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Graph-convolutional neural networks for
(QM)ML/MM molecular dynamics simulations†

Albert Hofstetter, Lennard Böselt and Sereina Riniker *

To accurately study the chemical reactions in the condensed phase or within enzymes, both quantum-

mechanical description and sufficient configurational sampling are required to reach converged

estimates. Here, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD)

simulations play an important role, providing QM accuracy for the region of interest at a decreased

computational cost. However, QM/MM simulations are still too expensive to study large systems on

longer time scales. Recently, machine learning (ML) models have been proposed to replace the QM

description. The main limitation of these models lies in the accurate description of long-range

interactions present in condensed-phase systems. To overcome this issue, a recent workflow has been

introduced combining a semi-empirical method (i.e. density functional tight binding (DFTB)) and a high-

dimensional neural network potential (HDNNP) in a D-learning scheme. This approach has been shown

to be capable of correctly incorporating long-range interactions within a cutoff of 1.4 nm. One of the

promising alternative approaches to efficiently take long-range effects into account is the development

of graph-convolutional neural networks (GCNNs) for the prediction of the potential-energy surface.

In this work, we investigate the use of GCNN models – with and without a D-learning scheme – for

(QM)ML/MM MD simulations. We show that the D-learning approach using a GCNN and DFTB as a

baseline achieves competitive performance on our benchmarking set of solutes and chemical reactions

in water. This method is additionally validated by performing prospective (QM)ML/MM MD simulations of

retinoic acid in water and S-adenoslymethionine interacting with cytosine in water. The results indicate

that the D-learning GCNN model is a valuable alternative for the (QM)ML/MM MD simulations of

condensed-phase systems.

1 Introduction

A key goal of computational chemistry is the molecular level
understanding of chemical reactions in solution and enzymes.
For this, the free-energy change (rather than the change in
potential energy) during a reaction process is the central property.
To calculate free-energy differences, molecular dynamics (MD)
simulations from tens of picoseconds to hundreds of nanoseconds
are typically required to obtain sufficiently converged results.
While classical force fields can be used for MD simulations of
condensed-phase systems over long time scales,1,2 higher level
quantum-mechanical (QM) methods are required for an accurate
description of molecular interactions and chemical reactions.
Unfortunately, QM calculations are much more computationally
intensive, limiting the accessible time and spatial scales.

In order to overcome this bottleneck, the combined QM and
molecular mechanical (QM/MM) approach provides a QM
description of the region of interest (QM zone) coupled with
a realistic modelling of the long-range interactions of the
surrounding condensed-phase system (MM zone).3–6 The inter-
action between the zones is then calculated based on either
mechanical constraints (i.e., a ‘‘mechanical embedding’’
scheme) or electronic perturbations (i.e., an ‘‘electrostatic
embedding’’ scheme). Generally, the electrostatic embedding
scheme has been shown to be more accurate and it is currently
the gold standard for QM/MM simulations.5,7–10 In the QM/MM
scheme, the QM zone requires electronic structure calculations
at each time step and is thus the computational bottleneck.
While the computational costs of QM/MM MD simulations are
reduced compared to full ab initio simulations, the accessible
time and spatial scales are still not sufficient for most free-
energy calculations. This issue can be partially circumvented by
using semi-empirical methods to describe the QM zone.9,11,12

However, this reduces not only the computational cost but
also the achievable accuracy. An alternative is to use machine-
learned (ML) potentials to describe the QM zone.
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In recent years, there have been major advances in the
development of ML models trained to reproduce the potential-
energy surface (PES) of chemical systems.13–28 For small-to-
medium sized compounds in the gas phase or in periodic
materials, state-of-the-art ML models have been shown to
achieve chemical accuracy, for both the predicted energies and
forces.20–24,29 However, condensed-phase systems pose an addi-
tional challenge to ML models due to the typically large number
of involved atoms, element types, and rotatable bonds without
any exploitable symmetries, and important long-range interac-
tions and non-local charge transfer. In particular, the long-
range interactions and the non-local charge transfer currently
limit the established ML methods, as these often rely on local
descriptors and are thus unable to take global changes in the
electronic structure into account.26,30,31 There are two main
approaches to overcome this locality dependence of the
descriptors used in the current ML models. Either non-local
information transfer is incorporated directly in the ML
models26,30–32 or ML methods are combined with a fast or semi-
empirical QM method with an explicit treatment of long-range
interactions in a D-learning scheme.33–36 The D-learning approach
has already been shown to be promising for the (QM)ML/MM MD
simulations of condensed-phase systems.34–36

Next to the descriptor-based approaches, there has also been
a lot of development on message passing approaches trained to
reproduce the PES of QM systems.22,23,37–39 These graph net-
works typically use dense layers of neural networks as non-
linear functions for the message passing convolutions and are
thus known as graph-convolutional neural networks (GCNNs).
One of the main advantages of GCNNs compared to descriptor-
based ML models is that no specialized descriptors have to be
developed for chemical systems. Instead, this is achieved
directly through the graph-convolutional layers. A further
advantage is that through iterative message passing operations
more distant information is taken into account and thus the
local dependence of descriptor based models can be (partially)
avoided. However, each consecutive convolution substantially
increases the model size. Thus, in practice, long-range contri-
butions are terminated at a certain cutoff and global changes in
the electronic structure are not considered. To address this issue,
the total energy can be separated into a short-range electrostatic
term and a long-range electrostatic term, for which a GCNN is
used to predict atomic charges.23,31 Furthermore, long-range
charge transfer and global changes in the electronic structure
may be taken into account by including a global state or a self-
attention mechanism in the message passing operation.23,31,32,40

In this work, we assess the applicability of GCNNs to
reproduce the PES of condensed-phase systems and their use
in (QM)ML/MM MD simulations. For this, we validate a GCNN
model with and without a D-learning scheme on different
molecular systems in water and compare it with the previously
developed high-dimensional neural network potentials
(HDNNPs),34,41 which use the same D-learning scheme with
DFTB42,43 as the baseline method. In the Theory section, we
briefly describe the relevant concepts behind the QM/MM
approach as well as the GCNNs. In the Methods section, we

describe the setup used for the QM/MM simulations, the
implemented GCNN architecture as well as the training setup.
In the Results section, we evaluate different GCNN models,
including different global information transfer schemes, with
different (QM)ML/MM and training setups. Finally, we compare
the resulting GCNN model with the previous HDNNP model.34

2 Theory
2.1 QM/MM scheme

QM/MM is a multi-scale approach, which incorporates a QM
zone within a larger MM zone describing the condensed-phase
system.3–6 This enables the accurate calculation of the region of
interest coupled with a realistic modelling of long-range inter-
actions with the surrounding environment. The main challenge
here is how to describe the interaction between these two
different zones. In order to calculate the total energy
(EQM/MM(

-

R)) of the combined QM/MM system, an additive or
subtractive scheme can be chosen. In the more prominent
additive scheme, the total energy (EQM/MM(

-

R)) is described as
the sum of the energy of the QM subsystem (EQM(

-

RQM)) and the
MM subsystem (EMM(

-

RMM)) plus the electrostatic (Eel
QM-MM(

-

R))
and short-range van der Waals interactions (EvdW

QM-MM(
-

R))
between the two subsystems.

EQM/MM(
-

R) = EQM(
-

RQM) + EMM(
-

RMM) + Eel
QM-MM(

-

R) + EvdW
QM-MM(

-

R)
(1)

Note the distinction between
-

R referring to all nuclei in the
system, and

-

RQM and
-

RMM referring to the nuclei of the QM and
MM zones, respectively. In the additive scheme, the interaction
terms between the QM and MM zones are described either via a
mechanical or an electrostatic embedding scheme,7 where the
latter scheme has been shown to be more accurate.5 For this,
two Hamiltonians are introduced in the QM calculation. In
atomic units, Ĥel

QM–MM is given as

Ĥ
el

QM-MM ¼ �
XNMM

i

XNel

j

qi

j~RMM;i �~rj j

þ
XNQM

i

XNMM

j

Ziqj

j~RQM;i � ~RMM;j j
(2)

where ĤvdW
QM–MM is treated classically and is given as

Ĥ
vdW

QM-MM ¼ EvdW
QM-MMð~RÞ

¼
XNQM

i

XNMM

j

4eij
sij

j~Ri � ~Rj j

 !12

� sij
j~Ri � ~Rj j

 !6
0
@

1
A; (3)

where qi is the partial charge of the MM atom i, and eij and sij

are fitted parameters. This means that the QM subsystem is
directly influenced by the MM partial charges, while the MM
subsystem ‘‘feels’’ a force from the perturbed QM subsystem.
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Therefore, eqn (1) in the electrostatic embedding scheme
becomes

EQM=MMð~RÞ ¼
cð~rÞjðĤQM þ Ĥ

el

QM-MMÞcð~rÞ
D E

cð~rÞjcð~rÞh i

þ EMMð~RMMÞ þ EvdW
QM-MMð~RÞ (4)

Note that only MM particles within a given cutoff radius Rc of
the QM zone are included in the summations in eqn (2) and (3).
Typically, a relatively large cutoff radius (Rc) of around 1.4 nm is
required to achieve sufficiently converged results.8,34 The aris-
ing issue due to the non-continuous PES at the cutoff can be
partially resolved using adaptive resolution schemes.44

2.2 Graph-convolutional neural networks

In our description of graph-convolutional neural networks
(GCNNs) or message passing neural networks, we follow the
notations used by ref. 39 and 45. Here, GCNNs are permutation-
invariant ML models that operate on the graph structured data.
In the present work, atoms are represented as nodes n and
interactions between atoms are represented as edges e, whereby
only interactions up to a certain cutoff Redge are considered as
edges. Note that we will refer to two different cutoffs through-
out the manuscript. Rc is the cutoff used in the QM/MM
scheme, and the summations in eqn (2) and (3) run over all
partial charges within Rc. Redge, on the other hand, is the cutoff
used for the edge definition in the GCNNs. The GCNNs contain
consecutive graph-convolutional layers, where each layer con-
sists of an edge or message update operation (eqn (5)), an
aggregation operation (eqn (6)), and a node update operation
(eqn (7)). Considering a graph G = (V,E) with nodes ni A V and
edges eij A E, message passing can be defined as follows:

mij = fe(hl
i,h

l
j,aij) (5)

mi ¼
X
j2NðiÞ

mij (6)

hl+1
i = fh(hl

i,mi). (7)

Here, the superscript l denotes the current layer, hl
i A Rn describes

the hidden-feature vector of a node ni at a layer l, aij A Rn describes
the edge feature of the edge eij between nodes i and j, N(i) denotes
the set of neighbors of the node i, and fe and fh describe update
functions. Different GCNN models commonly differ by their
used features, update functions (fe and fh), and aggregation
functions.39,45 The update functions are most commonly approxi-
mated by multilayer perceptrons. Note that we use a summation
as an aggregation function (eqn (6)), but other aggregation func-
tions such as min or max functions have also been investigated.46

3 Methods
3.1 Systems

To allow a direct comparison, the same systems as in ref. 34
were investigated. For the validation of different GCNN models

and training setups, we used two single-solute systems with
different MM cutoff radii (Rc): (i) benzene in water, and (ii) uracil
in water. For the comparison to the previous HDNNP model,34

we used the largest single-solute system (retionic acid in water),
and two chemical reactions in water (constrained close to the
transition state): (i) the second-order nucleophilic substitution
(SN2) reaction of CH3Cl with Cl-, and (ii) the reaction of
S-adenosylmethionate (SAM) with cytosine. We investigated the
accuracy of the different models in training/validation/test splits
and the performance in a prospective (QM)ML/MM MD simula-
tion. The data sets are freely available on https://www.research-
collection.ethz.ch/handle/20.500.11850/512374.

3.2 General computational details

All QM/MM and (QM)ML/MM MD simulations were performed
using the GROMOS software package47,48 interfaced to DFTB+/
19.242,43 and ORCA/4.2.0.49 All structures used in the training,
validation and test sets were taken from ref. 34 (available at
https://www.research-collection.ethz.ch/handle/20.500.11850/
512374). These come from QM/MM MD trajectories, where the
first 70% of the 10 000 frames were considered to be the
training set, the following 20% constitute the validation set,
and the last 10% are taken as the test set. The computational
details of the (QM)ML/MM simulations are provided in ref. 34.
Note that a MM cutoff radius of Rc = 0.6 nm was used for
benzene in water, while Rc = 1.4 nm was used for all other
systems. The GCNNs were implemented using Tensorflow/
keras.50 The models were trained in Python and then exported
to the C++ GROMOS code as described in ref. 34 for the
HDNNPs.

For the validation of the different GCNN models, we com-
pare both the full-QM learning task and the D-learning scheme.
For the full-QM learning task, we use the GCNN models to
directly predict the DFT49 energies and forces, whereas
DFTB42,43 is used as the baseline method in the D-learning
scheme and the GCNN models predicts the difference between
the DFT and DFTB properties. After the initial validation and
comparison of the two learning tasks, we continue only with the
D-learning approach throughout the remainder of the study.

3.3 (QM)ML/MM MD simulations

For retionic acid in water and the SAM/cytosine transition state
in water, we performed (QM)ML/MM MD simulations using the
trained GCNN models with the D-learning setup. To ensure
comparability, we used the same MD and DFTB settings as in
ref. 34. The time step was set to 0.5 fs, the temperature was set
to T = 298 K, and the pressure was set to 1 bar. For the SAM/
cytosine system, we set the force constant for the position
restraints to 2000 kJ mol�1 nm�2. All point charges within
the cutoff radius Rc = 1.4 nm were included in an electrostatic
embedding scheme in the QM(ML) computation. The selected
solvent atoms beyond the cutoff were included to avoid the
bond-breaking and creation of artificial charges. Long-range
electrostatic interactions beyond Rc were included using a
reaction-field method.51 Note that the reaction field acts only
on the MM particles. As starting coordinates for the prospective
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simulations, we used the last snapshot from the test set (which
originated from the initial QM/MM MD trajectory). The simula-
tions were performed for 170 000 steps for retionic acid in water
and 110 000 steps for the SAM/cytosine transition state in water.

3.4 GCNN architectures

The basic building blocks of the GCNN are so-called dense
layers. They take an input vector x A Rnin and return an output
vector y A Rnout according to the transformation

y = Wx + b. (8)

Here, W A Rnin�nout and b A Rnout are learnable parameters. In
order to model arbitrary non-linear relationships, at least two
dense layers need to be stacked and combined with an (non-
linear) activation function s. Here, we use a generalized SiLU
(sigmoid linear unit) activation known as the Swish activation
function,52 which is given as s(x) = x�sigmoid(x) and has been
used successfully in the recently published GCNNs for mole-
cular systems.31,38,39 The inputs to the GCNN (ni) are the
nuclear charges Zi A N and positions -

ri A R3. We evaluate four
different GCNN architectures with different global information
transfer schemes. An overview of the basic network architecture
is given in Fig. 1A. In the following sections, this architecture is
referred to as the GCNN model.

Embedding block. An embedding is a mapping from a
discrete object to a vector of real numbers. Here, the atomic
numbers are mapped to embeddings eZ A RF, where the entries
of eZ are learnable parameters and nf denotes the number of
features. Note that the number of features is kept constant

throughout the network. The embedding vector is then used to
initialize the atomic feature vector h0

i .
Edge embedding block. A continuous filter convolution

block is used to generate the edge representations aij

(Fig. 1B). First, all edges are expressed as Euclidean distances.
These are subsequently transformed to linear combinations of
rationally invariant filters (RBFs) of radial basis functions

sin
np

Redge

� �
jj~rij jj=jj~rij jj as proposed by Klicpera et al.38 Additionally,

we apply a cosine cutoff to the filters,41 which ensures continuous
behavior when an atom enters or leaves the cutoff sphere.

Interaction block. The interaction blocks calculate the mes-
sage passing operation as defined in eqn (5)–(7) (Fig. 1E),
generating the atomic feature vectors hl

i at layers l.
Output block. The atomic feature vectors hl

i at each layer l
are passed through an output block, consisting of two stacked
dense layers combined with an activation function (s) (Fig. 1C).
The output vectors sl

i of each layer l are then summed and
passed through a post-processing block, consisting of two dense
layers, each combined with an activation function (Fig. 1D). The
outputs of the post-processing block are the atomic energies.
Finally, the total energy is calculated as the sum over all atomic
energies. The forces are subsequently obtained as the derivatives
of the total energy with respect to the Cartesian coordinates of the
atoms. For this, we use the reverse mode automatic differentiation
implemented using Tensorflow.

Unke et al.31 introduced a GCNN model, which takes into
account non-local effects and charge transfer. They achieved
this by introducing non-local interactions using a self-attention
layer.40,53 An attention layer maps a matrix X A RT�nin of

Fig. 1 Overview of the employed GCNN models with the full architecture (A), the cfconv block (B), the output block (C), the post-processing block (D),
and the interaction block (E). For all linear layers Wx + b, we use nf. For all activation functions s( ), we use a Swish activation function.
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query (Q) tokens T to nout dimensions using a matrix Y A RT�nin

of key (K) tokens T0 as follows:

AttentionðQ;K;VÞ ¼ s
QKTffiffi
ð

p
dkÞ

 !
V (9)

Q = XWQ, K = YWk, V = YWV. (10)

The layer is parametrized by a query matrix WQ in Rnin�nk, a key
matrix WK in Rnin�nk, and a value matrix WV in Rnin�nout. A self-
attention layer uses attention on the same sequence (X = Y). In this
work, we use a multi-head self-attention mechanism as described
in ref. 53. Here, the attention is calculated for multiple heads
using a reduced attention nout = nk o nin dimensionality. The
multiple attentions are then concatenated and transformed as

MultiAttention = {Attention0|Attention1|. . .|

AttentionNheads
}Wmulti, (11)

where Wmulti A RNheadsnout�nmulti is used to parametrize the layer.
We introduce the multi-head self-attention layer at two

different stages in our basic GCNN architecture: (i) within the
interaction block (Fig. 2A) as described in ref. 31, and (ii) after

at the end of the model (Fig. 2B). This way we can investigate
the effect of repeating the global information transfer within
each message passing update as compared to a single transfer
step using the final atom features. In the following sections,
these models are referred to as the ‘‘interaction GCNN’’ and
‘‘attention GCNN’’.

A different GCNN architecture, which considers global
information transfer, has been reported by Chen et al.32 Here,
the authors introduce a global state ul into the message passing
operation. We adapted this idea by changing the message
update step (eqn (7)) to

ulþ1 ¼ ul þ fu

X
i

hli ;
X
i

mi;
X
i

hlimi

 !
(12)

hl+1 = hl + fh(hl
i,mi,u

l+1), (13)

where u0 A RF is initialized as zero. The updated interaction
block is shown in Fig. 2C. In the following sections, we refer to
this architecture as the ‘‘global GCNN’’.

Fig. 2 Changes in the architecture of the GCNN models with different global information transfer schemes. (A) Interaction block of the GCNN model
with multi-head self-attention layers in the interaction block. (B) Full architecture of the GCNN model with multi-head self-attention layers prior to the
post-processing block. (C) Interaction block of the GCNN model with a global state ul.
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3.5 Training setup

We implemented the four different GCNN model architectures
using Tensorflow/keras. The models were trained using the
Adam optimizer54 with an exponentially decaying learning rate
([initial learning-rate, decay steps, and decay rate] = [1e�3, 5e3,
and 0.96]). The Adam optimizer is one of the most well-
established methods for the training of neural network models.
It is based on a stochastic gradient descent optimizer that uses
an adaptive estimation of the first and second-order moments.
The models were trained for up to 2000 epochs (or until
convergence) using a batch sampling of 2–32, depending on
the memory requirements of the models and systems. Note that
the models were trained using Tensorflow 2.7.0, but the models
were saved using Tensorflow 1.15 for the integration with the
GROMOS C++ code (as described in ref. 34 for the HDNNPs).

As a loss function, we used the weighted mean-squared-error
(MSE) of the energies and forces

L ¼ 1

N

XN
i

ðEi � ~EiÞ2 þ
o0

3NQM

XNQM

i

X3
a

ðFia � ~FiaÞ2

þ o0

3NMM

XNMM

i

X3
a

ðFia � ~FiaÞ2 (14)

where NQM is the number of QM particles, NMM is the number
of MM particles, and o0 and o1 are the weight parameters of
the gradient contributions. We monitored the loss during the
training process and recovered the model with the lowest loss
on the validation set after training.

4 Results and discussion

In order to evaluate the different model architectures and
parametrizations as well as the training setup, the two simplest
test systems from ref. 34, i.e., benzene in water and uracil in
water, were used with the same training/validation/test split as
in the original publication. The use case here is that the
training set is generated from a short initial MD simulation,
from which the energies and forces of the subsequent MD steps
can be predicted. In the first step, we evaluated the full-QM
learning task and a D-learning scheme with DFTB42,43 as the
baseline for the different GCNN architectures. The D-learning

scheme simplifies the learning task, and we adopted the same
approach as used in ref. 34 for the HDNNPs. For the basic setup
of our GCNN model, 128 features per dense layer (nf), five
interaction blocks, and Redge = 0.5 nm were used. For the multi-
head self-attention models, we used four heads with nk = 32.
Finally, we compare the best GCNN model with the previous
HDNNP model in ref. 34 for all five test systems: (i) benzene in
water, (ii) uracil in water, (iii) retionic acid in water, (iv) (close
to) the transition state of the SN2 reaction of CH3Cl with Cl- in
water, and (v) (close to) the transition state of SAM with cytosine
in water. Note that, for the parametrization and evaluation of
the GCNN models and training procedure, we solely used the
training and validation sets. The test sets were only taken for
the comparison between the final GCNN model with the pre-
vious HDNNP model.

4.1 Model architectures

In the first step, we compared the different model architectures
in order to evaluate how the global transfer schemes influence
the inclusion of the long-range information directly into the
model. For this, four different GCNN models were trained: (a) a
basic GCNN model, (b) a GCNN model including multi-head
self-attention at the post-processing stage (labeled as the
‘‘attention GCNN’’), (c) a GCNN model including multi-head
self-attention in the interaction layers (labeled as the ‘‘inter-
action GCNN’’), and (d) a GCNN model including a global state
(labeled as the ‘‘global GCNN’’). The two test systems consist of
benzene (apolar molecule) in water with a short MM cutoff
radius of Rc = 0.6 nm, and uracil (polar molecule) in water with
a longer Rc = 1.4 nm.

Table 1 shows the mean absolute error (MAE) of the differ-
ent model architectures for the validation sets of benzene in
water and uracil in water. When the models were trained on the
full QM energies and forces, we observe for benzene that all
models achieve a similar accuracy on the energies, while the
basic GCNN outperforms the other architectures for the forces
(FQM and FMM). When using the D-learning scheme, the accu-
racy is generally improved, with similar performances of the
different architectures (Table 1). Only the interaction GCNN
model has a significantly higher MAE for both the energies and
the forces. For uracil, we observe similar trends as for benzene

Table 1 Mean absolute error (MAE) on the validation set (2000 frames) of GCNN models containing global information for the test systems benzene in
water and uracil in water. For each property, the model with the lowest MAE is marked in bold

GCNN model

Full QM D-Learning

E (kJ mol�1) FQM (kJ mol�1 nm�1) FMM (kJ mol�1 nm�1) E (kJ mol�1) FQM (kJ mol�1 nm�1) FMM (kJ mol�1 nm�1)

Benzene
Basic 2.7 48.7 8.3 1.0 22.9 3.5
Global 2.4 54.1 8.9 1.0 22.7 3.8
Interaction 2.7 52.8 9.7 3.9 36.2 7.3
Attention 2.7 61.7 10.0 1.2 23.7 4.2

Uracil
Basic 7.3 135.2 5.8 2.2 60.2 1.3
Global 8.1 129.7 6.4 2.3 59.8 1.7
Interaction 8.0 138.4 4.4 2.6 55.5 1.6
Attention 7.4 134.9 7.3 2.5 55.5 1.4
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(Table 1). Again, no large differences are observed between the
models for both the ‘‘full QM’’ and the D-learning setup (Fig. 3).
In contrast to benzene, also the interaction GCNN models
achieve a similar accuracy compared to the other models.

As observed for HDNNPs in ref. 34, the use of a D-learning
scheme with DFTB as the baseline method reduces the predic-
tion error by about two folds. This is also the case for the GCNN
models containing global information. This indicates that the
D-learning approach is more suited to incorporate the long-
range interactions. A reason for this could be that while the
GCNNs containing global information can in theory learn long-
range interactions, the large number of MM atoms present
leads to an exponential increase in possible system configurations.
This in turn requires a huge number of training data points in
order to accurately capture the long-range interactions. If the
size of the training set is limited to a practically useful number
(as done here), the training set is evidently not large enough to
achieve the desired accuracy.

In conclusion, the D-learning scheme leads to a clear and
consistent performance improvement, whereas no large differences

are observed between the four different GCNN architectures for
both test systems. While the improved GCNN models can reach a
slightly lower MAE than the basic GCNN model for some setups,
these improvements do not justify their increased model com-
plexity and the subsequently higher computational require-
ments. For comparison, the basic GCNN model has around
710 000 tunable parameters, while the global GCNN model has
around 1 200 000 parameters (870 000 in the interaction GCNN
and 840 000 in the attention GCNN). In addition, the interaction
GCNN and attention GCNN models require dot products of the
query (Q A Rnin�nk) and key (K A Rnin�nk) matrices, which are
computationally expensive (although the costs can be reduced
through the use of multi-head self-attention and nout = nk o nin).
For these reasons, we decided to focus on the basic GCNN model
and the D-learning scheme in the following.

4.2 Model parametrization

For the basic GCNN architecture, we explored different model
parametrizations: an edge-cutoff value (Redge) from 0.3 to

Fig. 3 Mean absolute error (MAE) on the validation set as a function of the training epochs (learning curves) of the D-learning GCNN models containing
global information for the test system uracil in water. (left): MAE of the energies in the QM zone. (middle): MAE of the forces on the QM particles. (right):
MAE of the forces on the MM particles from the QM zone.

Fig. 4 Influence of Redge on the mean absolute error (MAE) of the D-learning basic GCNN model for uracil in water. (left): MAE of the energies in the QM
zone. (middle): MAE of the forces on the QM particles. (right): MAE of the forces on the MM particles from the QM zone. The numerical values are given in
Table 2.
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0.6 nm, a number of features per dense layer (nf) from 32 to 256,
and a model depth (i.e., number of interaction blocks) from
2 to 8. The edge-cutoff value and the model depth directly
influence the contributions from long-range interactions, as
they both determine (directly and indirectly) the distance up to
which atoms contribute to the message update function. The
number of features per dense layer, on the other hand, deter-
mines the maximum possible complexity of each message
update function.

Fig. 4 shows the influence of the edge-cutoff value (Redge) on
the model performance for the D-learning GCNN model of
uracil in water. For the energy, the error is the lowest for a
Redge of 0.5 nm. For both force terms (FQM and FMM), however,
smaller Redge values of 0.4 nm and 0.3 nm, respectively, give the
lowest errors. Note that, for both the energy and the force
terms, the error increases again for larger Redge values. The
reason for this could be that larger cutoffs are connected with
an increase in possible system configurations, requiring in turn
more training data points. If the same training set is used,
overfitting might occur. For benzene in water, a different trend
is observed. Here, a large Redge of 0.6 nm still leads to an
improvement in the MAE of the forces (Table 2). This is
especially interesting as a different MM cutoff radius is used
in the reference QM/MM calculations of benzene and uracil
(Rc = 0.6 nm and 1.4 nm, respectively). A reason could be that
the reduced MM cutoff radius (Rc) leads to a smaller configu-
ration space in the MM-region and thus a GCNN model with
a larger Redge is able to sufficiently learn the important
contributions.

For the model depth, we observe a similar trend as for the
edge-cutoff value. Namely that including the information about
further distant nodes (atoms) is not always beneficial for the
model performance (Table S1 in the ESI†). For the test system
uracil in water, the MAE of both the energies and forces is
lowest at around 2–4 interaction layers, while up to 6–8 inter-
action layers are required for the benzene in water test system.
The results for the number of features per dense layer (nf) are
given in Table S2 in the ESI.† In general, a higher number of
features per dense layer does not lead to a lower error, with

convergence at around 64 features per dense layer for uracil in
water. For the test system of benzene in water, on the other
hand, a more complex model leads again to a decrease in the
errors.

4.3 Loss contribution of the forces

Böselt et al.34 showed that the relative weighting of the different
loss terms (energy loss, FQM loss, and FMM loss) can have a
significant influence on the prediction accuracy. Thus, we
systematically trained and evaluated GCNN models by varying
the relative loss weightings (wE, wFQM, and wFMM). We decided
to keep wE constant at 1.0, while changing FQM from 0.001 to
100 and FMM from 0.1 to 1000.

Fig. 5 shows the MAE on the training and validation set of
the basic GCNN model with the D-learning scheme for the test
system of uracil in water when varying wFQM and wFMM. For the
training set, we observe the expected behaviour, i.e. the error on
FQM decreases when the weight wFQM is increased and the same
for FMM with wFMM. Interestingly, the results on the validation
set are different. While the error on FMM still decreases with
increasing wFMM as expected (the bottom right panel in Fig. 5),
the MAE on FQM is the smallest for low wFQM and high wFMM

(the bottom middle panel in Fig. 5). This observation is further
illustrated in Fig. 6, which shows the learning curves for FQM in
the training and validation sets (corresponding to the horizon-
tal line at wFMM = 100 and the vertical line at wFQM = 0.1 in the
bottom middle panel in Fig. 5).

For the training set, the learning curves show again the
expected dependence with FQM and FMM, respectively (top
panels in Fig. 6). However, for the validation set, the lowest
error of FQM is observed with wFQM = 0.1 and not with wFQM =

100. In general, a relative weighting of
FMM

FQM
around 100–1000

results in the lowest MAE of FQM. Higher relative wFQM values
seem to result in over-fitting of FQM. Thus, for the final GCNN
model, we use the following relative loss weights: wE = 1,
wFQM = 0.1, and wFMM = 10. Note that the same observations
were made for the D-learning GCNN model with benzene in
water (Fig. S1 and S2 in the ESI†).

4.4 Neighborhood reduction

The main increase in computational requirements for the
GCNN models (especially memory requirements when using
GPUs during the batched training procedure) comes from the
growing number of edges with an increasing size of the edge-
cutoff (Redge). For example, Redge = 0.4 nm leads to around
21 000 edges for one of the uracil in water snapshots, while
Redge = 0.5 nm already leads to around 38 000 edges. Therefore,
we investigated whether the number of edges can be reduced
using different neighborhood schemes, without decreasing the
model performance. To limit the number of edges around each
atom, we explored the k-nearest-neighbour55 method with eight
(KNN-8) and twelve (KNN-12) neighbours, and the Voronoi–
Dirichlet polyhedra (VD).56,57 With the same Redge = 0.5 nm,
KNN-8 leads to around 12 000 edges for a uracil in water
snapshot, KNN-12 to around 18 000 edges, and VD to around

Table 2 Influence of Redge on the mean absolute error (MAE) on the
validation set of the basic GCNN models for the test systems benzene in
water and uracil in water. For each property, the model with the lowest
MAE is marked in bold

Redge (nm)

D-Learning

E (kJ mol�1) FQM (kJ mol�1 nm�1) FMM (kJ mol�1 nm�1)

Benzene
0.3 2.4 27.8 5.5
0.4 1.3 23.7 4.2
0.5 1.0 22.9 3.5
0.6 1.1 21.0 3.1

Uracil
0.3 3.3 60.4 1.1
0.4 2.6 59.2 1.1
0.5 2.2 60.2 1.3
0.6 2.4 62.9 1.5
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11 000 edges. Thus, the memory requirement for the GCNN
model is drastically reduced by all these approaches.

For the following results, we used the same settings for the
GCNN models, i.e., Redge = 0.5 nm, nf = 128 with five interaction
layers, and loss weightings of wE = 1.0, wFQM = 0.1, and wFMM =
10. Fig. 7 shows the learning curves on the validation set of the
D-learning GCNN model for the test system uracil in water.
While the MAE on the energies is largely unaffected (within the
fluctuations of the error) by the choice of the neighborhood
scheme (KNN-12 being the closest to the complete model), the
errors on the force terms (FQM and FMM) increase substantially
with all neighborhood schemes compared to the complete
model. The same trends are also observed for the D-learning
model of benzene in water (Table S3 in the ESI†).

4.5 Data set ordering

The split into training/validation/test sets was chosen with the
future application in MD simulations in mind. The idea is that
a short initial QM/MM MD run of the target system can be used

as the training set for subsequent longer (QM)ML/MM MD
simulations. To mimic this, the first 70% of the frame from the
initial QM/MM trajectory was taken as the training set, the
following 20% as the validation set and the final 10% as the test
set.34 This leads to a time-based ordering of the frames within
the training set. Here, we investigate if this correlated ordering
has an effect on the model performance. For this, we compared
five models trained with the same training set but using a
different frame ordering within the set: (i) original time-based
ordering from the MD simulation, (ii–iv) random-ordering
using three different random number seeds, and (v) a
farthest-point sampling (fps) as described in the ESI.† For all
models, we used Redge = 0.5 nm, nf = 128 with five inter-
action layers, and loss weightings of wE = 1.0, wFQM = 0.1,
and wFMM = 10.

Fig. 8 shows the learning curves for the training and valida-
tion sets of the basic GCNN model with the D-learning scheme
trained with different orderings of the data points in the
training set. First, the results clearly show that the order of

Fig. 5 Influence of relative weights (wFQM and wFMM) for the different loss terms (QM forces and MM forces) on the MAE of the energy (left), the forces
on the QM particles (middle), and the forces on the MM particles from the QM zone (right). The basic GCNN with the D-learning scheme and the test
system uracil in water was used. The weight of the energy loss (wE) is kept constant at 1.0. (top): MAE for the training set. (bottom): MAE for the validation
set. The color map and the relative size of the points indicate the MAE.
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the training data points does indeed affect the model perfor-
mance. For all three properties (energies and forces), the error
for the training set is clearly smallest with the fps-ordering
(orange line) or MD-ordering (purple line). Interestingly, using

an fps-ordering of the training data points results in a higher
MAE for the validation set, indicating that the fps-ordering
leads to an over-fitting of the model for this setup. The situa-
tion is different for the MD-ordering, which leads to

Fig. 6 Learning curves of FQM in the training set (top) and validation set (bottom) when varying the relative loss weightings wFQM (left) and wFMM (right).
The basic GCNN with the D-learning scheme and the test system uracil in water was used. The weight of the energy loss (wE) is kept constant at 1.0.

Fig. 7 Learning curves on the validation set of the D-learning GCNN model when using different neighborhood selection schemes. The test system
uracil in water was used.
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comparable results on the validation set as the random-ordering,
except for FQM. Here, the accuracy is between the random and
the fps-ordering. For the test system of benzene in water (Fig. S3
in the ESI†), the same trends are observed for fps-ordering on
the training and validation sets, while the MD-ordering shows
again a comparable accuracy as the random-orderings for both
the training and the validation sets. However, in all cases, the
random-orderings converge earlier (at around 1000 epochs)
compared to the MD-ordering (around 2000 epochs). Thus, using
a random-ordering of the MD frames in the training set seems to
be beneficial by reducing the training costs and potentially
increasing robustness.

4.6 Comparison to HDNNPs

As a final evaluation, we compare the GCNN models with
the previously developed HDNNPs,34,41 which use the same
D-learning scheme with DFTB42,43 as the baseline, for all five
test systems: (i) benzene in water, (ii) uracil in water, (iii)
retionic acid in water, (iv) (close to) the transition state of the
SN2 reaction of CH3Cl with Cl- in water, and (v) (close to) the
transition state of SAM with cytosine in water. The model
performance is compared on the training set (7000 frames),
validation set (2000 frames), and test set (1000 frames). Note
that the models were solely developed using the training and

validation sets, and are only evaluated on the test set at this
stage. Furthermore, hyperparameters were only tuned on the
two test systems benzene and uracil in water. For all models, we
used Redge = 0.5 nm, nf = 128 with four (systems i and ii) or
five (systems iii–v) interaction layers, and loss weightings of
wE = 1.0, wFQM = 0.1, and wFMM = 10.

Fig. 9 compares the learning curves and final MAE between
the HDNNP and the GCNN models for benzene in (top panels)
and uracil in water (bottom panels). For both systems, the
learning curves for the GCNN validation and test sets show a
very similar performance. This indicates that the models are
not overfitted and are able to generalize to new data points
within the same MD trajectory. For the HDNNP models, we
observe a similar behaviour. However, the MAE values for the
test set of benzene in water are consistently above the MAE for
the validation set. For this system, we can directly compare the
effect of the training set size between the HDNNP and GCNN
models. While both models show a similar MAE for small
training set sizes, the GCNN model outperforms the HDNNP
model when all training data points are used. A possible reason
for this observation is that the GCNN model has to learn the
descriptor for the atomic environments and would thus profit
from a larger training set. This is also indicated by the fact that
the learning curves of the GCNN models are still continuously

Fig. 8 Learning curves for the training set (top) and validation set (bottom) when varying the order of the data points in the training set. The D-learning
GCNN for uracil in water is shown.
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decreasing even at 7000 training structures. For the system of
uracil in water, the final MAE values are comparable for all
models. Here, we note that the benzene test system has a
shorter MM-cutoff radius (Rc), which might simplify the learn-
ing task and thus a similar behaviour might be observed for
uracil at a larger training set size.

Table 3 shows the MAE values on the training, validation,
and test sets for all five test systems. Overall, the GCNN models
perform similar or slightly better than the HDNNP models.
A major exception to this is the SAM/cyt in water system. Here,
the GCNN model reaches the same accuracy as the HDNNP

model on the training set, but the MAE on the validation and
test set is two to five times higher than with the HDNNP model.
This may be because the GCNN models were parametrized and
benchmarked on the simpler systems (i.e., benzene and uracil
in water) and there is less transferability of the hyperpara-
meters than that with the HDNNP.

Up to this point, we have evaluated the performance of the
GCNN models in terms of the MAE on reasonable validation
and test sets. Böselt et al.34 have already emphasized that it is
important to test a ML model for the intended application,
which in our case are (QM)ML/MM MD simulations. While rare

Fig. 9 Learning curves as a function of the training-set size of the D-learning models for benzene in water (top) and uracil in water (bottom). The dark
blue circles show the GCNN validation MAE, the dark red circles show the HDNNP validation MAE, the light blue triangles show the GCNN test MAE, and
the light red triangles show the HDNN test MAE. The numerical values are given in Table 3.

Table 3 Mean absolute error (MAE) on the training set (7000 frames), validation set (2000 frames), and test set (1000 frames) of the D-learning HDNNP
models and the D-learning GCNN models for all five test systems: (i) benzene in water, (ii) uracil in water, (iii) retionic acid in water, (iv) (close to) the
transition state of the SN2 reaction of CH3Cl with Cl- in water, and (v) (close to) the transition state of SAM with cytosine in water. For each test system, the
model with the lowest MAE is marked in bold

System

HDNNP GCNN

E (kJ mol�1) FQM (kJ mol�1 nm�1) FMM (kJ mol�1 nm�1) E (kJ mol�1) FQM (kJ mol�1 nm�1) FMM (kJ mol�1 nm�1)

Benzene 1.8/1.6/3.2 23.7/22.8/29.4 3.5/3.0/4.7 0.4/0.7/0.7 8.6/14.7/15.3 1.3/1.9/2.0
Uracil 1.2/2.8/2.0 34.3/45.9/48.1 1.1/1.0/1.0 0.8/1.9/2.1 14.1/51.0/51.0 0.7/0.8/0.8
Chloroform 1.8/1.7/2.2 24.9/29.5/30.7 1.0/1.0/1.0 0.5/1.1/1.2 5.3/21.4/22.1 0.5/0.6/0.6
Retionic acid 3.9/4.4/— 43.8/44.8/— 1.1/1.1/— 0.6/4.4/4.4 20.5/37.0/37.0 0.7/0.9/0.9
SAM/cyt 6.3/8.5/— 74.8/74.6/— 2.3/2.3/— 5.6/21.1/28.8 79.7/130.4/130.4 11.9/12.0/12.2
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outliers get averaged in the MAE assessment, they might be
less tolerable in an actual simulation, where the results of the
next step depend directly on the results of the previous step.
For this reason, it is crucial to test the performance of the
developed (QM)ML/MM models in a prospective MD simula-
tion. We performed therefore (QM)ML/MM MD simulations
using the D-learning GCNN model for the two test systems
with larger conformational flexibility as in ref. 34: (i) retinoic
acid and (ii) (close to) the transition state of SAM with cytosine
in water. Note that the models were only trained on the initial
7000 steps of the QM/MM MD simulations and no adaptive
re-training during the (QM)ML/MM production runs was
performed. Shen and Yang35 have shown that adaptive neural
networks can use on-the-fly corrections of the model to further
improve the model performance. However, this comes with an
increase in the training cost of the model and changing
energies/forces (i.e., the estimated properties of a configu-
ration may not be the same at the beginning versus the end of
the simulation).

Fig. 10 shows the MD energy (EQM + Eel
QM–MM) trajectories for

retionic acid in water (top panel) and SAM/cyt in water (bottom
panel) using an integration step of 0.5 fs. The (QM)ML/MM MD
simulation of retionic acid in water was carried out for 170 000
consecutive steps, while the simulation of SAM/cyt in water was
performed for 110 000 consecutive steps. For both systems, the
first 200 steps were discarded as equilibration. Thus, it was
possible to propagate these systems stably using the D-learning
GCNN model based on a fraction of the otherwise required
QM/MM MD simulation steps. For both systems, the energy
fluctuations during the (QM)ML/MM MD simulation were
comparable to the ones with the D-learning HDNNP model:
For retionic acid, sDFTB+GCNN = 37.1 kJ mol�1 and sDFTB+HDNNP =
55.2 kJ mol�1, and for SAM/cyt, sDFTB+GCNN = 94.9 kJ mol�1 and
sDFTB+HDNNP = 73.3 kJ mol�1. Of course, the possibility that in a
longer simulation an ill-represented structure may be encoun-
tered cannot be fully excluded. Interestingly, even though the
accuracy of the GCNN model on the validation/test sets of
the SAM/cyt in water was considerably lower than that with

Fig. 10 MD simulation of retionic acid in water (top) and SAM/cyt in water (bottom) using an integration time step of 0.5 fs. The energy (EQM + Eel
QM–MM)

trajectory is extracted from 170 000 (retionic acid) and 110 000 (SAM/cyt) consecutive steps performed by the DFTB+GCNN model. The first 200 steps
were discarded as equilibration. The pure DFTB energy is shown in blue and the GCNN D-correction is shown in red. Note that the GCNN model was only
trained on the initial 7000 QM/MM MD simulation steps (not shown here) and that no adaptive on-the-fly re-training of the GCNN model was performed.
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the HDNNP model, we still observe a stable and robust simula-
tion over 110 000 (QM)ML/MM MD steps based solely on the
initial 7000 QM/MM MD simulation steps.

5 Conclusion

In this work, we investigated the use of GCNN models in
(QM)ML/MM MD simulations for condensed-phase systems
with DFT accuracy for the QM subsystem, and compared the
results with the previously developed HDNNPs for the same
systems. In the first step, we evaluated different GCNN archi-
tectures capable of incorporating long-range effects, with and
without a D-learning scheme. While no large improvements
could be found with the more complex GCNN architectures, the
D-learning GCNN using DFTB as the baseline yielded the most
accurate description of the energies and forces. Based on these
observations, we focused on the basic GCNN with D-learning
for the remainder of the study. Next, we assessed the influence
of different parameters on the performance of the GCNN
models. Here, we found that the inclusion and the correct
weighting of the QM and MM gradients in the loss function
were crucial to improve the model performance. Interestingly,
we observed that increasing the loss weights of the QM gradi-
ents does not lead to an improved accuracy when predicting
them due to overfitting. Instead, the relative loss weights of
wE = 1, wFQM = 0.1 and wFMM = 10 provided the model with the
best ability to generalize new data points.

In order to reduce the computational requirements of the
GCNN models, we also investigated different neighborhood
reduction schemes in the creation of the GCNN edges. While
these schemes decrease indeed the computational costs with-
out significantly affecting the accuracy of the QM energies, the
performance on the QM and MM forces is clearly worse. Thus,
we do not recommend using these schemes in (QM)ML/MM
MD simulations, as the predicted forces are directly used to
propagate the system in time.

An interesting observation was made regarding the order of
the data points in the training set. In order to mimic the future
application, the training set was chosen as the first 70% of
frames from a QM/MM trajectory. This leads to a time-based
ordering of the training data points. When using a random
ordering of the training set (without changing the actual
training/validation/test split!), a similar model performance
was reached, but the random ordering converges faster and
thus leads to a reduction in the required training time.

Finally, we compared the D-learning HDNNP and D-learning
GCNN models with each other for five different test systems in
water. While both models perform at a similar accuracy, the
GCNN model reaches slightly lower MAE values for most of the
five test systems. The D-learning GCNN model can also be used
to perform stable (QM)/ML/MM MD simulations as the corres-
ponding HDNNP model. However, the two model types differ
drastically in their architecture and come with advantages and
disadvantages, which should be considered when choosing an
adequate model for a (QM)ML/MM simulation. The symmetry

functions in HDNNPs include a cosine term for all the inter-
atomic angles within an atomic environment, which results in a
computational scaling of O(N3), where N is the combined
number of atoms in the QM and MM environments. The GCNN
model, on the other hand, only depends on the edge-update
operations to describe the atomic environments resulting in a
computational scaling of O(N2). Note that, by using a finite
cutoff for the atomic environments and edge-update opera-
tions, the scaling can be reduced to O(N(log N)2) and O(N log N),
respectively. Additionally, the number of angle terms in the
HDNNP symmetry functions scales exponentially with the
number of element types (which can be partially resolved by
introducing weighted symmetry functions), whereas the GCNN
atom types are encoded directly in an embedding vector and do
not directly change the scaling of the model. Another important
difference is that HDNNPs are based upon individual neural-
network potentials (NNPs) for each atomic environment, whose
evaluation can be easily distributed over multiple GPUs and the
memory requirement for each individual NNP does not increase
drastically with the increasing QM or MM system size. However, in
contrast, GCNNs are based upon iterative and overlapping mes-
sage passing operations and thus, a distributed evaluation is not as
straightforward. Additionally, for each message passing operation
within the GCNN graph, all edges have to be transformed using a
dense layer. Therefore, the memory requirement for the GCNN
evaluation scales as O(Ne�nf), where Ne is the number of edges.
This means that the memory increases with the increasing QM or
MM system size. Note that this can be critical when using a
batched training procedure on a GPU.

In summary, the HDNNP based D-learning (QM)ML/MM
setup appears to be best suited for condensed-phase systems
with a limited number of different element types in the QM
zone and the surrounding MM zone. Examples are the reac-
tions of organic molecules in a solvent – similar to the five test
systems investigated in this paper – or reactions at the interface
of a mono-atomic surface. In these cases, the limited number of
symmetry functions and the parallelizability over multiple
GPUs/CPUs favor the HDNNP setup. On the other hand, the
GCNN based D-learning (QM)ML/MM setup is most useful for
condensed-phase systems with a larger number of element
types, as the model scaling of the GCNN is much less affected
by the number of element types than the HDNNP. Examples are
the reactions within the active site of a metalloenzyme, proteins
with covalently bound or interacting ligands, reactions involving
organometallic catalysts, or reactions catalyzed at the interface of
a poly-atomic surface.

Data and software availability

All structures used in the training, validation and test sets were
taken from ref. 34 (freely available at https://www.research-
collection.ethz.ch/handle/20.500.11850/512374). The GCNNs were
implemented using Tensorflow/keras.50 The models were
trained in Python and then exported to the C++ GROMOS code
as described in ref. 34 for the HDNNPs.
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Adv. Neural Inf. Process. Syst., 2020, 33, 13260–13271.

47 N. Schmid, C. D. Christ, M. Christen, A. P. Eichenberger and
W. F. van Gunsteren, Comput. Phys. Commun., 2012, 183,
890–903.

48 K. Meier, N. Schmid and W. F. V. Gunsteren, J. Comput.
Chem., 2012, 33, 2108–2117.

49 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, 4–9.
50 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
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