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Prediction of parameters of group contribution
models of mixtures by matrix completion†

Fabian Jirasek, *a Nicolas Hayer,a Rima Abbas,b Bastian Schmidb and Hans Hassea

Group contribution (GC) methods are widely used for predicting the thermodynamic properties of

mixtures by dividing components into structural groups. These structural groups can be combined freely

so that the applicability of a GC method is only limited by the availability of its parameters for the groups

of interest. For describing mixtures, pairwise interaction parameters between the groups are of prime

importance. Finding suitable numbers for these parameters is often impeded by a lack of suitable

experimental data. Here, we address this problem by using matrix completion methods (MCMs) from

machine learning to predict missing group-interaction parameters. This new approach is applied to

UNIFAC, an established group contribution method for predicting activity coefficients in mixtures. The

developed MCM yields a complete set of parameters for the first 50 main groups of UNIFAC, which

substantially extends the scope and applicability of UNIFAC. The quality of the predicted parameter set is

evaluated using vapor–liquid equilibrium data of binary mixtures from the Dortmund Data Bank. This

evaluation reveals that our approach gives prediction accuracies comparable with UNIFAC for data sets

to which UNIFAC was fitted, and only slightly lower accuracies for data sets to which UNIFAC is not

applicable.

1 Introduction

Methods for predicting thermodynamic properties are of para-
mount importance in chemical engineering, simply because
there are too many relevant substances to study them all in
experiments. The scale of this problem soars when going from
pure components to mixtures, for simple combinatorial rea-
sons. Also methodologically, predicting properties of mixtures
is a demanding task. It can be tackled basically from two sides:
on the one hand, one can look for similarities between sub-
stances (which is basically a data-driven approach), on the
other hand, one can try to base predictions on physical theory.

The most successful methods in the field combine these two
aspects. Among these, methods that rely on the concept of
group contributions (GC) play an important role. They are
based on the idea that components can be characterized by
the structural groups they contain and take advantage of the
fact that the number of relevant structural groups is many
orders of magnitude smaller than the number of relevant
components. As a consequence, GC methods can be used for

describing a very large number of components based on a
relatively small number of group-specific parameters: any com-
ponent that can be built from groups, for which parameters are
available, can be modeled.

Basically all thermodynamic models of mixtures rely on
describing pair interactions. Component-specific models, like
UNIQUAC1,2 or NRTL,3 thereby describe the pairwise interac-
tions between components using component-specific pair-
interaction parameters, which need to be fitted to experimental
data. Usually, data for binary mixtures are used for this pur-
pose, which means that for modeling multi-component mix-
tures, binary mixture data are needed for all binary subsystems
of the studied mixture. Unfortunately, due to the combinatorial
problem, even data for binary mixtures are often missing,
which strongly limits the applicability of the component-
specific models.

GC methods circumvent this problem. By dividing compo-
nents into structural groups, GC methods only rely on group-
specific pair-interaction parameters, namely group-interaction
parameters, which are fitted to experimental mixture data,
whereby the amount of required training data compared to
component-specific models is significantly reduced.

One of the most successful thermodynamic group contribu-
tion methods for mixtures is UNIFAC, which was first intro-
duced in 19754 and has been significantly extended and refined
since then.5–10 Also, several tailored versions of UNIFAC fitted
for specific applications are available.11–13 And there is also a
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commercial version of UNIFAC, provided within the UNIFAC-
Consortium, which is based on the same model equations as
the public versions of UNIFAC, but whose parameter tables
have been revised and extended on a regular basis since 199614

using both public data and non-public data provided or gener-
ated within the consortium. The scope of the commercial
version is therefore larger than that of the public versions of
UNIFAC. Since the commercial version is not freely accessible,
we focus here on the most recent public version of UNIFAC,10 to
which we refer simply as UNIFAC in the following for brevity.
The authors have also access to the commercial version of
UNIFAC, called UNIFAC-TUC in the following, but this version
is used for comparisons only.

UNIFAC was derived from the component-specific lattice
model UNIQUAC1,2 and describes the molar excess Gibbs
energy gE of a mixture as a function of temperature T and
composition x. Both energetic and entropic contributions to gE

are considered in the model. All versions of UNIFAC use
geometric parameters for the individual structural groups,
which describe their volume and surface and determine the
entropic contribution. Furthermore, parameters describing the
pairwise energetic interactions between the different structural
groups in the mixture are used. These group-interaction para-
meters play the central role in the model.

From the Gibbs excess energy gE, many properties that are
essential in chemical engineering can be determined, most impor-
tantly the activity coefficients gi of the components i in the mixture,
based on which phase equilibria can be predicted.15 Over the
years, many structural groups have been included in the UNIFAC
parameter tables, so that a huge number of components of
practical interest can be modeled. UNIFAC presently considers
54 main groups, which are further divided into 113 sub groups.10

The difference between main and sub groups is that each sub
group g has individual geometric parameters, namely the group
volume Rg and group surface area Qg,

16 while all sub groups that
belong to the same main group G share the same group-
interaction parameters. There are two distinct group-interaction
parameters for each binary combination of different main groups
(G, G0); they are generally labeled as AGG0 and AG0G, and have, as a
result of the fit, usually different values, i.e., AGG0 a AG0G.

While Qg and Rg are reported for 113 individual sub groups,
there are still significant gaps regarding the group-interaction
parameters AGG0 and AG0G between the 54 main groups: there are
1431 distinct binary combinations of unlike main groups
(G a G0), for which only for 635 (44%) group-interaction
parameters have been reported yet. Fig. 1 schematically shows
the publicly available set of group-interaction parameters
between the first 50 main groups of UNIFAC.10 The first 50
main groups were chosen here since for all of these, group-
interaction parameters with at least five other main groups are
publicly available to date. This threshold was chosen since, as
described in detail below, the missing group-interaction para-
meters were predicted based on information from the available
parameters only. For the sake of completeness, Fig. S1 in the
ESI† shows for which of the group combinations parameters
are available in the commercial UNIFAC-TUC.

Hence, the availability of the parameters describing the
individual sub groups Rg and Qg generally poses no problem,
whereas missing main group-interaction parameters AGG0 and
AG0G significantly limit the applicability of all versions of UNI-
FAC. The main reason why these gaps still persist, after so
many years of work on the development of UNIFAC, is that the
data base for their determination is simply too narrow. There
are structural groups that occur in many molecules, such as the
methyl group or the hydroxyl group, and there are less common
groups. It is particularly these less common groups for which
the parameters are lacking. This is not to say that these groups
do not occur in interesting components, but there are simply
less data on binary mixtures containing components with these
groups. It is evident that this causes problems in the para-
meterization of UNIFAC.

A further drawback is that fitting group-interaction para-
meters is still not a routine but rather artwork, in particular
regarding the selection of the considered data sets, including
their initial evaluation and consistency checking, and regarding
the selection of a suitable objective function to be minimized
during the fitting procedure. For a more detailed description of
the fitting procedure of UNIFAC group-interaction parameters,
we refer to the literature.15,17–19

In this work, we present a method for the prediction of the
complete set of the group-interaction parameters of group
contribution methods based on an existing parameter set,
without requiring new experimental data. The basic idea is to
consider the group-interaction parameters as entries of a
squared matrix (which is only partially filled, as several para-
meters are missing), and to use a matrix completion method
(MCM)20,21 to estimate the missing entries. To demonstrate the
applicability of our approach, it is applied to UNIFAC,10 for
which the complete set of the group-interaction parameters for
the first 50 main groups is predicted. Fig. S2 in the ESI† gives
an overview of our approach.

Fig. 1 Matrix representing the availability of group-interaction parameters
of UNIFAC10 up to main group 50. Blue: parameters available.
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Following an idea developed in a recent paper,22 in which we
have applied an MCM for estimating the component-specific
pair-interaction parameters of UNIQUAC, we do not use the
asymmetric group-interaction parameters (AGG0 a AG0G)
directly, but rather the symmetric group-interaction energies
UGG0 = UG0G. The parameters of the two types (A and U) are
connected by:

AGG0 ¼ UGG0 �UG0G0

AG0G ¼ UG0G �UGG
(1)

Hence, according to eqn (1), AGG0 and AG0G are not independent
but correlated.‡ Despite this, for parameterizing UNIFAC, AGG0

and AG0G are usually considered to be uncorrelated. The fitting
then results in a parameter set that does not comply with
eqn (1), cf. ref. 22. Our approach overcomes this inconsistency.

In a series of recent papers, we have demonstrated the
capabilities of MCMs for predicting different types of thermo-
dynamic data of mixtures using various component-based
approaches.22–27 However, these component-based approaches
are inherently limited regarding the number of components
that are covered; the respective models complete a matrix
spanned by the components that are part of the mixtures in
the training set. This is not the case for the group contribution
methods, which we consider in the present work: as the groups
form building blocks from which components can be created
flexibly, the scope of the group contribution methods for
mixture properties is inherently extremely large – and it can
now be extended substantially by using an MCM to complete
the set of group-interaction parameters.

The approach we propose here should also be applicable to
any other version of UNIFAC, and to other group contribution
models for predicting thermodynamic properties of mixtures
that are based on pair interactions. One advantage of our
approach is that it can be put into practice, e.g., be integrated
into existing process simulators, in a very simple and
straightforward manner: one only has to replace the existing
UNIFAC parameter set of the model implementation by the
predicted one provided with our approach. For other machine-
learning approaches, like artificial neural networks operating
on molecular graphs28,29 or SMILES representations of the
components,30 this might be more complicated in practice.

2 Method

We demonstrate the applicability of using MCMs for the
prediction of group-interaction parameters of thermodynamic
group contribution methods by applying it to UNIFAC.10 The
resulting new version of UNIFAC (in which the predicted new
parameters are used) is called UNIFAC-MCM in the following.

The MCM that was used in the present work is based on
Bayesian matrix factorization31 and similar to the ones used in
our previous works.22–25,27 In principle, we could have applied
the MCM directly to the matrix of the A-type parameters, i.e.,
the matrix containing the group-interaction parameters AGG0

and AG0G. However, this option was discarded for the following
reasons: firstly, the available values for AGG0 and AG0G are
inconsistent with eqn (1). Also, fitting AGG0 and AG0G to mixture
data can give different combinations of these parameters
yielding basically equivalent results for the physical properties
to which they were fitted.32 This hinders an interpretation of
these parameters and makes them poor candidates for applying
an MCM. These problems were overcome by working with the
group-interaction energies UGG0 as explained below. Further-
more, in applying the MCM to the A matrix, the target function
would have been to achieve an optimal representation of the
A-type parameters. However, with UNIFAC-MCM, we are rather
interested in an optimal description of activity coefficients than
in a representation of model parameters. UNIFAC-MCM was
therefore trained on pseudo-data for activity coefficients as
described in the next section.

2.1 Training data

As training data for UNIFAC-MCM, we have generated pseudo-
data for the logarithmic activity coefficients ln gGG0 in hypothe-
tical binary mixtures of the ‘pure main groups’ of UNIFAC
(G and G0) at different temperatures and group mole fractions.
Here, ln gGG0 represents the logarithmic activity coefficient of G
in the binary mixture with G0. For any given temperature and
mole fraction, there are two distinct values ln gGG0 and ln gG0G,
respectively, which can be represented in a matrix. The diag-
onal elements of this matrix are occupied with ones by defini-
tion and were not considered here. For simplicity, we will
simply speak of ln gGG0 in the following referring to that matrix,
which includes the values from both triangular matrices, ln gGG0

and ln gG0G.
Specifically, we have calculated ln gGG0 for all binary combi-

nations of the first 50 main groups of UNIFAC for which the
required parameters were available, which holds for 619 com-
binations (or 50.5% of all possible binary combinations of
these main groups). The grid was spanned by T A {250, 300,
350, 400, 450} K for the temperature, which covers the tem-
perature of most of the available experimental data, and
xG A {0.01, 0.2, 0.4, 0.6, 0.8, 0.99} mol mol�1 for the composition.

For generating the pseudo-data for ln gGG0, the UNIFAC
equations (cf. eqn (S1)–(S11) in the ESI†) were used in the
common manner for hypothetical components that were
composed of a single main group in all cases. For main groups
G with several sub groups g (with individual geometric para-
meters Qg and Rg), the values of Qg and Rg for one of the
respective sub groups were selected, for details see Table S1 in
the ESI.† In principle, UNIFAC-MCM could also be trained on
data for the residual part of the activity coefficients alone,
which describes the energetic interactions (cf. eqn (S7) in the
ESI†), because the interaction parameters only occur in this

‡ For an N-component mixture, there are N2 – N asymmetric pair-interaction
parameters of the A-type (the diagonal remains empty or is filled with zeros),
while there are (N2 – N)/2 + N symmetric pair-interaction energies of the U-type
(the diagonal is occupied by the pure-component energies, but only one of the
triangular matrices has to be filled due to the symmetry). It is always possible to
determine the A-parameters from the U-parameters, but not vice versa.
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term. We have also tested this option and found results very
similar to those reported here, as expected.

2.2 Matrix factorization

At its heart, UNIFAC-MCM factorizes the matrix of group-
interaction energies UGG0 between UNIFAC main groups G
and G0. The unlike UGG0 (G a G0) are modeled as the sum of
two dot products:

UGG0 = UG0G = yG�bG0 + yG0�bG (2)

where yG and bG as well as yG0 and bG0 are vectors of length K
containing a priori unknown (latent) features of the UNIFAC
main groups G and G0, respectively. yG, bG, yG0, and bG0 are
parameters of UNIFAC-MCM, while K is a hyperparameter that
controls the number of features considered per main group and
thereby determines the flexibility of the model. Based on results
of our prior work,22 K was set to K = 3 here. The form of eqn (2)
was chosen to ensure that all resulting group-interaction ener-
gies are symmetric, as required by the lattice model. Besides
the unlike interaction energies, also like group-interaction
energies UGG are needed, cf. eqn (1). They were not included
in the factorization (eqn (2)) but determined directly in the fit.

For training UNIFAC-MCM on the pseudo-data for ln gGG0, cf.
section ‘Training data’, the matrix factorization of the group-
interaction energies UGG0, cf. eqn (2), as well as eqn (1), which
relates the UGG0 to the group-interaction parameters AGG0, were
embedded in the UNIFAC equations, cf. eqn (S1)–(S11) in the
ESI.† This establishes a generative probabilistic model for the
ln gGG0. The training data were hence modeled by:

ln gGG0(T, xG) = UNIFAC(T, xG, yG, yG0, bG, bG0, UGG, UG0G0) + eGG0

(3)

where eGG0 is the deviation between the modeled ln gGG0 and the
training data. The model parameters yG, yG0, bG, bG0, UGG, and
UG0G0 were fitted in a Bayesian framework to minimize these
deviations. For more details on the implementation of the
model and the training procedure, we refer to the ESI.†

2.3 Prediction of UNIFAC group-interaction parameters

UNIFAC-MCM only contains parameters for the ‘pure’ main
groups, namely yG, bG, yG0, bG0, UGG, and UG0G0, which were fitted
to the ‘group-mixture’ data, namely the pseudo-data for ln gGG0,
during the training of the model as described above. Based on
the learned parameters, the group-interaction energies UGG0 of
all combinations of the considered main groups can be calcu-
lated based on eqn (2), from which, in turn, the commonly used
group-interaction parameters of UNIFAC AGG0 and AG0G can be
predicted from eqn (1). Hence, a complete parameterization of
UNIFAC regarding the first 50 main groups is obtained by this
procedure, which can be used for predicting temperature- and
concentration-dependent activity coefficients ln gi of all compo-
nents i in any (binary or multi-component) mixture, if all
components that make up the mixture can be segmented using
the first 50 main groups of UNIFAC. We report the predicted
complete set of AGG0 (and of UGG0) as CSV file in the ESI.† Note
that this set of AGG0 is consistent in terms of fulfilling eqn (1) as

demanded by the lattice theory, which is in contrast to the
previously available UNIFAC parameter tables that were
obtained by fitting AGG0 individually.

The latter also explains why a direct matrix factorization of
the reported AGG0 is not expedient, and instead the pseudo-data
for ln gGG0 were used for training UNIFAC-MCM; the reported
AGG0 matrix simply lacks structure that could be exploited by
the MCM.

3 Results and discussion

In the following, we evaluate the quality of UNIFAC-MCM by
considering predictions of vapor–liquid equilibria (VLE), which
is probably the most important field in which activity coeffi-
cients are applied. As basis for this evaluation, we have used all
VLE data sets for binary mixtures from the Dortmund Data
Bank (DDB)33–35 that comply with the following conditions:
� both components of the mixture can be built from the first

50 main groups of UNIFAC;10

� the data set contains information on temperature, pres-
sure, and composition of the liquid and vapor phase;
� the data set is labeled as ‘thermodynamically consistent’ in

the DDB, i.e., it fulfills area and point-to-point test;36–38

� Antoine parameters for calculating the pure-component
vapor pressure at the temperature of the VLE are available in
the DDB for both components;
� the pressure is not higher than 10 bar to justify the

assumption of an ideal gas phase.
In the present version of the DDB, such VLE data are

available for 2246 distinct binary systems. We will call this
complete set of binary systems ‘complete horizon’ in the
following.

The VLE were predicted using extended Raoult’s law assum-
ing an ideal vapor phase and a pressure independence of the
chemical potentials in the liquid phase:

ps
i (T) xi gi(T, xi) = p yi (4)

For the calculations, the mole fractions xi in the liquid phase
as well as either the pressure p (for isobaric data sets) or the
temperature T (for isothermal data sets) were specified, the
pure component vapor pressure ps

i was calculated with
the Antoine equation using the parameters from the DDB,
and the activity coefficients gi of the components in the liquid
phase were predicted with UNIFAC-MCM. The mole fractions yi

in the vapor phase and the pressure p (for isothermal data sets)
or the temperature T (for isobaric data sets) were then calcu-
lated from the system of equations resulting from applying
eqn (4) to both components. The results were compared to the
experimental data from the DDB, with a focus on the gas phase
mole fraction of the low-boiling component.

For comparison, the same calculations were also carried out
with UNIFAC;10 albeit, this is only possible for a subset of 2068
systems from the complete horizon (‘UNIFAC horizon’). At a
first glance, it may look disappointing that by using UNIFAC-
MCM, with its substantially enlarged parameter table, only 178
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additional systems for which data are available can be modeled.
However, this is as expected: the lack of data on these systems
has hindered the extension of the UNIFAC parameter table so
far. Furthermore, we have also used the commercial version
UNIFAC-TUC for comparison, which enabled predictions of
VLE for 2237 of the studied systems (‘UNIFAC-TUC horizon’).
We have included the results from UNIFAC-TUC in the compar-
ison (even though it is not publicly available) for two reasons:
firstly, it is the best available benchmark method and, secondly,
it allows to evaluate the predictive performance of UNIFAC-
MCM also on systems that can not be modeled by UNIFAC,
which is the basis of UNIFAC-MCM.

The results are shown in Fig. 2, where the horizons in the
three panels differ: in the left panel, it is the complete horizon,
in the middle panel, it is the UNIFAC-TUC horizon, and in the
right one, it is the smallest horizon, that of UNIFAC.10

The results obtained with UNIFAC-MCM on the complete
horizon are shown in Fig. 2 (left), where the mean absolute
percentage error (MAPE) in yi of the low-boiling component of
the predictions with UNIFAC-MCM averaged over all 2246
systems is plotted, which was calculated by comparing the
UNIFAC-MCM predictions system-wise to the respective experi-
mental data from the DDB. As the results indicate, UNIFAC-
MCM predicts the vapor-phase mole fractions for all 2246
studied binary systems with an average error of 5.3%,
which is not much larger than the typical uncertainty of
experimental data for vapor-phase mole fractions. The MAPE

of UNIFAC-MCM in the pressure p, averaged over all isothermal
data sets from the complete horizon, is 5.0 � 0.2%; the MAPE
in the absolute temperature T in K, averaged over all isobaric
data sets from the complete horizon, is 0.48 � 0.02%.

In the middle panel of Fig. 2, the performance of MCM-
UNIFAC is compared to that of UNIFAC-TUC, and in the right
panel, it is compared to UNIFAC10 as well as to UNIFAC-TUC.
The highest accuracy among the three models is found for the
commercial UNIFAC-TUC (MAPE of 4.6% on the UNIFAC-TUC
horizon, cf. middle panel, and 4.2% on the UNIFAC horizon, cf.
right panel), which is not surprising since a lot of effort has
been put into refining its parameterization during the last
decades. However, the scores of UNIFAC-MCM (MAPE of 5.3%
on the UNIFAC-TUC horizon, cf. middle panel, and 4.7% on the
UNIFAC horizon, cf. right panel) are only slightly worse than
that of UNIFAC-TUC.

On the UNIFAC horizon, cf. Fig. 2 (right), the scores of
UNIFAC-MCM (MAPE of 4.7%) and of the public UNIFAC
(MAPE of 4.5%) are very similar. This demonstrates two things:
first, that the additional flexibility of the UNIFAC model
achieved by the inconsistent individual fitting of group-
interaction parameters AGG0 and AG0G compared to the sole
physical consideration of group-interaction energies UGG0

(including the like group-interaction energies UGG and UG0G0)
is unnecessary; for the complete matrix of the considered 50
main groups of UNIFAC, there are 2450 distinct group-
interaction parameters AGG0 and AG0G, but only 1275 distinct

Fig. 2 Mean Absolute Percentage Error (MAPE) of the predicted vapor-phase mole fraction of the low-boiling component in VLE with UNIFAC-MCM for
the ‘complete horizon’ (2246 systems, left) and comparison to the commercial UNIFAC-TUC for the ‘UNIFAC-TUC horizon’ (2237 systems, middle), and
to the public UNIFAC10 for the ‘UNIFAC horizon’ (2068 systems, right). Error bars denote standard errors of the means.
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group-interaction energies UGG0 (including 50 like energies
UGG). And second, the MCM, which is at the heart of UNIFAC-
MCM, is able to capture the structure within the unlike group-
interaction energies using six latent parameters for each
main group.

It is interesting to also study the performance of UNIFAC-
MCM and UNIFAC-TUC only for those systems that cannot be
modeled with UNIFAC;10 this gives an impression of the per-
formance of UNIFAC-MCM when applied for true predictions,
namely for systems containing combinations of main groups for
which no interaction parameters of UNIFAC are available, as it
is unlikely that data on any of these systems were used in the
development of UNIFAC,10 on which UNIFAC-MCM is based. In
contrast, it may be assumed that basically all these additional
VLE data were used for the development of UNIFAC-TUC, so that
for UNIFAC-TUC, such a comparison shows basically only if the
correlation of these additional data was successful. The respec-
tive results are presented in Fig. 3. Most of the systems within
the complete horizon can be modeled not only with UNIFAC-
MCM but also with UNIFAC-TUC. The few systems for which
this is not the case, are treated separately in Fig. 3 (left panel).

The first message from Fig. 3 is that the deviations increase
compared to the ones shown in Fig. 2, which holds both for
UNIFAC-TUC and UNIFAC-MCM. Averaged over all systems that
can be modeled by both models (but not by UNIFAC), cf. Fig. 3
(right), the MAPE for UNIFAC-TUC is now 9.0%, that for
UNIFAC-MCM is 12.7%. However, considering that the results
from Fig. 3 obtained with UNIFAC-MCM are bold predictions,
while those from UNIFAC-TUC are basically only correlations,
the difference between both methods is unexpectedly small.

Comparing the results from Fig. 3 with those from Fig. 2 is
most informative when referring to Fig. 2 (right), where the
UNIFAC horizon is shown, because it then gives an impression
on the changes when carrying out the comparison for comple-
mentary data sets: the UNIFAC horizon, for which the results
are shown in Fig. 2 (right), covers all systems that can also be
modeled by the public UNIFAC; Fig. 3, on the other hand,
shows the results for all remaining systems from our data set,
i.e., for the ones that cannot be modeled by the public UNIFAC.

Carrying out this comparison for UNIFAC-TUC (for which
the results are correlations in both cases) clearly shows that the
systems studied in Fig. 3 are more difficult to describe than
those studied in Fig. 2 (right). We are not going into the details
of these additional difficulties, which can be related to different
factors, including spotty and uncertain data (cf. also Fig. S3 in
the ESI†) as well as to the fact that many of the respective
systems contain components with special properties (highly
halogenated or reactive components), which substantially com-
plicates the accurate modeling with UNIFAC.

Hence, the results for UNIFAC-TUC indicate that most of the
increase of the MAPE scores observed also for UNIFAC-MCM
when going from Fig. 2 (right) to Fig. 3 is simply due to the
increased difficulties in describing the data considered in
Fig. 3, and, thus, cannot be attributed to a lack of predictive
power. We only note here that the scope of the developed
UNIFAC-MCM is much larger than we can demonstrate here,

simply due to the fact that for many of the group-interaction
parameters that can now be predicted, no experimental data for
testing are available, cf. Fig. S3 in the ESI.† An alternative
representation of the results of UNIFAC-MCM in the form of
histograms is given in Fig. S4 in the ESI.†

In Fig. 4, we show some typical examples for the prediction
of vapor–liquid phase diagrams with UNIFAC-MCM and com-
pare the results to those obtained with UNIFAC-TUC. Only
systems that cannot be modeled by the public UNIFAC version
were therefore chosen, such that the results of UNIFAC-MCM
are true predictions. This is, again, not the case for UNIFAC-
TUC, as the data shown in Fig. 4 were available for the
development of the method. In all cases, UNIFAC-MCM repre-
sents the different types of phase behavior well.

In Fig. 5, we show two further examples for the prediction of
VLE phase diagrams with UNIFAC-MCM. The chosen systems
can neither be modeled by the public UNIFAC, nor with the
commercial UNIFAC-TUC due to missing group-interaction
parameters in both models. We observe an almost perfect
agreement of the predictions with UNIFAC-MCM and the
experimental data, but note that we also find systems with
poorer agreement, cf. Fig. S4 in the ESI.†

UNIFAC-MCM should in general be used in cases in which
required group-interaction parameters of UNIFAC are missing,
while in cases in which all parameters are available, we recom-
mend using these. The reason is that UNIFAC-MCM is basically
a derivate of UNIFAC, i.e., based on the available parameter

Fig. 3 Mean Absolute Percentage Error (MAPE) of the predicted mole
fraction of the low-boiling component in the vapor phase in VLE with
UNIFAC-MCM for the systems that can only be modeled by UNIFAC-MCM
(left, ‘MCM only’, 9 systems), and those systems that can also be predicted
with UNIFAC-TUC but not with UNIFAC (middle, ‘UNIFAC-TUC only’, 169
systems). Error bars denote standard errors of the means.
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tables, and it would only be by chance were it for certain
systems better than its basis. However, we emphasize that the
differences between UNIFAC and UNIFAC-MCM are not
expected to be large, as shown in Fig. 2.

4 Conclusions

Group contribution methods for the prediction of thermophy-

sical properties are highly important in chemical engineering.

Fig. 4 Prediction of vapor–liquid phase diagrams for binary systems with UNIFAC-MCM (solid lines) and UNIFAC-TUC (dashed lines) and comparison to
experimental data from the DDB (symbols). For each system, the MAPE in the predicted vapor-phase mole fraction of the low-boiling component is given
for both models. All shown systems can not be predicted with the public UNIFAC version. Blue: dew point curves. Red: bubble point curves.
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One of the most successful of these methods is UNIFAC.

However, the applicability of UNIFAC is still substantially
hampered by missing group-interaction parameters, which is

in particular due to the lack of suitable mixture data for fitting

the parameters. As a consequence, there are still significant
gaps in the matrix in which these UNIFAC parameters are

usually represented.
In the present work, we present an approach to complete the

group-interaction parameter set of UNIFAC using a matrix
completion method (MCM) from machine learning. Our
approach, called UNIFAC-MCM, was trained in a purely data-
based manner solely on pseudo-data generated with UNIFAC,
and approximately doubles the number of available group-
interaction parameters.

We have evaluated the performance of UNIFAC-MCM for the
prediction of vapor–liquid equilibria (VLE) of 2246 binary
systems from the Dortmund Data Bank. This set can be divided
into data that can be predicted with the public UNIFAC (2068
systems) and data for which this is not the case, but which can
be predicted with the developed UNIFAC-MCM (169 systems).
The latter set is comparatively small, as the missing groups in
UNIFAC are rather uncommon ones, i.e., only present in
components for which only few data have been measured.

Where a direct comparison is possible, UNIFAC and
UNIFAC-MCM show a similar performance. This alone is
astonishing since UNIFAC-MCM is based only on consistent
group-interaction energies, whereas in UNIFAC the number of
the parameters to describe the pairwise interactions has almost
been doubled, simply to increase the flexibility, which is,
however, not well founded in the physical lattice theory from
which UNIFAC was derived. For the systems for which UNIFAC
cannot be applied, the performance of UNIFAC-MCM is poorer
but still acceptable, especially given the fact that this set

contains basically only demanding systems, as also the com-
mercial version UNIFAC-TUC, which we used for comparison
here, shows significantly larger error scores.

This work has shown that working with consistent group-
interaction energies is not only a feasible alternative to the
common procedure of fitting UNIFAC parameters, but also a
highly attractive one: a similar quality is obtained by a signifi-
cantly smaller (approx. 50%) number of parameters, which
promises a higher predictive performance and could be useful
also for the fitting of new UNIFAC parameters in the future. The
predicted parameters provided in this work might in general
serve as valuable starting points for the future fitting of UNIFAC
parameters to experimental data. In future work, it will be
interesting to include further structural groups in the model, to
transfer our approach to other group contribution methods for
mixture properties, and to consider an end-to-end training,
directly on experimental VLE data.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors gratefully acknowledge financial support by Carl
Zeiss Foundation in the frame of the project ‘Process Engineer-
ing 4.0’ and by Germany’s Bundesministerium für Wirtschaft
und Klimaschutz (BMWK) in the frame of the project ‘KEEN’.

Notes and references

1 D. S. Abrams and J. M. Prausnitz, AIChE J., 1975, 21,
116–128.

Fig. 5 Prediction of vapor–liquid phase diagrams for binary systems with UNIFAC-MCM (lines) and comparison to experimental data from the DDB
(symbols). For both system, the MAPE in the predicted vapor-phase mole fraction of the low-boiling component is given. Both systems can neither be
predicted with the public UNIFAC version, nor with the commercial UNIFAC-TUC. Blue: dew point curves. Red: bubble point curves.

Paper PCCP

Pu
bl

is
he

d 
on

 1
2 

D
ez

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 0
1.

02
.2

6 
13

:0
9:

26
. 

View Article Online

https://doi.org/10.1039/d2cp04478a


1062 |  Phys. Chem. Chem. Phys., 2023, 25, 1054–1062 This journal is © the Owner Societies 2023

2 G. Maurer and J. Prausnitz, Fluid Phase Equilib., 1978, 2,
91–99.

3 H. Renon and J. M. Prausnitz, AIChE J., 1968, 14, 135–144.
4 A. Fredenslund, R. L. Jones and J. M. Prausnitz, AIChE J.,

1975, 21, 1086–1099.
5 S. Skjold-Jorgensen, B. Kolbe, J. Gmehling and P. Rasmussen,

Ind. Eng. Chem. Process Des. Dev., 1979, 18, 714–722.
6 J. Gmehling, P. Rasmussen and A. Fredenslund, Ind. Eng.

Chem. Process Des. Dev., 1982, 21, 118–127.
7 E. A. Macedo, U. Weidlich, J. Gmehling and P. Rasmussen,

Ind. Eng. Chem. Process Des. Dev., 1983, 22, 676–678.
8 D. Tiegs, P. Rasmussen, J. Gmehling and A. Fredenslund,

Ind. Eng. Chem. Res., 1987, 26, 159–161.
9 H. K. Hansen, P. Rasmussen, A. Fredenslund, M. Schiller

and J. Gmehling, Ind. Eng. Chem. Res., 1991, 30, 2352–2355.
10 R. Wittig, J. Lohmann and J. Gmehling, Ind. Eng. Chem. Res.,

2003, 42, 183–188.
11 T. Magnussen, P. Rasmussen and A. Fredenslund, Ind. Eng.

Chem. Process Des. Dev., 1981, 20, 331–339.
12 G. Wienke and J. Gmehling, Toxicol. Environ. Chem., 1998,

65, 57–86.
13 W. Yan, M. Topphoff, C. Rose and J. Gmehling, Fluid Phase

Equilib., 1999, 162, 97–113.
14 The UNIFAC Consortium, 2022, http://www.unifac.org.
15 A. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-

liquid Equilibria using UNIFAC: a Group-contribution Method,
Elsevier, 1977.

16 A. A. Bondi, Physical Properties of Molecular Crystals Liquids,
and Glasses, Wiley, 1968.

17 A. Fredenslund, Vapor-liquid Equilibria using UNIFAC: a
Group-contribution Method, Elsevier, 2012.

18 J. Gmehling, R. Wittig, J. Lohmann and R. Joh, Ind. Eng.
Chem. Res., 2002, 41, 1678–1688.

19 B. Schmid, A. Schedemann and J. Gmehling, Ind. Eng. Chem.
Res., 2014, 53, 3393–3405.

20 Y. Koren, R. Bell and C. Volinsky, Computer, 2009, 42, 30–37.
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