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Perturbation theory of scattering for grazing-
incidence fast-atom diffraction

William Allison,*a Salvador Miret-Artés b and Eli Pollak c

Recent grazing-incidence, fast atom diffraction (GIFAD) experiments have highlighted the well known

observation that the distance between classical rainbow angles depends on the incident energy. The

GIFAD experiments imply an incident vertical scattering angle, facilitating an analytic analysis using

classical perturbation theory, which leads to the conclusion that the so called ‘‘dynamic corrugation’’

amplitude, as defined by Bocan et al., Phys. Rev. Lett., 2020 125, 096101 is, within first-order

perturbation theory, proportional to the tangent of the rainbow angle. Therefore it provides no further

information about the interaction than is gleaned from the rainbow angle and its energy dependence.

Perhaps more importantly, the resulting analytic theory reveals how the energy dependence of rainbow

angles may be inverted into information on the force field governing the interaction of the incident

projectile with the surface.

1 Introduction

Grazing Incidence Fast Atom Diffraction (GIFAD) has recently
been developed as a technique for the study of surfaces and 2-D
materials.1,2 When compared to conventional, low-energy atom
scattering,3,4 the fast-atom method,5–7 and specifically the use
of a geometry with grazing incidence, gives technical benefits
such as the ease with which the energy can be varied and the
opportunity for instrumental access to the surface during the
experiment.8,9 There are also benefits from the perspective of
analysis. The scattering problem at high incident energy is, in
principle, a formidable one since there are a huge number of
open diffraction-channels even in the case of purely elastic
scattering. Only a tiny number of these open-channels carry any
significant intensity. The grazing trajectory averages the inter-
action along the incident azimuth so that most of the scattering
is confined to a single diffraction-plane that contains the
specular direction.1,2 Thus, a complex 1 + 2-D scattering pro-
blem is reduced to that of scattering from a simpler, 1 + 1-D
corrugated potential, with a limited number of open channels.
In the following, we take x as the coordinate parallel to the
surface and z perpendicular to the surface.

In recent work on He scattering from a KCl(001) surface,10,11

the theoretical analysis of experimental data and the implica-
tions for classical scattering indicated an ‘‘unexpected’’ energy
dependence in that both the corrugation of an ‘‘effective hard-
wall’’ potential, and the corresponding rainbow angle increased
as the experiment came closer to grazing incidence. As we show
below, the energy dependence of the rainbow angle is not
unexpected theoretically12 and has been observed experimen-
tally in the scattering of Ar on a 2H-W(100) surface13 and most
notably in the case of scattering of Ar on a LiF(100) surface.14

Surface corrugation is an appealing concept but it is not as
simple as appearances suggest, and defining a unique corruga-
tion is not at all trivial.15 The simplest scattering model, that
of a hard-wall potential has been used extensively.1,16 It has
the merit of a simple relationship between the corrugation
function and the classical rainbow angles. However, an energy
dependent hard wall parameterization fails to describe the full
details of the atom-surface potential and is not a faithful
description of the true potential. A hard-wall is of limited value
as an interpretive tool and the notion of a ‘‘corrugation’’
obtained from an energy dependent hard wall model is only
helpful in a highly qualitative sense. With more realistic
potentials there is no simple relationship between a para-
meterised ‘‘experimental’’ potential and the underlying corru-
gation in the electronic properties of the surface.15,17 In any
quantitative discussion it is essential to distinguish clearly
between these different ‘‘corrugations’’.

A strongly corrugated surface will have a different morpho-
logy and correspondingly very different scattering pattern from
a weakly corrugated surface. However, making that notion
more quantitative is not trivial. For example, the ‘‘corrugation’’
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of a potential may be identified as the iso-potential contour at
the classical turning point. It may alternatively be calculated
in the semi-classical picture from the action along classical
trajectories, a quantity Bocan et al. call the ‘‘dynamic corruga-
tion’’.10,11 These two definitions are not the same and to
compare them directly is unhelpful. In the present work, we
clarify the dynamics by discussing a simple model of the
interaction, which allows the phenomenology in the scattering
to be attributed directly to features of the potential. The model
is used to explain why the observed energy dependence of the
classical rainbow angle in the scattering of He/KCl(001)10,11 is
not at all ‘‘unexpected’’. Not less important is our observation
that the action-derived corrugation amplitude and the rainbow
angle are, to first order in perturbation theory, proportional to
each other and therefore provide the same information on
particular aspects of the potential morphology.

In Section 2 we describe a parameterised Morse potential
that is flexible enough to represent a variety of surfaces while
being sufficiently simple to identify the features leading to the
observed phenomenology. In Section 3 the scattering is treated
with first and second order perturbation theory for the resulting
classical dynamics. These are then used to derive results for the
energy dependence of the classical rainbow angles. We stress here
the terminology ‘‘classical’’, since, strictly speaking, in quantum
mechanics, due to the discreteness of the angular distribution,
there is no divergence related to a rainbow angle. The general
theory is applied to normal incidence in the plane perpendicular
to the incident direction, which is relevant for the GIFAD experi-
mental setup. In Section 4 we present an application of the
perturbation theory to the Morse potential model. We end with
a discussion of the results, paying special attention to the
possibility of inferring information on the static potential energy
surface from energy dependent scattering measurements.

In the present work, we provide simple analytic results that
are directly applicable to GIFAD experiments. The formulae,
insights and conclusions are generally applicable. However,
since raw experimental data is not generally in the public
domain, and the data that is available has been pre-processed
using a hard-wall analysis, we have avoided direct quantitative
comparisons with existing experiments.

2 A Morse potential for GIFAD
scattering

We seek a functional form for the potential that delivers
analytical results, while providing sufficient flexibility to repre-
sent a range of realistic surfaces with an acceptable degree of
accuracy. The Morse potential has been applied successfully to
low energy collisions of heavy particles for many years (see for
example)18,19. Following previous practice, we take the variation,
perpendicular to the surface, to have the Morse form,

VM(z) = V0[exp(�2az) � 2exp(�az)], (2.1)

where V0 is the depth of the attractive well and a is the ‘‘softness
parameter’’. Lateral corrugation is introduced by a rigid

displacement, in z, as a function of the coordinate parallel to
the surface.18, 20 An appropriate displacement function having
the simplest symmetry needed to describe recent grazing-
incidence experiments11 is

h xð Þ ¼ 1

2
sin

2px
l

� �
; (2.2)

where the surface has a periodicity of l.
In the present work we aim to reproduce the essential

features of recent experiments and numerical calculations of
the potential.10,11 Specifically, we adopt an approach that
corrugates the depth of the adsorption well by allowing the
amplitude of the displacement, h(x), to be different for the
attractive and the repulsive terms in eqn (2.1). Thus,

VM(z, x) = V0[exp(�2a(z � hrh(x))) � 2exp(�a(z� hah(x)))],
(2.3)

where hr and ha respectively give the amplitude of the displace-
ment in the repulsive and attractive terms. Four parameters
define the potential: V0 gives the overall depth of the attractive
well; a is the softness; while hr and ha define the displacement
amplitudes. Of most concern in the remaining discussion is the
ratio ha/hr.

Fig. 1 illustrates the flexibility offered by varying the ratio
ha/hr. In Fig. 1(a), ha/hr 4 1, and the deepest well (dashed
purple curve) is situated above the maximum of h(x), top-site,
whereas in panel (c), ha/hr o 1, and the well is deepest for the
solid red curve, which is above the minimum of h(x), hollow-
site. The figure illustrates why it is not helpful, in the present
context, to think of h(x) as a ‘‘corrugation function’’ since it
only represents the iso-potential corrugation deep in the repul-
sive region. Iso-potential contours have a corrugation whose

Fig. 1 Examples of potentials with different values of the parameter ha/hr.
The plots show the z-dependence at high-symmetry values of %x: the
dashed purple curves correspond to the potential at %x = p/2, which we call
the top-site (see inset in the central panel); the solid red curves are for %x =
3p/2, the hollow-site; and the dotted black curves are at %x =p. (a) ha/hr = 2,
generates a potential where the well is deepest at the top-site; (b) ha/hr = 1,
corresponds to the case where the well-depth is the same at all values of %x;
(c) ha/hr = 2, gives a potential with the deepest well at the hollow site.
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energy dependence is complex, but that complexity can be
rendered in a simple and quantitative form through the ratio
ha/hr. Only in the case ha/hr = 1 (Fig. 1(b)) is there a single, well-
defined value for the iso-potential corrugation.

Parameter values in Fig. 1 are chosen to demonstrate the
variety of surface interactions that are possible. For example,
panel (c), ha/hr = 0, corresponds to the conventional
‘‘corrugated-Morse’’ potential that has been in use for many
years.18 Panel (b), ha/hr = 1, is the form used more recently in
classical and semi-classical descriptions of thermal-energy
scattering,20,21,22 while panel (a) illustrates that when ha/hr 4
1, the site of the deepest well can be shifted from hollow to top.

It is important to note that the extreme variations in well-
depth generated by the illustrations in Fig. 1 are unlikely to be
observed in practice. The subtle variations in well depth
calculated, for example in ref. 11, are reasonably well reproduced
by choosing ha/hr E 1. However, as we will show, the behaviour
expected in experiment depends critically on whether ha/hr 4 1,
or ha/hr o 1.

3 Classical perturbation theory for
rainbow scattering
3.1 The perturbation expansion

A derivation of the classical theory of elastic scattering from
surfaces, using second order perturbation theory may be found
in some detail elsewhere.21,22 The basis for the perturbation
approach is to expand the potential as a power series in ha and
hr, assuming that these displacements are small compared to
the unit cell length. In the case of a Morse potential with ha/hr =
1, the result is a simple Taylor series.20 More generally, the
expansion becomes

V x; zð Þ ¼ V zð Þ � V1 zð Þh xð Þ þ 1

2
V2 zð Þh2 xð Þ; (3.1)

where, for the particular choice of potential, eqn (2.3), expan-
sion to second order in the corrugation function h (x) gives

VM(z, x) = VM(z) + 2V0a[hr exp(�2az) � ha exp(�az)]h(x)

+ V0a
2[2hr

2 exp(�2az) �ha
2 exp(�az)]h2(x), (3.2)

which identifies the functions V1 and V2 appearing in eqn (3.1).

3.2 A short review of classical elastic scattering

The particle is incident on the surface with initial momenta pzi
,

pxi
, the incident vertical momentum is assumed to be negative.

The (negative) angle of incidence is by definition

yi ¼ tan�1
pxi
pzi

� �
(3.3)

and we note that it vanishes for vertical incidence defined by
pxi = 0. The final angular distribution is by definition

P yfð Þ ¼
1

2p

ð2p
0

dxd yf � tan�1
pxf xð Þ
pzf xð Þ

� �� �
; (3.4)

where the initial horizontal coordinate x may be considered as
an ‘‘impact parameter’’ and the final momenta are functions of
it. The angular distribution may be rewritten as

P yfð Þ ¼
1

2p cos2 yfð Þ
X
j

1

@f xð Þ
@x

���
x¼xj

����
����
; (3.5)

where by definition

f xð Þ ¼ �pxf xð Þ
pzf xð Þ: (3.6)

The xj ’s are functions of the final scattering angle and are all
the possible solutions of

yf(x) = tan�1[�f (x)]. (3.7)

yf(x) is known as the classical deflection function (CDF) and the
rainbow angles are given by the condition that

@f xð Þ
@x

����
x¼xj
¼ 0 (3.8)

at which the classical angular distribution diverges.
It cannot be over-stressed that the rainbow angles are

precisely defined only in classical mechanics. In quantum
mechanics, due to the discrete structure of the angular dis-
tribution in terms of discrete diffraction peaks, the angular
distribution is no longer a continuous function of the impact
parameter and therefore the derivative with respect to it is ill
defined. In quantum mechanics one cannot ‘‘know’’ in advance
both the incident horizontal momentum and the impact para-
meter x due to the uncertainty principle and therefore one
should be careful with the notion of ‘‘experimental rainbow
angles’’. They are ‘‘experimental’’ only when the diffraction
peaks are sufficiently dense so that effectively the scattering is
well approximated as classical scattering. Only if by accident
the final rainbow angle is a Bragg angle, one should attribute
the corresponding diffraction peak to a rainbow.23

3.3 A short review of classical perturbation theory

In zero-th order perturbation theory only the vertical potential
V(z) is considered and the higher order terms in h(x) are set to
zero. The zero-th order horizontal motion x0,t is then free
motion with momentum pxi

such that

x0;t ¼ x0;0 þ
pxi
M

t (3.9)

and the vertical motion is the solution of

M€z
0;t
þ V 0ðz0;tÞ ¼ 0 (3.10)

with the initial condition ż0,�N = Mpzi
. The initial vertical

distance from the surface is taken to be sufficiently large such
that the potential vanishes. To provide symmetric formulae, we
assume that the scattering is initiated at t = �N and ends at
t = +N such that the zero-th order vertical trajectory reaches the
turning point at time t = 0.
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Taking the corrugation into consideration, the first order
equation of motion for the vertical distance is

M€z1;t þ V 00 z0;t
� �

z1;t � V 01 z0;t
� �

h x0;t
� �

¼ 0 (3.11)

and for the horizontal distance it is

M€x1;t � V1ðz0;tÞh0ðx0;tÞ ¼ 0 (3.12)

The second order equation of motion for the horizontal
distance is

0 ¼ M€x2;t � V1ðz0;tÞh00ðx0;tÞx1;t

� V 01ðz0;tÞz1;th0ðx0;tÞ þ V2ðz0;tÞhðx0;tÞh0ðx0;tÞ:
(3.13)

The classical angular distribution is obtained by solving for
the final momenta. To first order one readily finds for the time
dependent horizontal momentum

px1;t ¼
ðt
�1

dt 0V1 z0;t 0
� �

h0 x0;t 0
� �

(3.14)

while the second order contribution is

px2;t ¼
ðt
�1

dt 0 V1 z0;t 0
� �

h00 x0;t 0
� �

x1;t 0 þ V 01 z0;t 0
� �

z1;t 0h
0 x0;t 0
� �	 


�
ðt
�1

dt 0V2 z0;t 0
� �

h x0;t 0
� �

h
0
x0;t 0
� �

:

(3.15)

For the vertical motion we note that to first order, the final
(denoted by the subscript f ) vertical momentum may be
obtained through the first order energy conservation equation

0 ¼
pxi px1;t þ pz0;t pz1;t

M
þ V 0 z0;t

� �
z1;t � V1 z0;t

� �
h x0;t
� �

(3.16)

so that asymptotically, after the collision is over and the
potential terms vanish, we find that the final first order vertical
momentum is given in terms of the first order final horizontal
momentum

pz1; f ¼
pxi px1; f
pzi

: (3.17)

Similarly, the second order vertical momentum may be
obtained from energy conservation and knowledge of the
second order horizontal momentum:

pz2; f ¼
pxi
pzi

px2;f þ
p2x1; f þ p2z1; f

2pzi
: (3.18)

However, as seen from eqn (3.15) this entails solution of the
first order horizontal equation of motion (3.12) and the first
order vertical equation of motion which is derived from the first
order energy conservation relation

_z1;t ¼
_pz0;t
pz0;t

z1;t þ
1

pz0;t

ðt
�t0

dt 0
dV1 z0;t 0

� �
dt 0

h x0;t 0
� �

: (3.19)

The solution of eqn (3.12) and (3.19) is straightforward, but
long and tedious, the details may be found in ref. 22. Using the
displacement function given in eqn (2.2) and the symmetry in

time of the zero-th order vertical motion, one finds that the
first order contribution to the horizontal momentum may be
written as

px1, f = pziKhwKcos(x) (3.20)

where

Khw ¼
2phr
l

(3.21)

is termed the hard wall rainbow angle parameter; hr being
related to the repulsive part of the potential. The coefficient K is
given by

K ¼ 1

2hrpzi

ð1
�1

dt 0V1 z0;t 0
� �

cos oxtð Þ: (3.22)

The horizontal frequency ox is defined as

ox ¼
2p
l

pxi
M
: (3.23)

The second order contribution to the final horizontal
momentum may be written as22

px2, f = pxiKcc + pziKhwsin(2x)K2. (3.24)

The explicit expressions for the parameter Kcc are given in
eqn (2.33) and (2.34) of ref. 22, and we note that pxiKcc vanishes
when the scattering is vertical. The expression for the para-
meter K2 is given in eqn (2.35) and (2.36) of ref. 22.

3.4 The rainbow angle in GIFAD

The general expressions for the rainbow angles have been derived
elsewhere.22 Here we specify them for our purpose of studying the
GIFAD experiments which correspond to normal incidence in the
plane perpendicular to the incident plane, that is the initial
horizontal momentum vanishes. This simplifies the theory. From
the definition of the function f (x) in eqn (3.6) and the second
order perturbation theory results for the final momenta we find
that, for vertical scattering to second order, the CDF is

yf ðxÞ ¼ tan�1 �f xð Þ½ � ¼
pxf
pzf

¼ Khw K cos xð Þ þ K2 sin 2xð Þ½ �: (3.25)

The important point for our purposes is that with our
simplified model, the first order contribution to the horizontal
momentum goes as cos(x) while the second order contribution
goes as sin(2x). The rainbow angles are determined by the

condition that
@f

@x
¼ 0 (see eqn (3.8)) and from eqn (3.25), we

find that the rainbow solutions for the x’s are the solutions of
the equation

K sin(x) = 2K2 cos(2x). (3.26)

This is already an instructive result. In first order perturba-
tion theory, the second order parameter K2 would be neglected,
the solutions for x would be 0 and p such that f (x = 0, p) = �
KhwK. If the function V1(z0,t) = hrV0(z0,t) (which is the case if
hr = ha), then K = 1 and the first order solution for vertical
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scattering would become independent of the energy and just
equal to the hard wall scattering rainbow angle. Since, however,
we do not make this assumption, we find that even to first order
the rainbow angle will become energy dependent and this
is demonstrated explicitly for the Morse potential model pre-
sented in the next Section.

But we do not want to neglect the second order term K2.
Using the variable y = sin(x) we note that eqn (3.26) is a
quadratic equation. One of its two solutions will give a value
of y which is much larger than unity and unphysical since the
second order parameter is typically much smaller than the first
order one. The other solution is

sinx
� ¼ y

� ¼ 2K2

K
(3.27)

from which we deduce that the two possible solutions for the
rainbow value x* are

x� ¼ 2K2

K
; p� 2K2

K
: (3.28)

From eqn (3.6), we then find that the two vertical rainbow
angles are given by

tan y�f ¼ �Khw K þ 2K2
2

K

� �
: (3.29)

Notably, the parameter K2 is dependent on the vertical
energy. The two rainbow angles are symmetrically located about
the surface normal as they should be for a structureless particle,
with vertical incidence and a surface containing a mirror plane.

3.5 A corrugation amplitude derived from the semi-classical
action

The action along a classical trajectory is related to the phase
induced by the scattering potential and when, multiple trajec-
tories contribute to the scattered intensity, interference oscilla-
tions and their energy dependence provide direct and quantitative
information about the potential.24 The information in such
oscillations arises from the different spatial regions explored by
different trajectories. Bocan et al.,11 motivated by the semiclassical
theory of surface scattering, use the action of the trajectories to
give a definition of a corrugation amplitude.25, 26 As it is based on
the scattered phases, it is difficult to make direct comparison with
an experiment that measures intensity, not phase. Within the
realm of the perturbation theory used here, their definition
implies considering the action that appears in the semiclassical
first order perturbation theory for elastic scattering of Hubbard
and Miller27, 28 and its generalization to second order by Pollak
and Miret-Artés.12

The action A(x) of a trajectory as the particle undergoes
scattering by the surface is naturally a function of the impact
parameter x. Bocan et al.11 define a corrugation amplitude by
considering the points of the impact parameter xmax and xmin

which respectively maximize and minimize the action. The quantity

Za �
A xmaxð Þ � A xminð Þ

2 pzij j
(3.30)

has the dimensions of length and the factor two arises from the
symmetry of the vertically incident trajectories, the action differ-
ence includes the added motion in the maximal action both
coming in and going out. Bocan et al.11 refer to this quantity as a
dynamical corrugation, since the action depends on the motion of
the particle. The value of Za is energy dependent, as the magnitude
of the phase shifts contributing to the scattering are themselves
functions of the incident energy. For a hard wall potential, Za is
independent of the energy. In the present context, we note that the
use of the word ‘‘corrugation’’ is problematic, and therefore, we
refrain from using the concept, except when expressly referring
to the work of others such as Bocan et al. who gave a specific
definition.

As shown in ref. 12 within second order perturbation theory,
for vertical scattering, with the potential as given in eqn (2.2)
and (2.3), the action is given by the general form

A xð Þ ¼ A1 sin xð Þ þ A2

2
cos 2xð Þ; (3.31)

where, as may be seen from eqn (2.12) of ref. 12, the first order
action A1 is determined by the relation

px1; f ¼ �
2p
l
� @A1

@x
: (3.32)

While, from eqn (2.16), one sees that the second order action
A2 is determined by the relation

px2; f ¼ �
2p
l
� @A2

@x
: (3.33)

The condition for the maximum and minimum of the action
with respect to the impact parameter is

@A

@x
¼ 0 ¼ cos xð Þ A1 � A2 sin xð Þ½ � (3.34)

from which we note that the solutions are

x ¼ p
2
;

3p
2
: (3.35)

The term in the square brackets cannot vanish if perturba-
tion theory is valid, that is we know that A1/A2 Z 1. But this
means that

A
p
2

� �
� A

3p
2

� �
¼ 2A1 (3.36)

so that to second order, the ‘‘corrugation amplitude’’ is

Za ¼
A1

jpzi j
: (3.37)

This is an interesting observation. The amplitude Za is
obtained by trajectories that maximize and minimize the
action. By symmetry, these are straight line trajectories with
the x coordinate unchanging in time. Therefore, Za includes
only information from the vertical motion, since there is no
contribution from the motion along the horizontal coordinate.

Interestingly, as shown by Hubbard and Miller,27,28 and as
may be verified from eqn (3.20) and (3.32), the first order action
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is given by the expression

A1 ¼
1

2

ð1
�1

dtV1 z0;t
� �

: (3.38)

Note then the relationship between Za and the first order
expression for the rainbow angle. Using eqn (3.22), (3.29), (3.37)
and (3.38), we find the illuminating result

Za ¼
l

2p
tan y�f
� �

: (3.39)

The corrugation amplitude derived from the action, Za, and
the tangent of the vertical rainbow angle are proportional to
each other. The proportionality factor is an energy independent
constant. In other words, any energy dependence in the SIVR-
corrugation of Bocan et al.,11 or equivalently Za, will be mani-
fested in the energy dependence of the rainbow angle and vice
versa. The information content of both of these at least within
first order perturbation theory is identical and the result will be
valid whenever the second order term is sufficiently small.

4 Scattering phenomenology from a
Morse potential model

As detailed in the Appendix, one readily finds that, for the
Morse potential model, defined in Section 2, the first order
coefficient K defined in eqn (3.22) is

K ¼ 1þ
ffiffiffiffiffiffi
V0

Ez

r
F 1� ha

hr

� �
; (4.1)

where F is defined by

cos F ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0

Ez þ V0

r
: (4.2)

To first order the distance between the tangents of the
rainbow angles (see eqn (3.29)) is

tan y�f ;þ � tan y�f ;� ¼ 2Khw 1þ
ffiffiffiffiffiffi
V0

Ez

r
F 1� ha

hr

� �� �
: (4.3)

This is a central result. If the well depth vanishes, or
alternatively if the well depth has no lateral variation, that is,
if ha/hr = 1, Fig. 1b, the parameter K becomes a constant (K = 1)
independent of the energy and the rainbow angles are identical to
the hard wall result. On the other hand, if ha/hr a 1, the distance
between the vertical rainbow angles changes as the energy is
lowered. At high energy, the slight change in potential energy
due to the corrugation amplitudes becomes negligible, and the
distance between the rainbow angles becomes energy independent.

These conclusions are illustrated in Fig. 2, which shows the
dependence of the classical rainbow angle on the incident
energy, in first-order perturbation theory. Variation with the
incident energy is seen to depend critically on the potential in
the region of the well. It is not the depth of the well, per se, that
causes the variation but the way that depth is modulated
parallel to the surface. In cases where the well is deepest above
the hollow site (see Fig. 1c), ha/hr o 1 the rainbow angle

increases at low-energy (solid red and dash-dot blue curves),
whereas when the deepest well is located above the top-site, ha/
hr o 1, the rainbow angle decreases with energy (purple,
dashed curve). A measurement showing an increase in the
rainbow angle as the energy is lowered immediately reveals
that ha o hr. As noted in the previous section, a corrugation
amplitude derived from the semi-classical action has, to first
order, the same energy dependence as that of the rainbow
angle, eqn (3.39), and is therefore also given by eqn (4.1).

To complete the picture, we also estimate the contribution
coming from the second order perturbation theory term. If hr =
ha, one readily finds an analytic result as shown in the Appendix

K2

Khw
¼ p

2al
F cos Fð Þ þ sin Fð Þ½ �

sin Fð Þ � p
2al

G Ezð Þ (4.4)

and therefore, the rainbow angles are given by

y�f ¼ tan�1 �Khw 1þ p2Khw
2

2a2l2
G2 Ezð Þ

� �� �
: (4.5)

Fig. 3 shows the second order contribution to the rainbow
angle for various values of the potential softness (defined through
the parameter p/al, with ha/hr = 1, so that the first order contribu-
tion is zero). In Fig. 3 there is a minimum in all curves when Ez E
4V0. Here, G(Ez) = 0 so that tan(F) = �F. The minimum near Ez E
4V0 gives an immediate indication of the energy range where these
effects will be observed. Fig. 3 also demonstrates how the softness
of the potential determines the magnitude of the shift in rainbow-

Fig. 2 First-order contribution to the energy-dependence of the rainbow
angle, from eqn (4.3). Examples show corrugated potentials with different
values of the parameter ha/hr. The dotted black curve shows the case for
ha/hr = 1, where the potential is uniformly corrugated. It is the only case
where there is no variation with incident energy. For cases where the
deepest-well is located above a hollow-site (see Fig. 1) the rainbow angle
increases, to first-order, as the energy is lowered: solid red-curve ha/hr =
0; dash-dotted blue-curve ha/hr = 0.5. For cases where the deepest-well is
located above a top-site (see Fig. 1) the rainbow angle decreases: dashed
purple-curve ha/hr = 1.5. In all cases the hard-wall parameter, Khw, is
chosen to be close to the value seen in recent work.11 It corresponds to a
rainbow-angle of 351, and the repulsive corrugation parameter, hr, can be
determined through eqn (3.21).
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angle. Softer potentials exhibit greater shift, at low and high energy
and, as noted above, there is no shift in the hard-wall limit.

Finally, we note that if the well depth vanishes or equiva-
lently as the energy goes to infinity

lim
Ez!1

K2

Khw
¼ lim

V0!0

K2

Khw
¼ p

2al
: (4.6)

The result implies that, even at high energy, the softness of
the potential affects the rainbow angle.

5 Summary and conclusions

The GIFAD experiments open up new tools for exploring surfaces
and the interaction of atoms and molecules with surfaces. This is
especially facilitated in the classical limit, so that a proviso for the
following discussion is that the diffraction pattern is sufficiently
dense such that one may identify with some certainty for example
the rainbow angles and their energy dependence. Using classical
perturbation theory, we demonstrated how the energy dependence
of the rainbow angles can be inverted into information on the
force field governing the scattering.

Here, we make a few central observations. One is that energy
dependence of the rainbow angle can be attributed mainly to
the existence of an attractive well as the projectile approaches
the surface. The depth of the well may be assessed with
reasonable accuracy from the quantitatively measured energy
dependence. Secondly, in principle, the distance between the
rainbow angles may increase or decrease with decreasing
energy. An increase immediately implies that the variation of
the periodic potential with the impact parameter is larger in the
repulsive region of the potential as compared to the long
ranged attractive region and vice versa.

From a theoretical point of view, the perturbation theory is
much richer than a hard wall model. Due to this richness we
recommend that henceforth one replaces the hard wall model
with the analytic model presented in the present paper.
Or course, the Morse model used has its limitations. We know
that the long range potential decays as a power law in the
distance and not exponentially as in the Morse potential mode.
Yet, the fact that the Morse potential is amenable to analytic
solution is a huge advantage and the results are at least
qualitatively correct and, in any case, give a much more reliable
account of the scattering as compared to hard wall potential
models. We note that there is much more to be done; for
example, we limited ourselves mainly to the low vertical energy
scattering regime. Especially the second order perturbation
theory results should be useful for an analysis of the scattering
in the high energy regime as reported for example in ref. 1.
Moreover, we described the variation of the potential in the
horizontal direction using a single sine function. One may use
the perturbation theory approach to analyse the scattering with
more complicated x dependent potentials, however, this might
just obfuscate some of the clear qualitative conclusions that
may be reached by using a single sine (or cosine) function.

The concept of corrugation is an old one, yet not precisely
defined. On purpose, we have limited the use of the word
‘‘corrugation’’ here to stress this fact. Typically one has used
the hard wall model to extract a height parameter which is then
considered to be the ‘‘corrugation amplitude’’. The analysis
presented here should be sufficient to show that it is, at best, a
highly qualitative way of describing properties of the surface.
As one may learn from the work of Bocan et al.,11 a hard
wall corrugation that is energy dependent, loses its simplistic
meaning. Moreover, we showed that the energy dependent
‘‘dynamic corrugation’’ as defined by Bocan et al. is the same
(up to a trivial constant) as the energy dependence of the
tangent of the rainbow angles. In other words, it adds little or
no information about the scattering that cannot be gleaned
from the experimentally measured energy dependent rainbow angle.

It is then of interest to analyse the results of Bocan et al.10,11 in
view of the tools and insight obtained in our work. They considered
the scattering of a He atom on a KCl(001) surface. Their experiment
is carried out with fast He atoms, incident at grazing angles such
that the scattering is reduced to two dimensional scattering in the
plane perpendicular to the direction of the incident atom. Their
normal-energy corresponds to our energy Ez and their y direction
corresponds to our horizontal motion along the x axis.

Since they are using a light atom (He), and as also may be
noted from the supplementary material of their ref. 10, the
measured diffraction pattern shows only a few well defined
diffraction peaks. It is in the quantum regime and there-
fore there is no well defined rainbow angle. Indeed, their
‘‘experimental’’ ‘‘dynamic corrugation’’ and rainbow-angles
are obtained indirectly from the experiment by fitting an
effective hard-wall potential to the data at each value of the
normal-energy, Ez. This inversion then shows a clear increase in
the rainbow-angle as the scattering energy is decreased from
40 to 20 meV. It follows from our Fig. 2 that the scattering

Fig. 3 Second-order effect on the rainbow angles calculated with ha/hr =
1 and eqn (4.5). Note that the first-order shift from the hard-wall result is
zero for ha/hr = 1. Curves, from top to bottom have p/al = 2, 1.56, 1.0, 0.5.
Softer potentials show greater effects at all energies. In all cases the hard-
wall parameter, Khw, is chosen to be close to the value seen in recent
work.11 It corresponds to a rainbow-angle of 351, and the repulsive
corrugation parameter, hr, can be determined through eqn (3.21).
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potential has ha/hr o 1 so the well is somewhat deeper above
the hollow-site than the top-site. The onset of the increase in the
inferred rainbow angle seen in their Fig. 8 11 is more marked than
suggested by the first-order contribution (Fig. 2), and this suggests
that second-order contributions cannot be neglected. Our Fig. 3
indicates that, at high energies, the second-order contribution will
tend to cancel that of a first-order contribution, given ha/hr o 1.
The extent of the cancellation will depend on the softness of the
potential and thus the observed energy dependence could lead to an
inferred softness in the potential. Furthermore, from the position of
the minimum in Fig. 3, a well-depth of 5–10 meV is indicated in the
scattering of He on the KCl(001) surface. These very qualitative
conclusions are in accord with comparisons with the various DFT
potentials presented in ref. 11 and suggest that a more forensic
analysis of features in the potential would be beneficial.

A more quantitative analysis would be possible if the raw data
at all measured energies were available; however, pursuing an
approach, where the experiment is discussed in the context of an
effective, energy-dependent hard-wall model is not very illuminat-
ing. In the semi-classical picture, intensity variations in the
diffraction data arise from interference between trajectories lead-
ing to the same final state. These classical trajectories accumulate
phase-shifts depending on the potential in the regions of space
that they explore1,24 and the interference effects could be a more
informative source for a quantitative analysis. There is a possible
analogy with tomographic methods here. As the energy is varied,
the classical paths scan systematically through real-space and the
accumulated phase is directly related to the spatial variation of
the potential. Thus, a more quantitative, albeit numerical, view of
the full potential could be elucidated.

Finally, we note that the analysis given above is entirely elastic.
Inelastic effects could been included, to first and second order,
using classical and semi-classical perturbation theory methods.20,29

These may also offer the opportunity to explore the role of surface
temperature and frictional coupling in the scattering.
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Appendix

A Analytic details for the Morse
potential model
A.1 Derivation of eqn (4.1)

For the Morse potential, the zero-th order trajectory is known
analytically (eqn (4.16) of ref. 22)

exp az0;t
� �

¼ �cos F

sin2 F
cosh Otð Þ þ cosF½ � (A.1)

with

O2 ¼ 2a2Ez

M
(A.2)

and

cos F ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V0

Ez þ V0

r
: (A.3)

From eqn (4.6) of Zhou et al. we note the integralð1
�1

dt
1

cosh tð Þ þ cos F½ � ¼
2F

sin F
(A.4)

so that by taking the derivative we also findð1
�1

dt
1

cosh tð Þ þ cos F½ �2
¼ 2 sin F� 2F cos F

sin3 F
: (A.5)

Using the definition of V1 in eqn (3.22) one readily finds that

K ¼ 1

2hrpzi

ð1
�1

dt 0V1 z0;t 0
� �

¼ 1þ
ffiffiffiffiffiffi
V0

Ez

r
F 1� ha

hr

� �
(A.6)

and this is the result given in eqn (4.1).

A.2 Derivation of eqn (4.4)

When hr = ha = h one readily sees that

V1 (z) = hV0(z), V2(z) = h2V00(z) (A.7)

and this enables one to obtain an analytic form for the second
order parameter K2 when V(z) is a Morse potential. From
eqn (3.34) and (3.35) of ref. 22 one readily finds that

K2 ¼ �
pKhw

4lMpzi

ð1
�1

dtV 0ðz0;tÞ
ðt
�1

dt 00V 0 z0;t 00
� �

t� t 00ð Þ

�MlKhw

16ppzi

ð1
�1

dt
dV 0 z0;t

� �
dt

ðt
�1

dt 00
dV 0 z0;t 00

� �
dt 00

ðt
t 00
dt 0

1

p2z0; t 0

þ lKhw

16ppzi

ð1
�1

dtV 00ðz0;tÞ

(A.8)

In general, even without specifying the Morse potential, due
to the vertical scattering condition, the second and third terms

cancel each other. Using the fact that �V
0 ðz0;tÞ ¼ �

dpz0;t
dt

and

integrating by parts we note that
ð1
�1

dt
dV 0ðz0;tÞ

dt

ðt
�1

dt 00
dV 0 z0;t 00

� �
dt 00

ðt
t 00
dt
0 1

p2z0;t 0

¼ 1

M

ð1
�1

dtV
00 ðz0;tÞpz

0;t
0

ðt
�1

dtV 0 z0;t 00
� �

Þ 1

p2z0;t 00
:

(A.9)

Then with a further integration by parts we have that

�
ðt
�1

dt 00V 0ðz0;t 00 Þ
1

p2z0;t 00
¼
ðt
�1

dt 00
1

p2z0;t 00

dpz0;t 00

dt 00

¼ 1

pz0;t
� 1

pzi
þ 2

ðt
�1

dt 00
1

p2z0;t 00

dpz0;t 00

dt
00

(A.10)
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from which we infer that
ðt
�1

dt 00
1

p2z0;t 00

dpz0;t 00

dt 00
¼ 1

pzi
� 1

pz0;t
: (A.11)

Using the fact that %V00(z0,t)pz0,t’ is an antisymmetric function
with respect to time, we readily find

ð1
�1

dt
dV 0 z0;t

� �
dt

ðt
�1

dt 00
dV 0 z0;t 00

� �
dt 00

ðt
t 00
dt 0

1

p2z0;t 0

¼ 1

M

ð1
�1

dtV
00 ðz0;tÞ

(A.12)

so that indeed the second and third integrals in eqn (A.8)
cancel each other. The remaining integral may be further
simplified. Using the zero-th order trajectory and following
the usual manipulations we findð1
�1

dtV 0ðz0;tÞ
ðt
�1

dt 00V
0 ðz0;t 00 Þ t� t 00ð Þ ¼ �2

ð1
�1

dtV 0 z0;t
� �

pz0;t t

¼ �2M
ð1
�1

dtt
dVðz0;tÞ

dt
:

(A.13)

Specifying to the Morse potential where the zero-th order
trajectory is known analytically (eqn (A.1)) and integrating by
parts remembering the known integrals as in eqn (A.4) and
(A.5) and manipulating we find

�2M
ð1
�1

dt t
dV z0;t
� �
dt

¼ 4MEz F cos Fð Þ þ sin Fð Þ½ �
O sin Fð Þ : (A.14)

Inserting this into the expression for K2 (eqn (A.8)) one finds
the desired answer

K2 ¼
pKhw

2al
F cos Fð Þ þ sin Fð Þ½ �

sin Fð Þ (A.15)

and this is the result given in eqn (4.4).
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