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Non-graphite carbon materials are composed of basic carbon layer units, such as soft carbon, hard carbon,

and reduced oxide graphene, and an increasing number of studies on various non-graphite carbon

materials are being performed in sodium-ion batteries (SIBs). However, it is difficult to relate the different

non-graphite anodes, and a systematic analysis of the correlation between the non-graphite carbon

structure and sodium storage properties is lacking. Moreover, there is no strategy to screen for high-

performance electrode materials by using the database from the Web of Science. In this study, the

effects of crystallinity, an essential attribute of basic microstructural units, on the sodium storage

properties have been identified and analyzed. The key structural parameters characterizing the

crystallinity were explored. A structure–property database was built based on these parameters (La, Lc,

d002, and ID/IG) and the main performance data. The data analysis results were used in conjunction with

thermodynamic and kinetic analysis to systematically evaluate the effects of these parameters on the

sodium storage performance. Finally, machine learning was used to effectively screen for optimal

structural parameters, and a standardized process was proposed for the preparation of high-

performance electrode materials programmatically, enabling the continuously updated database to

effectively guide the scientific research and engineering application of non-graphite carbon materials.
1 Introduction

Non-graphite carbon materials, such as so carbon, hard
carbon and reduced graphene oxide (rGO), are cutting-edge
electrode materials used in the research and commercial
application of secondary batteries.1–3 All types of non-graphite
carbon material have been widely studied as anodes of
sodium-ion batteries (SIBs). In particular, so carbon has been
used as a commercial anode material for SIBs on a certain scale,
because of its abundant resources, low cost and environment
friendliness.4 More importantly, non-graphite carbon materials
with low crystallinity generally have high Na+ (de)intercalation
ability in ester electrolytes. Extensive studies on various
precursors and different heat treatment temperatures (HTTs)
have shown that non-graphite carbon materials generally
exhibit excellent sodium storage performance; additionally,
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some types of hard carbon can be used as self-supporting or
exible electrodes, which is expected to be applied in exible
devices in the future.5,6 For example, Hou et al.7 synthesized self-
supporting hard carbon paper with a disordered carbon layer
arrangement and extended interlayer spacing, and found that
the material had an initial coulombic efficiency (ICE) higher
than 90% and a reversible capacity up to 200 mA h g�1; the
paper could deliver 170 mA h g�1 even at 2 A g�1. Subsequently,
Sun et al.8 used the relationship between the carbon layer
structure and sodium storage mechanisms to classify the
microstructure of hard carbon into three types, i.e., highly
disordered carbon, pseudo-graphitic carbon and graphitic
carbon. The proportion of the three types can be adjusted by
HTT to optimize the sodium storage performance. However, the
sodium storage mechanism and performance remain quite
different for hard carbon obtained from different precursors
and heat treatment processes, which is confusing for further
research. So carbon and rGO also have a high sodium storage
capacity. Jian et al.9,10 prepared so carbon at a low temperature
that exhibited a stable capacity and rate performance, and its
charge–discharge curves had a clear slope and a higher voltage
plateau than that of hard carbon. In 2018, Zhao et al. prepared
porous rGO and proved that an enlarged carbon interlayer
spacing and a large number of pores enhance the Na+ (de)
intercalation rate performance.11 Although this material
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8031
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delivers 365 mA h g�1 at 0.1 A g�1, the charge–discharge curves
have a clear slope, indicating a distinctly different sodium
storage mechanism from that of hard carbon. Overall, non-
graphite carbon materials represented by so carbon, hard
carbon and rGO are expected to be prime candidates for sodium
storage anode materials, and numerous researchers have
extensively investigated the sodium storage law of different
carbon anodes.

An in-depth analysis of many studies clearly shows that
various carbon materials have been widely researched.
However, structures and sodium storage properties have only
been intensively studied within a single material system, and
systematic classication and an in-depth analysis have not been
carried out between the structures and sodium storage prop-
erties of various non-graphite carbon materials. Specic prob-
lems remain with using non-graphite carbon materials as SIB
anodes. (i) A systematic analysis of the sodium storage mecha-
nism and performance has not been performed for all the types
of available non-graphite carbonmaterial based on the intrinsic
carbon layer units (crystallinity). (ii) The key structural param-
eters need to be explored and classied, and a structure–prop-
erty database based on the structure and performance needs to
be constructed. (iii) Most studies on the sodium storage char-
acteristics have been limited to isolated systems (such as iso-
lated hard carbon or rGO systems), and a strategy for using the
Web of Science database to screen for high-performance
carbon-based anodes has not been developed.

In response to these problems, many studies have been
analyzed and summarized about sodium storage of non-
graphite carbon materials in the Web of Science database in
this work (retrieval form and results are shown in Fig. S1, ESI†).
To systematically determine how the structural parameters
affect the sodium storage mechanism and performance,
intrinsic non-graphite carbon materials (without foreign
dopants) with relatively ideal and simple structures were
selected as a research subject. Furthermore, we systematically
searched the quantitative data of key structural parameters
(d002, La, Lc, and ID/IG) characterizing the crystallinity of non-
graphite carbon materials (as depicted in Fig. S2, ESI†), and
obtained the capacity, rate performance, average discharge
voltage plateau and other sodium storage data from previous
studies. Then, a structure–property relationship database was
established based on the key structural parameters and main
sodium storage performance. The crystallinity of the carbon
layer was used to analyze all the non-graphite carbon materials
and thereby relate different systems, which can be used to
identify a relatively universal structure–property relationship.
Finally, the structure–property database of non-graphite carbon
materials was used in conjunction with machine learning to
design suitable models to effectively screen for reasonable
structural parameters that produce optimal sodium storage
performance. The database and its construction method
represent a new direction for the application of structure–
property data in the literature, as well as a paradigm for the
engineering application of test data, enabling the large quantity
of available research data to effectively guide future scientic
research and engineering applications.
8032 | J. Mater. Chem. A, 2022, 10, 8031–8046
2 Sodium storage mechanism and
performance of non-graphite carbon
materials
2.1 Overview of the structure and data extraction

Over the past decade, some non-graphite carbon materials, such
as so carbon, hard carbon and rGO, have generally exhibited
interesting sodium storage properties.12 In order to clarify the
structural characteristics of various carbon materials, the evolu-
tion of the carbon layer stacking form is shown in Fig. 1. Two-
dimensional carbon layers with different crystallization and
stacking can form amorphous layered carbon materials with
different morphologies including graphite, graphene, so
carbon, hard carbon, etc. With graphite as a raw material,
expanded graphite can be obtained when the graphite layers are
slightly oxidized and uniformly expanded; if the graphite layers
are strongly oxidized, graphene oxide can be obtained via exfo-
liation, and rGO can be synthesized via reduction.13,14 At the same
time, monolayer graphene can be obtained from a graphite
precursor bymechanical exfoliation and other methods.15 Taking
graphite as the standard, if a precursor can be transformed into
an (articial) graphite structure during heat treatment, it is called
so carbon, otherwise it is called hard carbon. Compared with
hard carbon materials, so carbon materials have a relatively
higher ordering of carbon layers and are usually obtained by
carbonizing precursors such as polyvinyl chloride (PVC), petro-
leum coke, pitch, coal, polyvinyl acetate (PVA) and benzene.16

Additionally, the carbon layers still have a certain number of
defects (including cavities, edge structures, ve-membered or
seven-membered rings that cause the carbon material to bend
andwrinkle, heteroatoms such as oxygen, etc.).17 The hard carbon
is mainly obtained by a thermal or chemical process involving
organic compounds and biomass, such as resin and sucrose.5

Hard carbon generally has a low-degree ordering, which is re-
ected in the large interlayer spacing, small crystallite size and
abundant pore structures. The carbon layers also contain
hydrogen, oxygen and other heteroatoms, which further leads to
a decrease in the crystallinity of hard carbon.18 Aer high
temperature treatment (>�2000 �C), hard carbon can be trans-
formed into crystallite graphite structurally, but its carbon layer
size is much smaller than that of graphite. While non-graphite
carbon materials are widely applied in SIB anodes, the sodium
storage mechanisms and performances are quite different for
various carbon materials and difficult to relate to each other. A
systematic exploration and quantitative analysis of the crystal-
linity of non-graphite carbon materials are still lacking, which
hinders the in-depth understanding of the relationship between
structure and property.

Based on a large number of experimental studies, XRD is
a common experimental method to analyze the crystal structure
of two-dimensional carbon layers. The interlayer spacing d002
(eqn (1)) can be obtained through Bragg's law. The dimensions
along the a-axis (La) and the c-axis (Lc) are calculated using the
Debye–Scherrer formula (eqn (2)).19–21

2d sin q ¼ nl (1)
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Schematic diagram of the structural evolution of different pure carbon materials: graphite can be transformed into graphene or rGO by
physical or chemical methods; soft carbon can be obtained from PVC, coal, pitch, etc. after graphitization at high temperature, soft carbon can
be transformed into artificial graphite; hard carbon is mostly obtained from biomass, and can be transformed into crystallite graphite after
graphitization.
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L ¼ Kl

b cos q
(2)

In eqn (1), q is the diffraction angle, n is the diffraction order
and l is the X-ray wavelength (0.15406 nm, Cu Ka). In eqn (2), L
represents the average thickness of the grain perpendicular to
the crystal plane. b is the full width at half maximum (FWHM,
in radians), and the K values of the (100) and (002) planes are
1.84 and 0.90, respectively. With similar carbon layer units for
all kinds of non-graphite carbon material, statistical averages of
the carbon layer size and interlayer spacing can be obtained
from XRD results.

Additionally, the precursor and HTT have an important
inuence on the molecular structure of non-graphite carbon
materials, especially for hard and so carbon. Firstly, the
formation and arrangement of carbon layers are inuenced by
the precursor structure and atom type, and secondly, non-
graphite carbon materials are formed by many carbon layer
units with a disordered arrangement. In both cases, the main
defects in carbon materials are intrinsic heteroatoms and
stacking disorder. Raman spectroscopy has become a key
technology for characterizing various carbon allotropes and
disordered structures, because it has high resolution and
sensitivity to local changes in the carbon structure.22–24 In the
Raman spectra, layered carbons have two main features, i.e., the
G and D bands. The G band is related to the bond stretching of
sp2 atoms in both rings and chains (E2g symmetry), while the D
band is related to the breathingmodes of sp2 atoms in rings (A1g
This journal is © The Royal Society of Chemistry 2022
symmetry). The intensity ratio between the D and G bands (ID/
IG) is generally used to evaluate the defect level of carbon
materials, which is oen used in many literature reports.25–27

In summary, the crystallinity of the carbon layers is the key
structural factor for non-graphite carbon materials and has an
important effect on sodium storage properties. A quantication
of crystallinity is helpful to obtain universal structure–property
rules. By XRD and Raman, these key structural parameters can
be easily obtained to identify the crystallinity levels of different
non-graphite carbon materials. However, as for the doped or
composite carbon materials, there are too many interference
factors on the key structural parameters, resulting in complexity
in the thermodynamics or kinetics.28 Therefore, because of the
relatively ideal and simple structures, intrinsic non-graphite
carbon materials are selected as the research object to study
how the crystallinity systematically determines the sodium
storage mechanism and performance. The specic process of
data extraction is as follows. Firstly, for the structural parame-
ters, XRD data were carefully extracted from the gures in the
literature by using a gure digitization tool. The peak position
and FWHM data were immediately analyzed according to the
unied rules. Further, the grain size (La and Lc) and interlayer
spacing (d002) are calculated using eqn (1) and (2). For Raman
data, the gure information in the literature was also trans-
formed into data, and the ID/IG was calculated from the peak
intensity ratio. Secondly, for performance data, the capacity was
taken from the specic capacity at a current density of
100 mA g�1. The rate factor was obtained by uniform
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8033
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processing: the capacity under different current densities was
taken, and the slope was tted. The reciprocal of the slope was
taken to express the rate performance. The higher the value was,
the better the rate performance. The working plateau was the
average working voltage in the main discharge range. To avoid
interference from other factors, all SIB electrolytes for non-
graphite carbon materials are ester solvents (intercalation or
other behaviors of Na+ alone), and the counter electrode is
sodium metal. By sorting the key structural and performance
parameters of pure layered carbon anodes, a database is
established to represent the structure–property relationship for
sodium storage (see Section S1, ESI†).
2.2 Hard carbon

Different from the orderly carbon layer arrangement of
graphite, hard carbon has a small carbon layer size (usually
below 10 nm) with a random arrangement, causing abundant
defects and pore structures.29 Non-graphitizable hard carbon
has many kinds of precursor and a changeable structure at
different HTTs. Therefore, there are many studies on the
sodium storage properties of hard carbon. In order to fully
understand the structure–property relationship, we rst
analyzed the sodium storage mechanism of hard carbon.
Previous studies on hard carbon are shown in Fig. S3 (ESI†).
Sodium storage behaviors of hard carbon can be divided into
three kinds: pseudocapacitive adsorption, intercalation, and
pore-lling (as shown in Fig. S3a, ESI†), which dominate the
sodiation process.30–34 So far, a variety of sodium storage
mechanisms and models have been proposed. In fact, the hard
carbon derived from various precursors and HTTs can be
described by a “house of cards”, but this model is not enough to
accurately reect its microstructure, so the sodium storage
mechanism for different structural parameters has been veri-
ed. Meanwhile, extensive studies have found that hard carbon
has excellent sodium storage performance and is expected to
become a commercial anode. Although hard carbon has been
extensively studied, the change trends of sodium storage
properties with crystallinity are likely very complex. Thus, there
is an even greater need to develop the analysis of the key
structural factors and sodium storage properties to discover the
laws and reveal the relationship.

In this section, the effect of key structural parameters on the
performance is analyzed. Moreover, we also added specic
surface area (SSA, read directly in the literature) as an adjust-
ment factor since the pseudocapacitive behavior and ICE are
closely related to the SSA. Hence, important structural param-
eters (d002, La, Lc, ID/IG, and SSA) and main performance data
(capacity, rate, working plateau, and ICE) are sorted and listed
in Table 1. The comprehensive impact of multiple structural
parameters on performance is difficult to be pinpointed
experimentally. Therefore, we tried to introduce big data anal-
ysis to determine the relationship between the structure and
performance. In statistics, the Spearman rank correlation test is
a nonparametric technique used to evaluate the correlation
between two independent variables. It requires that the two
variables be pairs of rating data, or ranked data converted from
8034 | J. Mater. Chem. A, 2022, 10, 8031–8046
continuous variable observations, without considering the
overall distribution of the two variables and the size of the
sample.35 When the data does not follow a normal distribution
or the population distribution is unknown, Spearman correla-
tion should be used. The Spearman rank correlation coefficient
between random variables is dened as follows:

r ¼ 1�
6
Pn

i

di
2

nðn2 � 1Þ (3)

Let X and Y be the two variables, and they both have n
elements. The i-th (1 # i # n) value of the two variables is
expressed as Xi, Yi. Subsequently, xi and yi can be obtained aer
rearrangement of Xi and Yi in ascending or descending order,
where element xi is the rank of Xi in X, and yi is the rank of Yi in
Y. And then, a new set d can be obtained by subtracting the
corresponding elements of xi and yi (di ¼ xi � yi, 1 # i # n).

According to the structure–property data characteristics
(independent, abnormal distribution), we chose the Spearman
rank correlation test to analyze the correlation between vari-
ables. The signicance (two-tailed) p value represents the reli-
ability degree of the data. A small p-value (approaching 0) is
generally considered as high signicance, indicating that the
correlation can be extended from the sample to the whole. The
correlation coefficient r value represents the degree of correla-
tion. The closer the absolute value of the correlation coefficient
is to 1, the more signicant the correlation, and a negative value
indicates a negative correlation.36,37 Aer the Spearman rank
correlation test, Fig. 2a shows the correlation degree between
key structural parameters and performances (capacity, rate, and
plateau). Each sodium storage performance is found to be
mainly affected by one key structural parameter. The main
impact factor for capacity is La (r ¼ 0.223, p ¼ 0.024). The rate
and plateau are highly correlated with ID/IG with correlation
coefficients of 0.296 and 0.201 (signicances of 0.001 and 0.02),
respectively. Considering the migration and diffusion mecha-
nism of alkali metal ions, different energy storage performances
reect the different motion states in the carbon layer. The data
analysis results above indicate that the motion state is closely
related to the structure information. Hence, the effective
extraction of key structural parameters is helpful in establishing
the structure–property relationship. For example, by improving
the morphology, intercalation routes could be controlled;
adsorption behavior could be optimized by adjusting the pore
structure and so on.38 Consequently, it is signicant to establish
the structure–property relationship for designing carbon
materials with excellent sodium storage performance.

In fact, a certain sodium storage performance is affected by
many structural parameters; for example, the size of the carbon
layer (La and Lc) has a great inuence on the diffusion kinetics of
Na+. Single-factor analysis cannot reasonably reveal the change
laws of non-graphite carbon with great structural differences.
According to the thermodynamic and kinetic analysis for
structure and performance in previous studies, a certain
structural parameter can be mainly related to a corresponding
performance parameter. For example, intercalation potential
This journal is © The Royal Society of Chemistry 2022
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Table 1 Hard carbon structures and sodium storage performancea

HTT (�C) Precursor d002 [nm] La [nm] Lc [nm] ID/IG
SSABET
[m2 g�1] Rate factor

Initial CE
[%]

Capacity
[mA h g�1]

Working
plateau [V]

600 Peat moss39 0.384 2.09 1.08 0.86 369 0.23 44 189 1.02
600 Waste tea bag40 0.389 1.61 0.67 0.95 415 0.33 58 170 0.54
700 Pomelo peel18 0.371 1.84 0.88 1.04 1272 0.16 27 203 0.79
700 Platanus bark41 0.372 1.62 0.76 0.84 602 0.19 34 234 0.87
700 Sepals42 0.333 2.33 0.78 0.94 183 0.14 70 202 0.63
800 Banana peel43 0.380 4.51 1.58 1.48 217 0.14 61 275 0.77
800 Mangosteen shell44 0.367 2.71 1.04 0.97 540 1.17 22 50 0.59
800 Shaddock peel45 0.386 1.91 0.81 0.95 25.5 0.16 62 216 0.73
800 Cedarwood bark46 0.402 2.25 0.68 0.95 441 0.23 44 254 0.69
900 Peat moss39 0.387 2.36 1.08 0.98 271 0.17 50 207 0.78
900 Apricot shell47 0.377 1.93 0.67 1.01 27.9 0.23 73 282 0.63
900 Reed straw48 0.394 1.95 0.77 1.01 325.3 0.22 49 116 0.62
900 Water caltrop shell49 0.385 1.82 0.83 1.01 48.1 0.14 76 257 0.70
900 Bio-oil50 0.359 1.70 0.86 1.09 820 0.23 56 200 0.93
950 Sugarcane bagasse51 0.369 3.43 0.81 0.97 3 0.19 70 232 0.58
1000 Cellulose52 0.375 2.72 0.83 1.05 377 0.13 59 235 0.68
1000 Shaddock peel45 0.382 2.25 0.79 0.99 68 0.12 63 281 0.65
1000 Switchgrass53 0.368 1.93 1.07 1.16 619 0.13 42 199 0.59
1000 Lotus seedpods54 0.377 2.57 0.90 1.08 751.6 0.11 45 222 0.88
1000 Cherry petals55 0.404 1.65 0.63 1.02 2 0.13 67 235 0.54
1100 Peat moss39 0.374 3.49 0.87 0.99 197 0.12 57 281 0.63
1100 Sucrose56 0.412 3.33 0.56 1.30 7 0.10 84 151 0.62
1100 Rice husk57 0.395 2.75 0.86 1.01 3 0.16 64 332 0.58
1100 Apricot shell47 0.385 2.29 0.72 1.03 56.7 0.18 77 328 0.65
1100 Reed straw48 0.394 1.94 0.76 1.02 82 0.11 73 260 0.68
1200 Shaddock peel45 0.390 2.60 0.73 1.00 82 0.08 67 315 0.60
1200 Lotus stem58 0.371 2.36 0.48 1.06 25.8 0.19 69 194 0.54
1200 Lotus seedpods54 0.386 2.69 0.86 1.04 140.7 0.08 50 279 0.81
1200 Tamarind shell59 0.392 2.50 0.73 1.02 11.3 0.08 70 270 0.62
1300 Mangosteen shell44 0.364 3.33 1.12 1.28 82 0.20 74 182 0.56
1300 Rice husk57 0.388 3.08 0.93 0.99 0.3 0.13 66 365 0.59
1300 Reed straw48 0.397 2.26 0.75 1.03 36 0.09 77 237 0.62
1300 Walnut shell60 0.363 2.83 0.98 1.13 154 0.16 46 166 0.59
1300 Lignin61 0.364 3.11 1.26 1.11 10.8 0.06 79 283 0.61
1400 Peat moss39 0.373 4.19 0.99 1.03 92 0.11 60 240 0.50
1400 Sucrose62 0.403 2.99 0.74 1.05 8 0.10 82 206 0.60
1400 Peat63 0.339 3.38 2.19 0.98 6 0.08 80 303 0.51
1400 Shaddock peel45 0.383 3.27 0.84 1.69 39 0.09 69 223 0.58
1500 Mangosteen shell44 0.359 3.87 1.17 1.40 8.96 0.14 83 134 0.55
1500 RF resin64 0.390 2.88 0.78 1.07 450 0.13 57 69 0.73
1500 Reed straw48 0.381 2.99 0.90 1.05 23.9 0.09 79 210 0.62
1500 Water caltrop shell49 0.376 3.25 0.95 1.01 7.4 0.11 86 236 0.56
1600 Sucrose62 0.395 3.95 0.88 1.17 5 0.09 85 275 0.60
1600 Cellulose65 0.386 4.03 0.79 1.16 2 0.12 81 51 0.52
1600 Lotus stem58 0.350 2.73 1.21 1.24 23.7 0.08 56 240 0.49
1600 Corn straw piths66 0.360 2.19 0.72 0.93 10 0.15 55 180 0.76
2050 Switchgrass53 0.352 3.07 1.48 1.05 23 0.21 64 204 0.56

a The values of d002, La, and Lc are derived from XRD. ID/IG is the intensity ratio between the D and G bands. The capacity is taken from the specic
capacity at a current density of 100mA g�1. The rate factor is obtained by uniform processing: the capacity under different current densities is taken,
and the slope is tted. The reciprocal of the slope is taken to express the rate performance. The higher the value is, the better the rate performance.
The working plateau is the average working voltage in the main discharge range.
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could be calculated using the Nernst equation, and diffusion
barrier using density functional theory. Similarly, the ion
diffusion rate can be studied by kinetic theory and is closely
related to specic structural parameters, such as ionic diffusion
coefficient and pseudocapacitive contribution (see the ESI† for
a detailed description). Generally, the SSA is closely related to
the ICE, and similarly for ID/IG and adsorption behavior.67
This journal is © The Royal Society of Chemistry 2022
Therefore, based on the data analysis as well as thermodynamic
and kinetic investigations, we found and analyzed the two
structural factors that have the main impact on a certain
performance parameter (as shown in Fig. 2b–g). Fig. 2b shows
the inuence of structural factors (La and Lc) on the sodium
storage capacity. A small Lc and large La could mainly facilitate
stable (de)intercalation of Na+ and provide a relatively large
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8035
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Fig. 2 Structure and performance analysis of hard carbon: (a) Spearman rank correlation analysis of structural and sodium storage performance
parameters; the color bars in the three separated areas are d002, La, Lc, ID/IG, and SSA from left to right, and the corresponding significance p value
is inserted in the table. (b–g) 3D surface graphs of change trends for dual structural parameters and performance parameters (capacity, rate, and
plateau).
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capacity (as shown in the dotted line area of Fig. 2b). A small Lc
size favors reducing the number of layers, making it easy for
hard carbon to form the “house of cards” structure. Meanwhile,
the pore structure will be rich and diverse with the decrease of
Lc, which increases the pore-lling sites and promotes the
capacity eventually. Another high-capacity region in Fig. 2b is
located in the large La (3–4.8 nm) and Lc (1.4–2.4 nm) region,
which reects different energy storage processes. A large carbon
layer size will bring about more intercalation sites, but it is not
conducive to the dynamics. Therefore, a large La can cause Na+

to (de)intercalate in the carbon layers at a low current density so
that the reversible capacity is high. Additionally, the inuence
of the other two key structural parameters on the capacity is also
evaluated. As shown in Fig. 2c, the reversible capacity is high in
the region with medium SSA and high ID/IG, which is consistent
with most of the reports.68 But the plateau capacity is low when
SSA is high (600–1200 m2 g�1). The main energy storage
behavior of hard carbon is dominated by the surface adsorption
process as the SSA is high, which leads to the rise of working
8036 | J. Mater. Chem. A, 2022, 10, 8031–8046
voltage plateau.18,50 Finally, the energy density lowers to
a certain extent and irreversible capacity loss occurs inevitably.

The rate performance depends on the kinetic process. A high
rate performance requires the microstructure to be conducive to
large-scale ion diffusion. According to many research results, La
and d002 determine the “length and width” of the Na+ diffusion
process. Within a certain range, the smaller the carbon layer
size is, the shorter is the ion intercalation path, which reduces
the energy barrier and overpotential for Na+ diffusion. More-
over, the interlayer spacing of hard carbon is generally large,
which is also helpful in the ion diffusion process. On the other
hand, big data analysis shows that ID/IG has a signicant
negative correlation with the rate performance. According to the
above analysis, the law between the rate performance and the
two structural parameters is summarized. First, according to
the variation law of rate performance versus changing La and Lc
(as shown in Fig. 2d), small La and Lc values contribute to the
rate performance over a certain range, but the mechanism is
complicated, involving electron transfer and charge migration
processes. In the results of Balogun et al., when alkali metal
This journal is © The Royal Society of Chemistry 2022
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ions diffuse through etched carbon cloth (with increases in the
pore content and diffraction intensity of the (100) crystal plane),
the diffusion energy barrier rapidly decreases.69 The larger the
La size is, the longer is the intercalation path, which is not
conducive to high rate performance. Next, the inuence rule of
Lc and ID/IG on rate performance is shown in Fig. 2e. A carbon
layer structure with a moderate ID/IG (0.8–1.0) and small Lc
(<�0.8 nm) is more conducive to high rate performance. The ID/
IG value is closely related to the structural defects of the carbon
layer. In general, DFT is an important research method, and the
adsorption and diffusion processes of alkali metal ions at defect
or edge sites can be explained based on DFT.70,71 The adsorption
behavior will occur before the intercalation process due to the
relatively smaller energy barrier. The increase in defects
(decrease of crystallinity) enhances the adsorption behavior,
which improves the rate performance but simultaneously leads
to obvious sloping charge–discharge curves.5,72 However, there
are some high rate values in the slightly large ID/IG (1.1–1.3) and
small Lc (0.8–1.1 nm) regions (the dotted line area in Fig. 2e),
which may correspond to different structural characteristics
and sodium storage processes, and need to be further explored.

As shown in Fig. 2f, La and Lc have a relatively signicant
impact on the plateau. A slightly large La (1.6–2.3 nm) and
a small Lc (<�1.5 nm) make the plateau lower than those in
other areas. Based on the analysis for the sodium storage
mechanism, intercalation and pore-lling behaviors exhibit
a very low plateau. Those behaviors could be promoted with
large La and small Lc, which lower the working plateau. Simi-
larly, as shown in Fig. 2g, the large ID/IG value also reects the
disorder of carbon layer arrangement. To a certain extent, the
increase of defects caused by micropores is conducive to the
pore-lling process, and thus the working plateau decreases.
Therefore, Na+ can be stably intercalated and lled into the
microstructure with a low working voltage plateau by adjusting
the carbon layer size and defect degree. In anode material
research, the low working plateau plays a signicant role in
improving the energy density of the battery.5 Hence, it is
signicant to design the structure to keep high capacity and rate
performance while lowering the working plateau. According to
the above results, La and Lc have a very signicant effect on the
performance, but the data range and overall regularity is not
integral.

In summary, with a disordered structure and low crystal-
linity, hard carbon has been widely studied due to its high rate
performance and highly adjustable microstructure. Although
hard carbon has been widely studied in recent years, the
complex “house of cards” structure is difficult to be quantita-
tively described due to its low crystallinity. The structure and
sodium storage properties of hard carbon are easily affected by
different precursors and HTTs, so the structure analysis is
complex. Therefore, in this section, the key structural parame-
ters and performance data were extracted, and the structure–
property relationship of hard carbon for sodium storage was
described quantitatively by a data analysis method. The excel-
lent rate performance may be owed to the small carbon layer
size and many defects. Such a structure is favorable for main-
taining a stable microcrystalline structure, avoiding the
This journal is © The Royal Society of Chemistry 2022
structural damage caused by excessive volume expansion and
improving the (de)intercalation process simultaneously. In
addition, pore-lling behavior is also promoted owing to the
high pore content and reduced Na+ diffusion distance. There-
fore, fast and stable charge–discharge can be achieved.
Although many efforts have been made to improve the perfor-
mance, the energy storage process is still complex. According to
the research results, further regulation of carbon layer size can
effectively improve the sodium storage performance and
exploring new preparation processes will be conducive to
achieving this goal.
2.3 So carbon

Compared with hard carbon, so carbon has a relatively higher
ordering structure with reduced pores at the same HTT. So
carbon can be graphitized at high temperature (articial
graphite). When the HTT is �1000 �C, the microstructure of the
so carbon contains some disorder region, which provides sites
for the Na+ adsorption; when the HTT is higher than 1200 �C,
the arrangement of the carbon layer gradually becomes regular
with obvious lattice fringes, which is signicantly different from
that of hard carbon. As a result, the sodium storage mechanism
and performance of so carbon are quite different from those of
hard carbon. As shown in Fig. S4 (ESI†), during the processes of
sodiation/desodiation, the so carbon only shows a certain
slope with no extended plateau area in the charge–discharge
curve. The sodium storage behavior has the following rules:
rstly, sodium storage in the sloping region has better revers-
ibility than that of hard carbon. But with many more defects,
so carbon has higher overall potential for sodium storage than
hard carbon. Secondly, when Na+ ions are inserted into the
carbon layers of so carbon, local structural expansion will
occur and some of the Na+ ions are trapped in the carbon layer,
resulting in irreversible capacity loss.10,73–75 Certainly, the
carbon layer crystallinity of so carbon has a great inuence on
its sodium storage properties. Exploring the relationship
between the key structural parameters and sodium storage
properties will further promote the understanding and appli-
cation of so carbon.

The structural and performance data of so carbon synthe-
sized with different precursors and HTTs are shown in Table 2.
Compared with hard carbon, the carbon layer size of so carbon
is larger at the same HTT. The changes in these structural
parameters lead to even greater differences in sodium storage
performance. This section continues to explore the effect of key
structural parameters on performance. The structure–property
relationship is directly analyzed for so carbon according to the
existing data because of the small amount of data.

The effect rules of two structural parameters on the sodium
storage performance are shown in Fig. 3a–f. As shown in Fig. 3a,
high capacity mainly corresponds to a region of medium La
(�3.5–4.7 nm) and small Lc (0.5–1.8 nm). Meanwhile, a small
SSA (<300 m2 g�1) and medium La (2.75–4 nm), as shown in
Fig. 3b, is benecial for obtaining high reversible capacity. The
analysis shows that the carbon layer size is closely related to the
capacity. Alvin et al.33 also reported a positive correlation
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8037

https://doi.org/10.1039/d1ta10588d


Table 2 Soft carbon structures and sodium storage performancea

HTT (�C) Precursor d002 [nm] La [nm] Lc [nm] ID/IG
SSABET

[m2 g�1]
Rate
factor

Initial CE
[%] Capacity [mA h g�1]

Working
plateau [V]

500 NTCDA76 0.357 3.11 1.10 0.94 15 0.43 46 75.5 0.82
550 Copolymer77 0.383 3.73 0.63 0.97 1106 0.18 71 215 —
700 PTCDA9 0.362 — 1.52 — 13.6 0.19 62.6 171 —
700 Pitch78 0.351 3.41 1.15 0.87 0.1 0.15 66 139 0.62
800 PTCDA79 0.348 2.87 1.56 1.52 471 0.17 29 197 0.69
800 Polymerized

acetone80
0.369 2.22 0.81 — 467 0.12 34 — 0.73

800 Pitch81 0.353 3.85 1.05 1.04 3 0.12 71 224 0.77
800 Pitch81 0.349 2.97 1.43 0.91 113 0.11 45 135 0.64
900 PTCDA9 0.356 3.69 1.92 — 20 0.30 67.6 167 0.59
900 PTCDA82 0.356 3.84 1.41 1.04 14 0.21 80 — 0.91
1100 PTCDA9 0.353 4.59 2.43 — 32 0.56 60.5 95 —
1000 HC-SC83 0.356 1.66 1.11 0.94 589 0.38 57 240 (at 60 mA g�1) 1.43
1000 MP/THF84 0.363 2.80 1.27 0.87 59 0.12 80 260 0.63
1300 MP/THF84 0.352 3.62 1.74 0.90 89 0.16 72 211 —
1300 Coal38 0.371 2.63 0.89 1.02 4.53 0.08 79.5 155 0.58
1400 Pitch/lignin85 0.37 3.74 1.17 1.09 1.3 0.16 82 245 (at 60 mA g�1) 0.48
1400 Pitch/phenolic

resin86
0.39 3.27 0.92 1.17 3 0.08 88 255 (at 60 mA g�1) 0.51

1500 MP/THF84 0.352 4.65 1.97 1.35 32 0.12 74 241 —
1500 Pitch87 0.354 2.95 1.75 1.07 119 0.24 60 189 0.64
1600 PTCDA9 0.346 5.53 5.27 — 26 0.68 47.5 68 —

a — indicatesmissing data. The values of d002, La, and Lc are derived fromXRD. ID/IG is the intensity ratio between the D and G bands. The capacity is
taken from the specic capacity at a current density of 100 mA g�1 unless otherwise stated. The rate factor is obtained by uniform processing: the
capacity under different current densities is taken, and the slope is tted. The reciprocal of the slope is taken to express the rate performance. The
higher the value is, the better the rate performance. The working plateau is the average working voltage in the main discharge range.
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between La and the plateau capacity. In the case of medium La
size, both the sloping and plateau regions can provide high
capacity. A small Lc will increase the disorder degree of the
carbon layer, which also leads to a high reversible capacity
mainly contributed by the adsorption process. Therefore, the
Fig. 3 Contour maps of change trends for dual structural parameters and
f) plateau.

8038 | J. Mater. Chem. A, 2022, 10, 8031–8046
data demonstrate the rationality and highlight the change
regularity of the structure–property relationship. As a result, it is
important to choose the appropriate carbon layer size to
improve the sodium storage capacity. Additionally, there are
still many blank areas in the gure to be further explored to
sodium storage performance. (a and b) Capacity; (c and d) rate; (e and

This journal is © The Royal Society of Chemistry 2022
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reveal the law. There are still lots of unexplored areas for La and
Lc, and further research is required to reveal the law.

Regarding the rate performance, La and d002 are two main
inuencing factors. As shown in Fig. 3c, large La (4.3–5.5 nm)
and medium d002 (�0.345–0.355 nm) values contribute to the
rate performance over a certain range. It can also be seen from
the inuence of SSA and La on the rate performance (as shown
in Fig. 3d) that the carbon layer structure with small SSA (<�400
m2 g�1) and large La (4.0–5.5 nm) is associated with high rate
performance. Inspired by the research results of Qiu et al., the
diffusion energy barrier of Na+ will decrease signicantly in the
carbon layer with moderate interlayer spacing.88 As a result,
medium d002 is helpful to promote Na+ reversible (de)interca-
lation at high rate and alleviate the volume expansion. The large
La and medium d002 should be to obtain the optimum rate
performance. However, large La may make the adsorption
behavior dominant, because of the large resistance to Na+

intercalation. Although large La is associated with high rate
performance, the rate factor obtained by uniform processing
does not reect the capacity value. Hence, combined with the
analysis for capacity, medium d002 (�0.345–0.355 nm) and
moderate La (�3.5–4.5 nm) are helpful to obtain high capacity at
large current density. The impact mechanism of so carbon is
different from that of hard carbon, and the effect of the carbon
layer size still needs to be further explored in order to ll the
gaps in the current experiment, so as to improve the structure–
property relationship.

As shown in Fig. 3e, La and SSA have a relatively signicant
impact on the plateau. A larger La and a smaller SSA make the
plateau lower than those in other areas (as shown in the dotted
line area of Fig. 3e), which are consistent with the effect of the
structure on the rate performance. A large La will increase active
sites, and low SSA does reduce the contribution of adsorption
behavior to capacity, thus effectively lowering the plateau. But
the effect rules, as shown in Fig. 3f, are not obvious for Lc on
a plateau, and the low plateau area is widely distributed. The
plateau performance is relatively low in the area of small Lc and
SSA (as shown in the dotted line in Fig. 3f). On the one hand,
there are many research studies on low-temperature so
carbon. The adsorption behavior is enhanced due to the poor
crystallinity and many defects, and so the average working
voltage plateau will rise. On the other hand, according to ther-
modynamics, the entropy change will be signicant in the
energy storage process on the basis of Boltzmann's entropy
equation:

S ¼ k ln U (4)

where U is the generalized microscopic state number, S is the
macroscopic system entropy, k is the Boltzmann coefficient, and
the microscopic state number is related to the number of
vacancies and intercalated atoms.89,90 Therefore, the voltage
drop of so carbon is larger than that of hard carbon due to its
more chaotic carbon layer arrangement. Yet it's worth noting
that, even though the high graphitization degree leads to the
sodium storage mechanism and performance gradually
approaching that of graphite, there is still much room to adjust
This journal is © The Royal Society of Chemistry 2022
the carbon layer structure of so carbon when the HTT is higher
than 1200 �C. It is still worth studying and of signicance how
to reasonably adjust the carbon layer structure to optimize the
sodium storage performance.

In conclusion, with different precursors and HTTs, the
crystallinity of so carbon changes in a certain range. The Na+

storage behavior of so carbon has been changed owing to the
distinction of key structural parameters. The main mechanism
of so carbon is interlayer intercalation, and most of the
expansion is reversible. The results of data analysis show that
the low-temperature so carbon has high rate performance,
which benets from moderate expansion of interlayer spacing
and disordered structure. The available data show that the
medium La (�3.5–4.5 nm) size is helpful to improve the three
performances at the same time. It is still worth studying how to
adjust the carbon layer structure of high-temperature so
carbon to optimize the comprehensive sodium storage
performance.

Based on the relevant thermodynamic analysis, the statis-
tical analysis of the structure–property data shows that the
structure has a signicant effect on the performance. The
existing data point out that when the key structural parameters
are in a specic range, comprehensive performance would be
generally excellent. For example, when La is large (�1.6–4.8 nm)
and Lc is slightly small (<�2.4 nm) for hard carbon, the
comprehensive performance is generally outstanding. Simi-
larly, when the range of La and Lc is �2–5.5 nm and �0.5–
1.8 nm, respectively, most of the performance is usually good.
Although there is a certain law when selecting two highly
correlated parameters to analyze the performance data, here are
also large errors and the laws are still complex. The inuence of
other structural parameters cannot be ignored. Therefore, it is
necessary to use an accurate machine learning model to analyze
the inuence of all structural parameters on sodium storage
performance.
3 Structure–property relationship
and structure prediction

From the analysis of non-graphite carbon materials, the key
structural parameters characterizing the crystallinity are the key
factors affecting the sodium storage properties. However,
various factors including structure and test conditions will
affect the sodium storage mechanism and performance, and
they are coupled with each other. Thus, the mechanisms that
lead to changes in performance are very complicated. It is also
difficult to use traditional research methods to analyze the
inuence of multiple structural parameters on a performance
parameter at the same time. Previous research methods can
only identify some inuencing mechanisms, and the method of
regulating and predicting the sodium storage performance
through traditional structural research not only lacks accuracy
but also has a certain lag.91 In addition, Section 2 of this work
also shows that the rules of sodium storage based on the big
data analysis are not accurately predicted. Large amounts of
information about material structure and performance are
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8039
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stored in the databases, which currently cannot play a substan-
tial guiding role, causing a serious waste of information
resources. Most noteworthily, based on research advances in
recent years, machine learning is currently undergoing
a massive development that is affecting many areas of science
and engineering, including catalysis and energy storage.92,93 In
this work, in order to predict and screen the data of structural
parameters with potentially excellent sodium storage perfor-
mance, the model will be established in the basis of the struc-
ture–property database (Section S1, ESI†). The model makes it
possible to predict different sodium storage performances with
multiple structural parameters. Therefore, this research work
aims to combinematerial structure–property data withmachine
learning technology to promote the development of high-
performance electrode materials, so as to contribute to
solving problems for scientic research and enterprises.

Firstly, we summarized the structure and properties of non-
graphite carbon materials. Furthermore, to facilitate a compre-
hensive understanding of the structure–property relationship,
we comprehensively sorted out the structural and performance
Fig. 4 (a and b) Summary and comparison of the structure and properti
results of machine learning for ICE, capacity and rate factor. (f–h) Fina
structure data.

8040 | J. Mater. Chem. A, 2022, 10, 8031–8046
data of non-graphite (hard carbon, so carbon, and rGO) and
graphite-like (graphite, few-layer graphene and expanded
graphite) carbonmaterials for sodium storage (Tables S1 and S2
in the ESI†). As shown in Fig. 4a, for graphite-like carbon
materials, there are few structural defects and low heteroatom
content, and regularly arranged carbon layers. Graphite-like
carbon materials show signicantly small interlayer spacing
as well as micron-scale La and Lc which are much larger than
those of non-graphite carbon materials. On the one hand, non-
graphite carbon materials have short range order with an
amorphous structure, and the carbon layer structure gradually
forms with the rearrangement, assembly of carbon atoms and
escape of unstable heteroatoms during the thermal treatment
process. Due to the structural stress/strain, the layer-to-layer
arrangement gradually becomes compact and at with
increasing HTT. On the other hand, under the inuence of
various precursors and HTTs, the carbon layer will form a large
number of disordered regions, and the residual heteroatoms
constitute intrinsic doping defects and cause local structural
changes. Regardless of whether it is prepared from top-down or
es of different types of carbon material. (c–e) Performance prediction
l prediction performance for �20 000 sets of artificially constructed

This journal is © The Royal Society of Chemistry 2022
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bottom-up, a specic evolution law can be applied to the carbon
material, such as for so carbon and hard carbon. For non-
graphite carbon materials, the interlayer spacing is larger
than that of graphite, and the ID/IG also increases to a certain
extent, but the carbon layer sizes of La and Lc are much smaller
(within tens of nanometers) than those of graphite-like carbon
materials.

Next, the performance comparison of the two types of
layered carbon material is clearly shown in Fig. 4b. The results
show that the graphite-like carbon materials have excellent rate
performance but a high plateau, which is mainly due to the co-
intercalation mechanism in ether electrolyte.94 However, in the
ester electrolyte system, the capacity performance of non-
graphite carbon materials shows obvious advantages, and the
plateau is also signicantly reduced. This is because the sodium
storage mechanism is mainly controlled by adsorption, inter-
calation and pore-lling. As for the ICE, it is mainly related to
the electrolyte reduction on the electrode surface and the Na+

storage behavior inside the carbon layer, so the average value of
the ICE is at a similar level for the two types of layered carbon
material. Through comparative analysis, it can be found that
the non-graphite carbon materials with low crystallinity have
obvious advantages in the capacity and plateau performance,
and there is still signicant room to improve the high-rate
capacity and ICE. Therefore, the reasonable design for carbon
material structure plays a decisive role in improving its sodium
storage performance. Importantly, it is necessary to predict the
performance from the time when the structure is designed.
Therefore, we tried to establish models and use computers to
understand the change rules between the structural parameters
and the sodium storage performance, and to consequently
predict the performances. For several performance data,
different basic models were selected to preliminarily verify the
effect of machine learning according to previous research (see
Section S2 for details, ESI†).95,96 The R2 and root mean squared
error (RMSE) are displayed in Fig. S5 of the ESI† and there are
some relatively good models with high R2 and low RMSE
(bagging model for ICE, XGBoost for capacity and gradient
boosting for rate). The prediction value andmean absolute error
(MAE) are given in Fig. 4c–e, respectively. Overall, the results
show that the predicted values are in good agreement with the
measured values and the deviations are within the acceptable
range. The predicted results indicate that the effectiveness of
basic models is generally satisfactory. At the same time, the
feature importance analysis also points out the degree of
inuence for different structural parameters (Fig. S6, ESI†). The
above analysis urges us to establish accurate models to reduce
errors for guiding future research.

Based on the structure–property database and machine
learning, we planned to predict the structural parameters
required to obtain the optimal performance. According to the
existing value range of structure–property data for each
performance, the �20 000 sets of articially constructed struc-
ture data were successfully built through permutation and
combination (as depicted in Section S3 of the ESI†). Now the
machine learning modeling for the above complete structure–
property database is continued. The computer code reads in
This journal is © The Royal Society of Chemistry 2022
�100 sets of existing data for each performance parameter rst,
and the original data are divided into a training set and a testing
set at a ratio of 8 : 2. Then, a suitable model could be estab-
lished by analyzing the rules of the original data through
multiple iterations (see the ESI† for the source code). Finally,
prediction models are trained and tested. The results of
�20 000 sets of articially constructed structural data are
substituted into the model to obtain the nal prediction data.
The prediction results are shown in Fig. 4f–h aer ltering out
the data that do not conform to the thermodynamic or kinetic
results. Then, two key structural parameters were selected to
illustrate the change rules for obtaining a specic structure and
performance. As shown in Fig. 4f, high-capacity values are
concentrated around the large La and Lc area, which are the
same as the results described above. This carbon layer structure
provides a substantial number of sites for Na+ intercalation but
also has a certain hindrance effect on the diffusion kinetics. As
for the rate performance (Fig. 4g), the high values are concen-
trated in the region with slightly large ID/IG (1.0–1.2) and large Lc
(2.5–2.8 nm), which may correspond to the sodium storage
mechanism of adsorption and pore-lling. However, the kinetic
differences between different sodium storage mechanisms still
need to be further explored. Finally, as shown in Fig. 4h, the La
shows a signicant impact on the plateau, and the large La area
(4.0–5.0 nm) corresponds to the low value of the plateau. As for
d002, the small d002 (<0.35 nm) signicantly increases the
plateau, and the plateau decreases as d002 increase (�0.35–0.42
nm). Like the above research results, the large d002 and La also
reect the disorder of the carbon layer, which is helpful for Na+

intercalation and pore-lling to a certain degree, thus reducing
the plateau. The above results show that the prediction is
kinetically and thermodynamically reasonable, which also
indicates the effectiveness of the predictions.

Furthermore, a part of the excellent predicted data is pre-
sented in Table 3. Notably, those data were carefully screened
according to the results of statistical analysis based on the
thermodynamic and kinetic results in Section 2. Therefore, we
predicted and screened the specic structural parameters with
potentially excellent sodium storage performance according to
the results of machine learning and data analysis. Taken
together, a structure with integrated excellent performance
should have the following features, and the origin of each
optimal range is revealed from the view of the sodium storage
mechanism: d002 is slightly large (mainly 0.36–0.4 nm), which
enables the intercalation behavior;88 La should be in the range
of 2.5–5 nm and Lc 1.5–2.5 nm, which promotes the stable
intercalation process and fast rate capacity; and ID/IG ought to
be medium (0.8–1.5) and SSA small (below �300 m2 g�1) to
avoid excessive plateau and reduced ICE.67,97 Thus, the sodium
storage mechanism of such carbon material should be domi-
nated by intercalation behavior and include partial adsorption
and pore lling behaviors. The moderate crystallinity ensures
that the carbon material has high capacity and a low plateau,
and the medium defect degree promotes the rapid (de)interca-
lation of Na+ and maintains the structural stability during the
cycling. These data show that excellent sodium storage perfor-
mance can be obtained by designing the carbon layer size,
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8041
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Table 3 Potential optimal sodium storage performance and specific structural parameters based on machine learning

d002 [nm] La [nm] Lc [nm] ID/IG SSABET [m2 g�1] Rate factor
Initial CE
[%]

Capacity
[mA h g�1]

Working plateau
[V]

0.365 3.5 2.3 0.43 2 0.43 89 380 0.75
0.365 4 1.8 0.83 2 0.25 96 326 0.56
0.365 4 1.8 1.03 2 0.19 94 355 0.57
0.365 4.5 1.8 0.63 2 0.37 97 310 0.80
0.365 5 0.8 0.83 2 0.19 86 361 0.72
0.38 2.5 1.8 1.63 325 0.13 85 392 0.70
0.38 1.5 1.8 1.23 325 0.09 85 388 0.64
0.38 1.5 1.8 1.63 587 0.12 98 391 0.71
0.38 3 1.8 1.63 160 0.13 87 381 0.72
0.38 3.5 1.8 0.83 2 0.27 87 379 0.51
0.38 4.5 1.8 1.63 2 0.15 94 352 0.75
0.38 5 1.8 1.63 2 0.15 98 328 0.72
0.395 3.5 1.8 1.63 160 0.15 87 399 0.77
0.395 2.5 1.3 1.63 160 0.13 93 309 0.65
0.395 2 1.3 1.63 325 0.13 93 316 0.66
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interlayer spacing and defect degree. Unfortunately, these
layered pure carbon materials with excellent sodium storage
performance have not yet been conrmed by researchers.
However, this study provides future directions for designing
carbon anodes, as well as an effective demonstration of
machine learning in the performance prediction for other
scientic areas. Additionally, if more data are available in the
future, then reliable predictions can be made. Therefore, it is
a useful exploration to analyze the existing data by machine
learning, which not only lls the gaps in existing research but
also predicts the specic structural parameters that may have
the optimal sodium storage performance. The present study
provides a promising route for the development of high-
performance carbon materials. Both the material database
and machine learning will contribute to the development of
new energy materials for scientic research and enterprise.

It must be recognized that the research of the structure–
property database is still in its infancy, the reliability of the
machine learning model in this work still needs to be improved,
Fig. 5 The proposed content of standardization data processing for non
property database and optimizing machine learning.

8042 | J. Mater. Chem. A, 2022, 10, 8031–8046
and equal attention should be paid to other structural infor-
mation, such as porosity and defect sites. To prepare high-
performance electrode materials efficiently and exibly
through big-data analysis and material design, the potential of
the structure–property database might be jointly developed by
interdisciplinary researchers. Herein, we call for a standardized
test specication for material research, and a proposed process
is presented for the preparation of high-performance electrode
materials programmatically (as depicted in Fig. 5): rstly, we
suggest a standardized data processing method: based on the
main material characterization technologies (including XRD,
Raman, BET, etc.), the key structural parameters and energy
storage performance data of layered carbon materials can be
obtained through a standardized processing method. The La
and Lc should be calculated by tting the FWHM of XRD and the
d002 from Bragg's law. The ID/IG, pore size distribution and SSA
should be obtained from Raman and BET results, respectively.
It is also suggested that the electrochemical performance be
standardized. The ICE, capacity and plateau data should be
-graphite carbon materials, and the ideas for updating the structure–

This journal is © The Royal Society of Chemistry 2022
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Fig. 6 Integrated thinking for the construction of a high-performance SIB based on layered carbonmaterials: aiming at the deficiency of sodium
storage performance of non-graphite carbonmaterials, data-drivenmaterials design is attempted in this research work. Machine learning is used
to analyze structure–property data, so as to point out the research direction for potential high-performance carbon materials. Through the
standardized test of future researchers, the structure–property relationship will be further improved.
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tested at low current density (e.g. 100 mA g�1 in this work). For
rate performance, each current density should be cycled for
a specied number of times (the battery could be cycled ten
times at each current density). Furthermore, the cycle perfor-
mance might be tested for a long time at low and high current
density, respectively. Following the standardized testing and
data processing methods, secondly, these structure parameters
and performance data of future research will be integrated into
the structure–property database established in this work,
forming a constantly updated database to gain a comprehensive
understanding of various non-graphite carbon materials; lastly,
at the design end and implementation end, machine learning is
supplemented to further update and improve the prior experi-
ence. Thus, the optimal structural parameters could be pre-
dicted precisely to achieve the screening effect for electrode
materials and nally guide the future material design.

4 Summary and prospects

In summary, based on the crystallinity of the carbon layer, this
research work clearly denes the microstructure relationship of
non-graphite carbon materials. As illustrated in Fig. 6, the
microstructure information (La, Lc, d002, ID/IG, and SSA) and
sodium storage performance data (ICE, capacity, rate factor,
and plateau) of non-graphite carbon materials in the existing
literature are comprehensively sorted out, and a structure–
property relationship database is preliminarily established,
which can be supplemented and updated by subsequent
research data. At the same time, we also call for a standardized
processing specication for microstructure and sodium storage
performance tests, so as to improve and update the sodium
storage structure–property relationship database of non-
graphite carbon materials in the future. Moreover, a data
analysis method is used in conjunction with thermodynamic
and kinetic analysis to clarify the correlation between sodium
storage performance and structural parameters, and the rela-
tively universal structure–property relationship of non-graphite
This journal is © The Royal Society of Chemistry 2022
carbon materials is also summarized. The sodium storage
mechanism of hard carbon, so carbon, rGO and other non-
graphite carbon materials with poor crystallinity is mainly
dominated by adsorption, intercalation and pore lling to
different degrees. A small carbon layer, large interlayer spacing
and high defect degree lead to different sodium storage prop-
erties for non-graphite carbon materials. The sodium storage
mechanism and performance of different carbon materials
change in a well-dened way with the structural evolution.
Machine learning exploits this regularity to predict the sodium
storage performance from the structural parameters. Further-
more, machine learning is employed to successfully screen for
key structural parameters to achieve excellent comprehensive
sodium storage performance, which can be used to guide the
design of novel carbon-based materials. Finally, the following
research directions on the sodium storage of carbon-based
anodes are identied based on the synopsis provided here.

(I) For non-graphite carbon materials, only low HTT perfor-
mance has been considered, and few detailed studies have been
performed on the structure and properties of high HTTs.
Although a low HTT increases the number of active sites, a high
HTT does not cause the dynamic process to completely deteri-
orate. The gaps in the sodium storage properties of non-
graphite carbon materials at high HTTs still remain to be
understood. Lastly, more comprehensive structural parameters
of so and hard carbon obtained throughmachine learning can
lead to a better understanding of the effect of structure on
performance.

(II) According to the statistical analysis of data, the carbon
layer size (La and Lc) should have an important inuence on the
sodium storage mechanism and performance. However, most
previous studies focused on how the interlayer spacing and
defect types inuence the sodium storage performance of
layered carbon materials. Non-graphite carbon materials with
large nanosized carbon layers may have distinctly different
sodium storage properties. Exploring the inuence of carbon
layer size combined with machine learning will provide a new
J. Mater. Chem. A, 2022, 10, 8031–8046 | 8043
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idea for seeking the balance of performance. The effects of the
carbon layer size will be studied at nanometer to submicron
regions to improve the understanding of non-graphite carbon
materials and promote commercial application of these
materials.

(III) The machine learning model can be optimized to
guarantee the accuracy of the predicted structure by expanding
the amount of data and enriching structural parameters. Some
key technologies, such as natural language processing and
image recognition, can be applied to obtain rich structural
information (like the pore structure and heteroatom type) and
reduce errors. Furthermore, to increase the utilization efficiency
of data, we call for a standardized data processing method on
the carbon material structure and sodium storage performance.
With the help of accurate machine learning models, the
constantly updated structure–property database can be used to
guide the preparation of high-performance electrode materials
programmatically.

In this work, the essential nature of crystallinity is shown to
be the key structural information required for systematically
developing an understanding of sodium storage mechanism
and performance for non-graphite carbon materials. We con-
structed a database containing key structural parameters and
main sodium storage performance to explore their relation-
ships, resulting in an overall understanding of structure and
performance. Then, big data analysis and basic theories were
used to illustrate the effect of structure on the sodium storage
performance and its mechanism, which can provide important
guidance in the eld. Finally, with the help of machine learning,
the structure–property relationship was revealed to predict and
screen the optimal structure for the best sodium storage
performance, thus lling the gaps in experimental results and
identifying research directions. Therefore, the database
collected from the previous reports can be combined with
machine learning to identify the structure–property relation-
ship, which promotes the design and application of novel
electrode materials and provides a new paradigm for research-
ing other materials.
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74 R. Alcántara, F. F. Madrigal, P. Lavela, J. Tirado, J. J. Mateos,
C. G. De Salazar, R. Stoyanova and E. Zhecheva, Carbon,
2000, 38, 1031–1041.
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