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The HETPYNE (HETeroleptic Phenanthroline and alkYNE metal) and
DABCO:(zinc porphyrin), interactions were used to assemble the
four-component nanorotor ROT-1 that exhibited a highly dynamic
alkyne — copper() dissociation (kogg = 240 kHz) at 298 K. Quantitative
click reaction transformed ROT-1 into the new rotor ROT-2 (kagg =
77 kHz) with a triazole — copper() linkage thus opening perspectives
for bioorthogonal click strategies to biohybrid machinery.

Inspired by nanomechanical motions® in biological machines,”™
scientists have developed an enormous interest in the develop-
ment of artificial molecular devices.”® Among them, molecular
motors,”™ rotors,'* shuttles,"*** tweezers,'*® turnstiles,
muscles,?® elevators,>! pumps,'® walkers>? etc.”™® are well studied.
Though numerous examples of artificial covalent molecular
devices are known in the literature,”® evolution toward multi-
component artificial machineries still represents a major
challenge due to the limited amount of dynamic orthogonality
in hetero-assemblies.>***

For designing artificial multicomponent rotors, orthogonal
dynamic interactions are a key requirement.>® To the best of
our knowledge, all literature known dynamic interactions that
have been used to construct artificial multicomponent rotors are
derived from H-bonding or N,0-donor'® metal interactions.”*°
Clearly, development of any new dynamic interaction will open
further opportunities. Here, we demonstrate for the first time
a supramolecular assembly and a rotor built on the dynamic
alkyne — copper(1) interaction.*’** Specifically, we designed a
four-component supramolecular assembly and nanorotor based
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Dynamics of the alkyne — copper() interaction
and its use in a heteroleptic four-component
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Fig. 1 (a) Chemical structure and cartoon representation of the ligands 1,
2, 3 and DABCO. (b) Cartoon representation of the four-component
assembly ASB-1 and nanorotor ROT-1.

on the heteroleptic Cu'-phenanthroline alkyne (HETPYNE:
HETeroleptic Phenanthroline and alkYNE metal) complexation
(Fig. 1). Addition of stoichiometric quantities of azide to the rotor
afforded the new class of a Cu'-triazole rotor through an in situ
copper(i) catalysed click reaction.

For our study, we decided to use the phenanthroline-
appended zinc(ur) porphyrin ligands 1 or 2 as stator. Bulky aryl
groups®? at the 2,9-position of the phenanthroline phenAr, are
essential to avoid the unwanted formation of the corresponding
homoleptic Cu* complexes.**™° In order to design rotator 3, we
performed a few model experiments to evaluate the binding of
a terminal ethynyl group to [Cu(phenAr,)]". Mixing of 4, 5 and
[Cu(CH;3;CN)4JPFs in 1:1:1 ratio (2.5 mM each) in CD,Cl,
accomplished quantitative formation of C1 = [Cu(4)(5)]
(Fig. 2a). In the 'H NMR, a downfield shift of all phenanthro-
line protons indicated binding of 5 to [Cu(4)]’, for instance,
proton 4”-H shifted from 8.67 to 8.74 ppm and 5”-H from

Chem. Commun., 2022, 58,13019-13022 | 13019


https://orcid.org/0000-0001-5296-6251
https://orcid.org/0000-0001-8622-2883
http://crossmark.crossref.org/dialog/?doi=10.1039/d2cc04497h&domain=pdf&date_stamp=2022-11-04
https://doi.org/10.1039/d2cc04497h
https://rsc.li/chemcomm
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cc04497h
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC058093

Open Access Article. Published on 07 November 2022. Downloaded on 05.02.26 01:21:02.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

(@) 5 W © o
g ¢d ) = N AR
. W= O, @ 7o X o N L Ve
. A . // CD,Cly = AN /
/ (2 f ﬁ; )r ’/ Nt N\ ™ (
I Ll\ . Jooo/*~ 4
1 = [Cu@)5)] / @t \ _-[‘ \ \ o
® p - I v ,‘,‘/ Ly ,\/
ﬂ l d e ¢ ém \
c1 \ A A - -~
s v’ | S A
cu@r | o

8.8 8.4 6.8 6.4 4.6 42 26

Fig. 2 (a) Formation of model complex C1. (b) Partial *H NMR (400 MHz,
298 K) of [Cu(4)]*, 5 and C1 in CD,Cl, (2.5 mM). (c) X-ray crystal structure
of complex C1. Carbons are shown in light grey; H, light green; N, blue; O,
red; Cu™, cyan and |, violet.

8.14 to 8.20 ppm (Fig. 2b). In contrast, protons d’-H (from 6.77
to 6.60 ppm) and e’-H (from 4.68 to 4.09 ppm) of the ethynyl
ligand 5 shifted upfield upon its complexation to [Cu(4)]", due
to the shielding of these protons by the n-ring current of the
mesityl groups. On the other hand, despite being in the
shielding region of a strong m-electron cloud, the downfield
shift of proton f'-H (from 5 to C1: 2.58 to 2.68 ppm) validated
the ethynyl binding to the Cu’ center. Single crystal X-ray
analysis of C1 revealed a triclinic crystal system with the space
group P1 (ESLT Fig. S27). Importantly, it clearly demonstrated
the side-on binding of Cu" to both ethynyl carbons whereas
there was no binding visible between oxygen and Cu’ center
(Fig. 2c). The solid state structure disclosed the bond lengths of
Cu(1)-C(41), Cu(1)-C(42), Cu(1)-N(11) and Cu(1)-N(1) to be
1.958(5) A, 1.969(4) A, 2.002(3) A and 2.013(3) A, respectively.
The angle between the planes defined by N(1)-Cu(1)-N(11) and
C(41)-Cu(1)-C(42) was determined as 16°. This geometry around
the copper(1) center is not very common. From an NMR titration,
the binding constant of 5 to [Cu(4)]” was determined as log
K = 2.81 + 0.16 (ESLt Fig. S26). We propose to denote the
heteroleptic complexation motif between a [Cu(phenAr,)]" and
an alkyne as HETPYNE interaction (vide supra).

After establishing the HETPYNE motif, the zinc(u) porphyrin 3
with two ethynyl terminals was designed. To synthesize ligand 3,
we first reacted 5,15-di(4-iodophenyl)-10,20-dimesityl zinc(u) por-
phyrin and 4-ethynylphenol under Sonogashira coupling condi-
tions providing the corresponding diphenol. In the final step, a
Williamson ether synthesis between the phenol-substituted
zinc(u) porphyrin and propargyl bromide in presence of base
furnished ligand 3 in 85% yield. Protons e-H of 3 appear in the
'H NMR well separated from other proton signals and should
serve as good indicator of any binding.

As expected from the model studies, the four-component
self-assembly ASB-1 was quantitatively afforded by mixing DABCO,
ligands 1 & 3, and [Cu(CH3CN),]PFs in a 1:1:1:2 ratio in CD,Cl,
(Fig. 3a). Two characteristic multiplets for the CH,-units of DABCO
in the negative region of the 'H NMR indicated quantitative
formation of the hetero-sandwich complex (Fig. 3b).*” Significant
changes at all phenanthroline protons in the 'H NMR upon
moving from [Cu,(1)]** to ASB-1 supported the binding of 3 to
the copper(i)-loaded phenanthroline stations (Fig. 3¢ and d).
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Fig. 3 (a) Cartoon representation of the four-component self-assembly

leading to the formation of ASB-1. (b) DABCO-H signal of ASB-1in *H NMR
(CD,Cl,, 400 MHz, 298 K). Partial "H NMR (CD,Cl,, 400 MHz, 298 K) of 1,
[Cu,(1)1?*, 3 and ASB-1 showing the (c) aromatic and (d) aliphatic region.

Downfield shift of proton f-H from 2.64 to 3.10 ppm in ASB-1
attested the terminal ethynyl binding of 3 at the Cu" center of 1
(Fig. 3d). Drastic upfield shifts of proton signal e-H from 4.79 to
3.60 ppm and of d-H from 7.05 to 6.77 ppm along with a
downfield shift of proton signal c-H from 7.64 to 7.75 ppm
validated the formation of the HETPYNE complex. Furthermore,
a single peak in the ESI-MS at m/z = 1489.1 confirmed formation
of the hetero-assembly (ESL, T Fig. S23) and a single diffusion trace
in the "H-DOSY NMR representing structure ASB-1 excluded the
presence of other undesired assemblies (ESL1 Fig. S20).

The clean formation of the heteroleptic sandwich complex
encouraged us to test the HETPYNE motif as a dynamic inter-
action in a multicomponent rotor. To assemble the rotor, we
selected zinc(u) porphyrin 2 containing just one phenanthroline
station as stator and ligand 3 as rotator. Dissolving the ligands
2, 3, DABCO and [Cu(CH;CN),]JPFsina 1:1:1:1 ratio in CD,Cl,
quantitatively furnished rotor ROT-1 irrespective of the
sequence of addition (Fig. 4a). As in ASB-1, two broad signals
in the negative region corresponding to DABCO and significant
shifts of all phenanthroline protons in the 'H NMR validated
formation of the heteroassembly (Fig. 4b-d). Upfield shifts of
rotator proton signals e-H from 4.79 to 4.19 ppm along with
downfield shift of f-H from 2.64 to 2.88 ppm authenticated the
rotor structure (Fig. 4c and d). Its formation was further con-
firmed by DOSY NMR and ESI-MS data (ESI, T Fig. S21 and S24).

A single set of "H NMR signals for protons c-H, d-H, e-H and
f-H of ROT-1 suggested fast rotation of the rotor on the NMR
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Fig. 4 (a) Cartoon representation of the self-assembly of rotor ROT-1
from four components. (b) (CHx)pasco signal of ROT-1 in the 'H NMR
(CD,Cly, 400 MHz). Partial *H NMR (CD,Cl,, 400 MHz, 298 K) of 2, [Cu(2)]*,
3 and ROT-1 in the (c) aromatic and (d) aliphatic region.
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Fig. 5 (a) Partial *"H NMR (CD,Cl,, 400 MHz, 298 K) of 3, ROT-1 and ASB-

1. (b) VT-H NMR (CD,Cl,, 600 MHz) of ROT-1 exhibiting the splitting of
proton signal e-H into a 1:1 set and the corresponding rotational fre-
quency at different temperatures.

time scale (Fig. 4c and d). Comparison of the "H NMR spectra of
the free rotator 3, ROT-1 and ASB-1 showed that the proton
signals d-H, e-H and f-H of rotor ROT-1 appeared approximately
in the averaged position of those of free 3 and ASB-1 (Fig. 5a).
Variable temperature (VT) "H NMR of ROT-1 was thus per-
formed to evaluate its dynamic behavior. Upon lowering the
temperature, the sharp singlet at 4.19 ppm corresponding to
proton e-H broadened and split into two singlets in a 1:1 ratio
at —75 °C with a coalescence temperature around —50 °C
(Fig. 5b). The upfield signal at 3.50 ppm was assigned to the
HETPYNE-complexed proton e-H and the downfield signal at
4.71 ppm is ascribed to proton e-H at the uncomplexed arm.
The rotational frequency of the rotor at different temperatures
was evaluated using winDNMR-based spectral simulations.>®
The activation data for the rotation was derived from the Eyring
plot (Table 1 and ESIL Fig. S18). The rotational frequency
turned out to be 240 kHz at 25 °C and AGheg = 42.5 kJ mol .
After the clean formation of rotor ROT-1, our next target was
the in situ rotor-to-rotor transformation. The presence of a
copper(i) ion and terminal alkynes in the rotor suggested a
conversion of ROT-1 to a triazole rotor through an in situ click
reaction. For this purpose, 2.0 equiv. of benzyl azide was added
to ROT-1 in CD,Cl, (Fig. 6a). To accelerate the reaction, 1 pL of
Et;N was added. After 24 h of heating at 40 °C, the solvent was
evaporated to remove NEt; and the residue was redissolved in
CD,Cl,. "H NMR showed quantitative formation of ROT-2 and a
disappearance of the proton signal f-H (Fig. 6b). Upon moving
from ROT-1 to ROT-2, characteristic shifts for all phenanthro-
line protons were observed. The downfield shift of proton
signal e-H (from 4.19 to 4.81 ppm), upfield shifts of proton
signals d-H (from 6.93 to 6.78 ppm) and c¢-H (from 7.72 ppm to
7.61 ppm) along with the appearance of a new singlet at
5.52 ppm (j-H) corroborated the formation of ROT-2. The broad
signal of the DABCO protons at —4.39 ppm confirmed the

Table 1 Exchange frequencies of ROT-1 and ROT-2 along with their
activation parameters?

Rotor  kyog/kHz AH*/kI mol™* AS*/JK ' mol™* AGjes/k] mol™*
ROT-1 240 44.0 + 0.2 5.0 + 0.7 42.5
ROT-2 77 50.1 £ 0.4 16.7 £ 0.6 45.2

“ The higher AH* for ROT-2 than ROT-1 reflects the stronger binding
constant of a triazole to [Cu(4)]" (see triazole 6 in ESI, Fig. S27). As often
seen in enthalpy-entropy compensation, strong binding leads to higher
positive activation entropy.

This journal is © The Royal Society of Chemistry 2022
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Fig. 6 (a) In situ transformation of ROT-1 to ROT-2 upon addition of
2.0 equiv. of benzyl azide. (b) Partial '*H NMR (CD,Cl,, 400 MHz, 298 K) of
ROT-1 and ROT-2. (c) VT-'H NMR (CD,Cl,, 600 MHz) of ROT-2 showing
splitting of the proton signal j-H (1:1 ratio) and the corresponding
rotational frequency at different temperatures.

intactness of the assembly (ESI,T Fig. S15). ROT-2 was further
characterized by ESI-MS and DOSY NMR data (ESI,T Fig. S25
and S22).

A single set of "H NMR signals for protons c-H, d-H, e-H and
j-H of ROT-2 indicated a fast rotation on the NMR time scale.
Upon performing the VT "H NMR the proton signal for j-H split
into two singlets in 1:1 ratio at —75 °C (Fig. 6¢). Rotational
frequencies at different temperature along with activation
parameters were calculated (Fig. 6¢ and Table 1). The facile
transformation of the self-catalyzing rotor ROT-1 to rotor ROT-2
opens interesting perspectives to generate biohybrid materials
via bioorthogonal click reactions.*’

In conclusion, we have synthesized a four-component hetero-
sandwich complex and a four-component rotor based on the
dynamic [Cu(phenAr,)(alkyne)]" motif. Though alkyne — copper(1)
interactions are well known in the literature,*° for the first time its
high dynamics has been determined and used to assemble a
high-speed multicomponent rotor. The utility of this dynamic
orthogonal motif in supramolecular rotors opens new venues
for molecular machines. Furthermore, a successful quantitative
transformation of the Cu'-alkyne rotor to a new Cu'-triazole
rotor was achieved through in situ click reaction. It is expected
that thermal self-catalyzing rotors will find their way into diverse
applications, e.g.,, in catalysis,®*' biohybrid materials via
bioorthogonal functionalization** and elsewhere.*’
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