct imaging of the local surface
concentration under driven reactions and learning optimal models to t the data.

Recently, H. Zhao et al. overcame this challenge by learning the physics of
heterogeneous intercalation kinetics in LFP nanoparticles directly from amassive
dataset from in operando scanning tunneling X-ray microscopy (STXM) images,105

building on the earlier experiments of Lim et al.106 Using inverse learning
methods (PDE-constrained optimization, Markov-chain Monte Carlo and
Bayesian inference), the unknown constitutive relations were obtained from the
STXM data for a general modeling framework based on electrochemical
nonequilibrium thermodynamics,24 which had previously been applied to LFP
nanoparticles using classical models for reaction kinetics and phase separation
dynamics.84,93,94,102 The learned model was able to reproduce over 180 000 pixels of
X-ray image data from 63 nanoparticles, each cycled through complete reduction
(Li+ insertion) and oxidation (Li+ extraction), with only 7% global error across all
pixels. Since the intercalation kinetics of carbon-coated LFP nanoparticles are
famously fast along the b-axis of the LFP crystal exposed by the active (010) facet of
the platelets,165,166 the experiments were limited to small overpotentials, on the
order of several kBT/e. As such, the inverse learning process could not discern the
overpotential dependence (assumed to be Butler–Volmer), but it was able to
accurately extract the concentration dependence. Nanoscale spatial heterogene-
ities in the reaction rate constant were also learned from the STXM images and
correlated with variations in carbon coating thickness, thereby enabling precise
measurement of the underlying intercalation reaction kinetics.

The concentration dependence of the exchange current learned from the X-ray
data is shown in Fig. 16 and compared to theoretical predictions. In a striking
validation of the theory, the CIET exchange current versus concentration predicts
the learned asymmetric prole to within the experimental error for all of the
parameters estimated from the electrochemical data above. The ECIT limit, eqn
(162), which provides the best t of the Tafel plots in Fig. 15, also ts the exchange
current very well for most choices of concentrations, as illustrated by the values
~c+ = 0.3 and ~c / 1 for the slowest reduction reaction dominating the transient
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 115
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Fig. 16 Learning heterogeneous reaction kinetics of CIET from operando scanning
tunneling X-ray microscopy (STXM)106 by solving inverse problems for the best model that
fits all pixels of the X-ray image data.105 (a) Experimental images (top row) of LFP platelet
nanoparticles undergoing driven phase transformations at different currents (0.2C and 2C
with times shown below in minutes), compared with the learned model simulations with
BV reaction kinetics (bottom row). (b) The normalized exchange current density profile
learned from the X-ray images is shown as the solid blue curve with shaded blue range of
uncertainty versus inserted lithium filling fraction, ~cR = c, and compared with the theo-
retical predictions for ECIT, eqn (162), and ICET, eqn (154), using parameters that are also
consistent with the Tafel data in Fig. 15. For comparison, the standard BV model with
I0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� cÞp

widely used in Li-ion battery simulations9,10,164 is not consistent with the
experimental data. [Figure courtesy of Hongbo Zhao, adapted from Zhao et al. (2023).105]
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response. The ICET formula, eqn (154), almost perfectly ts the learned kinetics
at high concentration using the same value of a = 0.4 inferred above from elec-
trochemical data, while symmetic ICET with a = 0.5 provides an even better
overall t. Overall, the analysis supports the picture of lithium intercalation in
carbon-coated LFP as a process limited by comparable barriers for ET and IT.

An important general prediction of our CIET theory of ion intercalation
kinetics is that the exchange current is proportional to the ion vacancy concen-
tration in the electrode, Ĩ0 f (1 − ~c). This linear trend is seen in both ECIT and
116 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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ICET formulae, in excellent agreement with the X-ray data in Fig. 16. This
prediction holds regardless of whether ET or IT is rate-limiting because it comes
from the universal activity coefficient of the IT transition state for intercalation,
which must capture the exclusion of one site,24, (gIT‡ )

−1 = 1 − ~c. In contrast, the
standard empirical model of intercalation kinetics, used in popular porous
electrode theory models and battery simulation soware, postulates
~I0f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cð1� ~cÞp

, which scales with the square root of the vacancy concentration.9,164

This model is inconsistent with the X-ray data, as well as the fundamental theory
of CIET.

12 Conclusion and outlook

In summary, we have developed a theoretical framework of coupled ion–electron
transfer (CIET) integrating the quantum physics of electron transfer (ET) with the
non-equilibrium thermodynamics of ion transfer (IT). The theory can be applied
to arbitrary diabatic free energy landscapes for the donor and acceptor states, but
its scaling is controlled by six characteristic energies: the excess free energy of
reaction, DGex, the thermal energy, kBT, the donor–acceptor electronic coupling,
HDA, the Marcus reorganization energy of ET, l, and the free energies of IT, box
and bred, in the donor and acceptor states, prior to oxidation and reduction,
respectively.

Although CIET theory can be applied to chemical reactions in isolated mole-
cules or bulk materials, our focus has been on faradaic reactions at electrode/
electrolyte interfaces, where the reaction rate is controlled by the applied
(formal) overpotential hf. The thermodynamic driving force felt by electrons of
energy 3 relative to the Fermi level 3F is given by DGex = ehf + 3F − 3. For semi-
conductor electrodes, there are additional energy scales having to do with the
band structure, but in the usual case of metal electrodes, we make the wide-band
approximation and replace HDA with the chemisorption function, De. The physics
of CIET are set by the relative magnitudes of the six characteristic energies, ehf,
kBT, De, l, bred and box. The theory assumes thermally activated transitions (kBT�
l,bred,hox) and nonadiabatic ET (De � kBT), but does not constrain the other
parameters. For weakly adiabatic CIET (De � l,bred,box), activation energies are
effectively lowered by De.

For metal electrodes, we considered three asymptotic limits leading to simple
rate expressions (summarized in Section 10), each corresponding to a distinct
reaction mechanism. First, we showed that the original CIET theory103 tacitly
assumed ET-limited reactions at small overpotentials (hf,bred,box � l), leading to
normal Marcus kinetics of electron-coupled ion transfer (Normal ECIT). Second,
we considered IT-limited reactions (l � bred, box) and derived the Butler–Volmer
(BV) equation as the fundamental rate expression for ion-coupled electron
transfer (ICET). This appears to be the rst quantummechanical derivation of BV
kinetics, which reproduces Tafel's limiting law over a wide range of overpotentials
(−box � ehf � bred). The ICET formula also connects the phenomenological BV
parameters, a and I0, to microscopic properties of the electrode/electrolyte
interface, which can be measured experimentally or predicted by quantum
computation. The theory also predicts that the transferring electron energy in
ICET is selected from a fat-tailedMeixner (skewed hyperbolic secant) distribution,
rather than the Gaussian distribution of ECIT from Gerischer–Marcus theory.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 117
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These electron energy distributions may nd applications in describing asym-
metric XPS and AES line shapes. Third, we predicted a universal transition to
inverted Marcus kinetics of ECIT (Inverted ECIT) for large overpotentials (hf � −
box or hf [ bred). For a metal electrode, the possibility of barrierless transitions
during Inverted ECIT leads to a quantum-mechanical reaction-limited current
with vanishing activation energy. Finally, we derived uniformly valid asymptotic
approximations that smoothly interpolate between these three regimes, which are
useful for intermediate cases where l z bred z box.

One such intermediate case appears to be lithium intercalation in lithium iron
phosphate (LFP), a popular cathode material for Li-ion batteries. We revisited the
original data revealing ET rate limitation in LFP (l z 215 meV)63 and concluded
that there was indeed a somewhat smaller barrier for IT in those experiments
(bmin z 123 meV). If the kinetics lie closer to ICET than ECIT, however, due to
different interfacial properties, this could help explain a subsequent study
consistent with Butler–Volmer kinetics up to moderate overpotentials.88 The key
to this analysis, which could be replicated in other studies, was to seek consis-
tency between theoretical predictions of both overpotential dependence (Tafel
plots) and temperature dependence (Arrhenius plots) of the CIET rate. It was also
compelling to conrm that the parameters are consistent with barriers predicted
by Marcus theory, as well as quantum calculations.

Since it is difficult to isolate faradaic currents at large overpotentials without
causing side reactions or transport limitation, it is important to test other
predictions of the model. Besides temperature dependence, the model makes
falsiable predictions about concentration dependence, in particular, that the
intercalation rate vanishes linearly with vacancy concentration in the solid at high
lling fractions. For LFP, the predicted concentration proles of both ICET and
ECIT exchange currents are in excellent agreement with X-ray image-based
learning of reaction kinetics,105 lending further support to the hypothesis of
CIET rate limitation for ion intercalation.

The new theory may nd applications to other faradaic reactions in electro-
chemical engineering, such as electrodeposition and electrocatalysis. Since LFP is
an electrical insulator exhibiting polaronic conduction of ion–electron pairs, it
makes sense that ET from ametallic surface contact could contribute to CIET rate
limitation. The situation is similar to metal electrodeposition from a ceramic
solid electrolyte, which was recently shown byWilliams et al. to be consistent with
CIET theory100 (in the ECIT limit) for sodium plating from NaSICON solid elec-
trolyte in solid-state Na-ion batteries.167 In contrast, most other Li-ion battery
active materials, such as graphite anodes and transitionmetal oxide cathodes, are
themselves metallic, and thus not as likely to exhibit ET rate limitation. Future
studies of intercalation kinetics in these materials should also consider BV
kinetics of ICET and test the predicted dependence on temperature, concentra-
tions, and interfacial properties. The general features of limiting current and
linear dependence on vacancy concentration may be quite robust, which may
explain why ECIT theory helps explain the onset of lithium plating upon lattice
saturation in graphite.98,168 A recent study of lithium electrodeposition from liquid
electrolytes by Boyle et al. also showed evidence of ET limitation via curved Tafel
plots measured withmicroelectrodes,107 but the data may be more consistent with
ICET, which should explain the observed electrolyte dependence of the activation
barrier better than my earlier theory based on ET limitation.24
118 | Faraday Discuss., 2023, 246, 60–124 This journal is © The Royal Society of Chemistry 2023
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Electrocatalysis normally involves strong electronic coupling leading to adia-
batic ET, but we noted here that CIET theory may still apply if De � bred/ox,l. In
a recent study of Bayesian model selection from experimental Tafel data for CO2

reduction to CO on gold surfaces in aqueous electrolytes, out of many models, the
best t was found by MHC kinetics of ECIT.169 Electrolysis of water and other
electrocatalytic reactions also provide some of the clearest examples of Tafel's
law,62 which can now be explained by adiabatic or nonadiabatic ICET theory in the
limit of large IT free energies. Williams et al. recently generalized nonadiabatic
ECIT theory for protons tunneling between quantized energy levels in response to
slow ET, a reaction mechanism we would call "electron-coupled proton transfer"
(ECPT).110 The theory accounts for electrostatic surface potentials and adsorbed
proton dipole moments onmixed proton–electron conductor surfaces, such as Ni/
galadonium-doped ceria, and predicts ECPT reaction rates of water electrolysis
and hydrogen evolution in solid-oxide fuel cells (SOFC).110

Our theory also provides a useful framework for multiscale computation, to
connect atomistic properties of electrode/electrolyte interfaces to faradaic reac-
tion kinetics in electrochemical systems. Constrained density functional theory
(CDFT),39 which has already been used to predict ET kinetics using Marcus theory,
would be the ideal method to calculate ab initio diabatic energy surfaces38 for use
in CIET theory. The advantage of the theory is its simplicity, in identifying a few
key parameters and providing a convenient formula, e.g. for use in coarse-grained
engineering models.104
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12 T. Erdey-Grúz and M. Volmer, Z. Phys. Chem., 1931, 157A, 165.
13 J. Tafel, Z. Phys. Chem., 1905, 50, 641–712.
14 G. Burstein, Corros. Sci., 2005, 47, 2858–2870.
15 J. A. V. Butler, Trans. Faraday Soc., 1924, 19, 659–665.
16 J. A. V. Butler, Trans. Faraday Soc., 1924, 19, 729–733.
17 J. A. V. Butler, Trans. Faraday Soc., 1924, 19, 734–739.
18 J. A. V. Butler, Proc. R. Soc. London, Ser. A, 1936, 157, 423–433.
19 F. P. Bowden, Proc. R. Soc. London, Ser. A, 1929, 125, 446–462.
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64 J. M. Savéant, J. Am. Chem. Soc., 2008, 130, 4732–4741.
65 R. Cukier, J. Phys. Chem., 1994, 98, 2377–2381.
66 R. I. Cukier and D. G. Nocera, Annu. Rev. Phys. Chem., 1998, 49, 337–369.
67 W. Schmickler, Chem. Phys. Lett., 1995, 237, 152–160.
68 W. Schmickler, Electrochim. Acta, 1996, 41, 2329–2338.
69 M. T. Koper and G. A. Voth, Chem. Phys. Lett., 1998, 282, 100–106.
70 C. Hartnig and M. T. Koper, J. Am. Chem. Soc., 2003, 125, 9840–9845.
71 S. Hammes-Schiffer, Acc. Chem. Res., 2001, 34, 273–281.
72 M. H. V. Huynh and T. J. Meyer, Chem. Rev., 2007, 107, 5004–5064.
73 E. Santos, K. Pötting andW. Schmickler, Faraday Discuss., 2009, 140, 209–218.
74 E. Santos, A. Lundin, K. Pötting, P. Quaino and W. Schmickler, Phys. Rev. B,

2009, 79, 1–10.
75 S. Y. Reece and D. G. Nocera, Annu. Rev. Biochem., 2009, 78, 673–699.
This journal is © The Royal Society of Chemistry 2023 Faraday Discuss., 2023, 246, 60–124 | 121

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3fd00108c


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 3
1 

M
ee

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2.

02
.2

6 
16

:3
2:

37
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
76 S. Hammes-Schiffer and A. V. Soudackov, J. Phys. Chem. B, 2008, 112, 14108–
14123.

77 S. Horvath, L. E. Fernandez, A. V. Soudackov and S. Hammes-Schiffer, Proc.
Natl. Acad. Sci. U. S. A., 2012, 109, 15663–15668.

78 M. M. Melander, J. Electrochem. Soc., 2020, 167, 116518.
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