Open Access Article. Published on 09 August 2021. Downloaded on 18.02.26 10:20:10.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical
Science

EDGE ARTICLE

i '.) Check for updates ‘

Cite this: Chem. Sci,, 2021, 12, 12012

8 All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 20th June 2021
Accepted 19th July 2021

DOI: 10.1039/d1sc03343c

rsc.li/chemical-science

Introduction

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online
View Journal | View Issue

Real-time prediction of *H and *C chemical shifts
with DFT accuracy using a 3D graph neural
network

Yanfei Guan, ©*2 S, V. Shree Sowndarya, ©? Liliana C. Gallegos, &2 Peter C. St.
John®® and Robert S. Paton (& *

Nuclear magnetic resonance (NMR) is one of the primary techniques used to elucidate the chemical
structure, bonding, stereochemistry, and conformation of organic compounds. The distinct chemical
shifts in an NMR spectrum depend upon each atom's local chemical environment and are influenced by
both through-bond and through-space interactions with other atoms and functional groups. The in
silico prediction of NMR chemical shifts using quantum mechanical (QM) calculations is now
commonplace in aiding organic structural assignment since spectra can be computed for several
candidate structures and then compared with experimental values to find the best possible match.
However, the computational demands of calculating multiple structural- and stereo-isomers, each of
which may typically exist as an ensemble of rapidly-interconverting conformations, are expensive.
Additionally, the QM predictions themselves may lack sufficient accuracy to identify a correct structure.
In this work, we address both of these shortcomings by developing a rapid machine learning (ML)
protocol to predict *H and *C chemical shifts through an efficient graph neural network (GNN) using 3D
structures as input. Transfer learning with experimental data is used to improve the final prediction
accuracy of a model trained using QM calculations. When tested on the CHESHIRE dataset, the
proposed model predicts observed **C chemical shifts with comparable accuracy to the best-performing
DFT functionals (1.5 ppm) in around 1/6000 of the CPU time. An automated prediction webserver and
graphical interface are accessible online at http://nova.chem.colostate.edu/cascade/. We further
demonstrate the model in three applications: first, we use the model to decide the correct organic
structure from candidates through experimental spectra, including complex stereoisomers; second, we
automatically detect and revise incorrect chemical shift assignments in a popular NMR database, the
NMRShiftDB; and third, we use NMR chemical shifts as descriptors for determination of the sites of
electrophilic aromatic substitution.

samples) with computationally predicted values have been
applied, sometimes including scalar coupling constants, to

Nuclear magnetic resonance (NMR) spectra are a primary
source of molecular structural information. NMR chemical
shifts report detailed information on atoms' local chemical
environments that can be used to determine the atomic
connectivity, relative stereochemistry and conformations of
molecules. Organic structure assignment has for many years
been performed manually, however, recent advances in
computational chemistry have paved the way for the in silico
prediction of chemical shifts. Comparisons of experimental
isotropic chemical shifts (i.e., those measured for solution
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various problems in structure elucidation: the assignment of
relative stereochemistry in flexible organic molecules as pio-
neered by Bagno and Bifulco,”® complex natural product
structure elucidation and reassignment,**® identification of the
side product(s) in synthetic reactions,”® deducing the macro-
molecular conformation adopted by cyclic peptides,® and in
correcting literature misassignments.” The growing impor-
tance of computational chemical shift prediction, particularly
of »*C and 'H nuclei, in natural product, mechanistic and
synthetic organic chemistry is the subject of an authoritative
review by Tantillo and co-workers.™

To serve as a useful tool for structure elucidation, prediction
errors in computed chemical shifts must be smaller than the
experimental variations between different candidate structures.
To this end, empirical correction schemes for density functional
theory (DFT) computed shielding tensors have been

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Stereochemical and conformational influences on chemical shift.

instrumental in improving the levels of accuracy: Tantillo and
co-workers™ derived and compiled linear-scaling parameters
for many levels of theory, basis set and solvation models (in the
CHESHIRE repository'?), and have established standardized
molecular training and test sets for chemical shift prediction.
Alternative correction schemes to improve computational
results have been developed using multiple external stan-
dards™* and atom-based correction factors.'® As a result,
contemporary “best practice” DFT protocols boosted by empir-
ical corrections routinely approach accuracies of 2.5 ppm in the
prediction of *C shifts, or 0.15 ppm for 'H shifts, expressed as
root mean square error (RMSD)."* The quantitative application
of these predictions to organic structure elucidation has been
pioneered by Goodman and co-workers'”'® in the development
of CP3, DP4 and DP4+ parameters,' the latter of which provides
a statistical estimate for the confidence of a particular compu-
tational structural assignment. Ermanis and Goodman recently
introduced the DP4-Al platform, which enables automated
stereoisomer elucidation directly from a "H and "*C spectrum.?
In general, however, the time and computational resources
associated with quantum chemical approaches can be signifi-
cant, particularly for large and conformationally flexible mole-
cules.”® Even with access to high-performance computing
resources, the consideration of multiple structures in a high-
throughput manner is highly challenging at present.
Empirical approaches to chemical shift prediction provide
a less expensive alternative to electronic structure calculations
by harnessing pre-existing knowledge such as large datasets of
experimentally measured chemical shifts. Additive methods
have been developed to predict chemical shift based on the
cumulative effects of local substituents, as implemented in
ChemDraw.?® More sophisticated machine learning (ML)
methods encode each atom as a one-dimensional vector using
an atom-based connectivity scheme. For example, a hierarchi-
cally ordered spherical description of environment (HOSE)
code® predicts chemical shifts based on the measured simi-
larity to database entries or by using fully-connected neural
networks.”**® When trained against a large number of experi-
mentally measured chemical shifts, these methods have ach-
ieved predictive accuracies of 1.7 ppm for *C chemical shifts
and 0.2 ppm for 'H shifts (expressed as mean absolute error,
MAE).** These earlier ML approaches tend to rely upon feature
engineering:*® expert-crafted rules are required to encode atomic
environment, which can suffer from human bias and incom-
pleteness, and which are often trained separately for different
atom types (e.g., different models are developed for tetrahedral
and trigonal carbon atoms). In particular, the rise of feature
learning, as embodied by graph neural networks (GNNs),* has

© 2021 The Author(s). Published by the Royal Society of Chemistry

enabled ‘end-to-end’ learning from molecular structures and
avoids rule-based encoding. Jonas and Kuhn®* have developed
a GNN to predict the *C and *H chemical shifts and achieved an
accuracy of 1.43 ppm for "*C and 0.28 ppm for 'H (MAE for the
testing set) using 2D molecular connectivity as input. Recently
a GNN architecture was described that can capture the effect of
noncovalent interactions and secondary structure effects on
chemical shifts of C, N and H nuclei in biomacromolecules and
organic molecules.*

Empirical approaches to NMR chemical shift prediction use
interatomic connectivity to define the local neighborhood around
a given atom, while the effects of stereochemistry and molecular
conformation are most often ignored. However, geometric factors
play a fundamental role in influencing chemical shift. Diastereo-
isomers of a given compound are distinguishable by NMR (Scheme
1a), as are diastereotopic atoms or groups within the same molecule
(Scheme 1b). Furthermore, molecular conformations give rise to
different chemical shifts that may appear as distinct signals or as
ensemble-averaged values depending on the interconversion rate
relative to the NMR timescale (Scheme 1c). Such phenomena are
not conveniently captured by the commonly-used descriptions of
atomic environments that only encode local connectivity. Although
DFT chemical shift predictions are now routinely used to differen-
tiate stereoisomers, empirical approaches based on the 2D molec-
ular graph fail this task absolutely. We reasoned that this challenge
could be directly addressed by a model that uses a spatial repre-
sentation of atomic environments in the form of a 3D molecular
graph.* Interatomic distances, including both bonded and
nonbonded interactions, are an inherent part of this description,
which is therefore able to capture variations in chemical shift across
diastereoisomeric molecules, diastereotopic groups within a single
chiral molecule, and spatially distinct molecular conformations.

Unlike the valence bond model of chemical structure, 3D
representations of local atomic environments such as atom-
centered symmetry functions,*"** do not require pre-conceived
rules concerning topology, chemical bonding, or other physi-
cochemical descriptors. These and related representations have
been widely applied to predict atomic and molecular properties
by ML methods.>”** We surmised that the prediction of NMR
chemical shift, being strongly influenced by local environment
and stereochemistry, would be amenable to such an approach,
although this has received limited attention.*** Using a sorted
Coulomb matrix* to represent atomic environments, von Lil-
ienfeld and co-workers* have predicted shielding tensors for
small organic molecules by kernel ridge regression (KRR),"”
obtaining MAEs of 3.9 ppm for "*C and 0.28 ppm for "H relative
to DFT values. However, the moderate levels of accuracy and
reliance on DFT optimized structures as inputs limit practical
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applications to chemical structure elucidation. Using a smooth
overlap of atomic positions (SOAP) kernel*® to evaluate the
correlation between local atomic environments, Ceriotti and co-
workers*® performed Gaussian process regression in a seminal
work® to predict shielding tensors of molecular solids with
RMSESs of 4.3 ppm for *C and 0.49 ppm for "H. Their model was
able to assign the crystal polymorphic of cocaine from a selec-
tion of candidate structures by comparing against experimental
chemical shifts. Another machine learning model, IMPRES-
SION, involving kernel ridge regression was developed by Butts
and co-workers, where they leverage DFT-computed NMR
parameters to predict oy scalar couplings and *C and 'H
chemical shifts with an MAE of 0.87 Hz, 0.23 ppm and 2.45 ppm
respectively for an independent test set.** Community-powered
approach has also been sought to improve the prediction of
NMR properties, where they develop a combined model which
was 7-19 times more accurate than existing prediction
models.** Herein, we develop a GNN model to predict isotropic
3C and 'H chemical shifts from a 3D representation of atomic
environments. The favorable levels of accuracy and speed
permit structural and stereochemical assignments to be carried
out for large and flexible organic molecules that would be
enormously challenging for quantum chemical approaches.

Approach

Empirical chemical shift prediction models require large
amounts of experimental data. Although a large number of
NMR spectra certainly exist, the majority of these are in a form
not readily utilized by ML methods. NMR data and the assign-
ment of experimental shifts to specific atoms in molecular
structures are processed and reported in a variety of formats
that are difficult to parse automatically.> Additionally, the
literature contains assignment errors, incompletely recorded
spectral data, and partially assigned structures. Manually-
curated datasets have thus featured heavily in the develop-
ment of predictive models for chemical shifts,* requiring
considerable effort and expertise to build and maintain. The
NMRShiftDB* stands as an exception to this approach, being an
open-submission and open-access database containing around
400 000 experimental '*C chemical shifts. However, the
frequency of incorrect assignments has been debated in the
literature,*** and incomplete annotation of stereochemistry
affects a significant proportion of chiral molecules contained in
this dataset. The need for a repository of publicly accessible raw
NMR data has been articulated elsewhere.**

To address these challenges, we set out to exploit advances in
quantum chemistry, high-performance computing, and automa-
tion in developing a large dataset of QM computed values to train
an ML model.****45557 A principal advantage of this approach is
that DFT-based predictions of chemical shifts can be mapped to the
responsible atom in a high-throughput fashion with complete
reliability, avoiding incomplete or erroneous assignments and the
need for manual intervention. Datasets containing 100 000 **C and
"H chemical shifts are readily attainable via automation (see below),
and the conformational dependence of chemical shifts can be
effectively learned by the inclusion of different molecular
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geometries. Without experimental data, however, the predictive
accuracy of any prospective ML model is fundamentally limited by
the underlying performance of the DFT methodology, basis set,
description of solvation, and other sources of computational error.
Therefore, we pursued a transfer learning (TL) strategy,*** inspired
by the work of Roitberg, Isayev, and co-workers® in which the
accuracy of a NN potential extensively trained against DFT ener-
getics could be enhanced using a much sparser dataset of high-
quality CCSD(T) values. We demonstrate improvements in the
predictive accuracy of a DFT-trained model by applying TL with
a smaller collection of experimental values: following model
retraining against a curated set of *>C experimental shifts, a mean
absolute error (MAE) of 1.23 ppm against experiment could be
obtained for 500 held-out structures (see below). This involved
additional 5000 experimental structures to the existing 8000 DFT
optimized structures. Taking a step further, we demonstrate that
molecular geometries obtained from inexpensive molecular
mechanics calculations can be used directly without a substantial
loss in accuracy, generating chemical shift predictions on the order
of 5-10 000 times faster than conventional electronic structure
calculations.

GNNs for atomic property prediction

GNNs***%17%% do not depend on pre-computed descriptors and
are able to learn underlying regularities directly from the
molecular graph, represented either in 2D form, encoding
interatomic connectivity, or in 3D form, where spatial infor-
mation is included. GNNs have recently been applied to end-to-
end (i.e., structure-to-property) learning of molecular properties
such as molecular energies and HOMO/LUMO gaps***>7*”* and
have been extended to the prediction of bond properties within
molecules.”” In this work, our network was modeled after the
Schnet deep learning architecture of Miiller and coworkers,*
combined with edge updates.” The model is implemented
using Tensorflow, and all underlying code is openly accessible
and documented.” This was then trained to predict **C and "H
chemical shifts as the target properties. A schematic of our
network is shown in Fig. 1a. From a query 3D molecular struc-
ture, two input vectors are constructed with rdkit’® containing (i)
element types and (ii) interatomic distances less than 5 A.
Discrete node feature vectors (of size 256) are then generated by
categorizing each element type through an embedding layer,
while continuous edge feature vectors are generated by an
expansion of the interatomic distances as a series of 256 radial
basis functions (RBFs).” This is described by eqn (1), where the
continuous vector eg represents the initial “edge” linking atoms
i and j and is expressed in terms of the interatomic distance d;;
and constants u and 6. These constants are chosen such that the
range of the input features can be covered by the centers of the
RBFs; in this work 6 = 0.04 and u = 0.

*(dff *(;Hék))z
e = |e 5 (1)

)

<o

kel0, 1,2,...256)
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Fig.1 (a) lllustration of the GNN architecture. Molecules are represented according to their atom types and interatomic distances. Each atom, or
node, is embedded as a vector of atomic attributes. Each atom pair within a distance of 5 A is linked by an edge, which is embedded into
a continuous vector with a set of radial basis functions (RBF). Node and edge feature vectors are then iteratively updated by the updating blocks,
through which each atom is responsible for learning atomic features by message passing. Updated node features for all *H or 1*C atoms then pass
through a series of dense layers to yield final chemical shift predictions. (b) Data processing workflow. NMR8K is a primary dataset composed of
8000 2D structures along with unchecked experimental chemical shifts sampled from NMRShiftDB directly; DFT8K is the corresponding dataset
we generated by appending MMFF/DFT optimized 3D structures and GIAO chemical shifts; “Cleaned” experimental chemical shifts filtered by
DFT results as well as corresponding 3D structures are stored in Exp5K. Three distinct GNN models were trained on these datasets. During
transfer-learning, we fixed a subset of network parameters, shaded in grey, while the OPT block indicates optimizable parameters. Model
ExpNN-ff, trained against DFT and experimental chemical shifts while processing molecular mechanics geometries as inputs, has been
developed into a web-based predictor.

The feature vectors for atoms/nodes and bonds/edges then message-passing block (brown color), each atom receives
go through a loop consisting of edge updating, message “messages” from other atoms within 5 A, which reflect its local
passing, and node updating blocks (inset, Fig. 1a). In the environment. We might reasonably expect to capture the
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shielding or deshielding influence upon chemical shift
(whether these occur through-bond or through-space) of
neighboring atoms, including those for which there is no direct
bonding path. Using a larger cutoff distance led to a degrada-
tion in the model's validation loss (see ESIt). The final updated
node feature serves as a 3-dimensional representation of the
atomic environment for each atom, which is then passed
through a fully connected NN”® to produce a chemical shift
value. More details of the model architecture are provided in ESI
Text 1.1 Unlike models based only on atom-centered symmetry
functions, our model allows local structural information to be
exchanged between neighboring atoms. Chemical shift predic-
tions for all atoms in the molecule are performed simulta-
neously, leading to an efficient numerical implementation.

Learning DFT predicted chemical shifts

As an alternative to a large, manually curated collection of
experimental chemical shifts, a computationally generated
dataset offers several advantages. DFT computed chemical
shifts are easily parsed and unequivocally assigned to the
responsible atom in each compound. By sampling different
structures, the dataset can be designed to ensure broad model
coverage. Accordingly (Fig. 1b) we developed a dataset of 8000
DFT optimized structures with ca. 200 000 DFT computed
chemical shifts (the DFT8K dataset). All datasets generated by
this work are shared openly.”™

We began by sampling a subset of structures from the
NMRShiftDB, which contains 43 475 structures at the time of
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writing. The sampling procedure is as follows: we first extracted
all neutral organic molecules with MW < 500. From the result-
ing set of around 20 000 structures, 8000 were selected by
a farthest-neighbor algorithm” to create a computationally
manageable dataset while maximizing structural diversity.

Initial 3D geometries were then embedded from each
molecule’s SMILES representation using a distance geometry
approach (ESI Text 21),”® which was followed by conformational
analysis with MMFF, culminating in the optimization of M06-
2X/def2-TZVP geometries and empirically-scaled mPW1PW91/
6-311+G(d,p) chemical shifts for each of these 8000 structures.
This process was automated by a parallel Python workflow that
takes structures from a 2D molecular database (NMRSK),
performs conformational analysis, submits and monitors
Gaussian jobs, and finally parses outputs (see ESI Text 21 for
details on the automated workflow and DFT calculation
methods). A new dataset, DFT8K, is populated by DFT opti-
mized geometries and the corresponding computed chemical
shifts (around 120 000 "H and 100 000 *C DFT chemical shifts
in total, Fig. 1b). To obtain DFT-predicted isotropic chemical
shifts we applied an empirical scaling formula to the raw
shielding tensor values.>'* The "*C chemical shift values were
obtained from the relation 6 = 181.40-0.97¢ and "H values from
0 = 29.30-0.91¢.

DFT optimized geometries (inputs) and chemical shifts
(prediction targets) from the DFT8K dataset were then used to
train a GNN. 500 structures were used to evaluate the validation
loss during model training, and another 500 structures were
held-out as an external test set (Fig. 2). We refer to this ML
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Fig. 2 Prediction of DFT chemical shifts by the trained DFTNN model. Scatter plots and histograms compare DFT computations and GNN
predicted chemical shifts for *H (a) and *C (b). The held-out test set contains 500 randomly sampled structures (testing/training rate: 1/12) from

the DFT8K dataset.
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model as DFTNN. Since *C chemical shifts have a wider ppm
distribution than "H shifts we used separate models for each
nucleus. DFTNN performs well in predicting the DFT shifts of
held-out structures, giving a MAE and RMSE of 1.26 and
2.15 ppm, respectively, for *C, and 0.10 and 0.16 ppm for 'H.
These results compare favorably alongside other ML models for
NMR chemical shift predictions. Kernel-based learning was
reported to have an RMSE of 0.49 ppm for "H and 4.3 ppm for
13C;* a fully-connected neural network using HOSE descrip-
tors®® has an RMSE of 2.7 ppm for °C, and a 2D GNN based
model has MAE of 0.22 ppm for 'H and 1.35 ppm for *C.”
Direct comparisons are, however, complicated by the use of
different training and test sets across different models.

Transfer learning with experimental
chemical shifts

Although DFTNN shows encouraging performance in predict-
ing NMR chemical shifts, this GNN was trained solely against
DFT calculated results that approximate experimental reality.
Previous benchmarking studies suggest that DFT calculated
chemical shifts have an RMSE of 0.1-0.2 ppm for 'H and 2.5-
8.0 ppm for *C, which vary according to functional and basis
set used for the structure optimization and chemical shift
calculation.' To minimize prediction errors associated with the
use of DFT reference data, we sought to further optimize
performance by subjecting our GNN to additional refinement
with TL, incorporating experimental data. Importantly, we also
devised a strategy to check and clean these experimental data
using the results of DFT calculations as described below.
Around 5500 molecules in the NMR8K dataset are annotated
solely with experimental **C data, while *H and **C chemical
shifts are present for the remainder. "H chemical shifts show
greater sensitivity to the solvent used for experimental data
collection, and while we had hoped solvent-induced variations
in chemical shift could be captured during this next phase of
model training, the identity of the solvent used was often
lacking in our primary data. We were therefore forced to focus
solely on the refinement of *C predictions. We also had to
disregard experimental data for structures with ambiguously
defined stereochemistry. A more difficult task involves the
removal of possible misassignments, for example where an
experimental spectrum may be assigned to an incorrect struc-
ture or a chemical shift attributed to an incorrect atom.* Since
even a small fraction of anomalous training data can result in
noticeable degradation of ML models,* we adopted a cautious
approach and rejected experimental data that was statistically at
odds with our DFT calculations. A comparison of DFT and
experimental **C shifts (Fig. 3a) showed 911 values differing by
>10 ppm (1.6% of all DFT calculated shifts) and 10% of values
differing by >5 ppm. By removing outliers more than 1.5 inter-
quartile ranges (IQRs) below the first quartile or above the third
quartile, corresponding to 5% of the experimental data, the
RMSE drops from 3.8 ppm to 2.26 ppm, which is close to the
expected accuracy of our DFT methodology (2.4 ppm).** Some of
these discrepancies may reflect severe failings of DFT rather

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Learning experimental chemical shifts, (a) 53 334 DFT-
computed and experimental *C chemical shifts were compared to
identify erroneous values. Outliers identified by IQR analysis (green)
were removed while remaining data points (red) were retained and
comprise the Exp5K dataset. (b) MAE of ExpNN-dft predictions against
experiment as a function of training set size, with and without transfer-
learning. The performance is also compared to DFTNN (green dash
line) and DFT calculations (gray dash line).

than errors in experimental assignments, however, the final
performance of our model supports the use of this conservative
strategy. Ultimately, this data-processing pipeline (ESI Fig. 6t)
produced a “cleaned” dataset containing around 5000 struc-
tures and 50 000 experimental *C chemical shifts, which we
refer to as Exp5K.”*

We then used transfer learning (TL)**** with the Exp5K
dataset to retrain DFTNN. With TL, a pre-trained network model
can be improved by learning from a new, higher accuracy
dataset even when data is sparsely available.®® The optimizable
parameters in our GNN model can be categorized into two
groups: updating layers and the following readout layers
(Fig. 1a). The updating layers learn how to encode atomic
environments into an atomic fingerprint, while the readout

Chem. Sci, 2021, 12, 12012-12026 | 12017
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layers interpret these fingerprints to generate chemical shift
predictions. To preserve the information previously learned
during model training against DFT results, as well as to prevent
overfitting to the smaller Exp5K dataset, only the readout layers
were optimized while the updating layers were frozen (Fig. 1b,
with further details of implementation in ESI Fig. 11). 500
molecules from Exp5K were held out as the test set. The
resulting retrained model is named ExpNN-dft, since DFT
optimized structures are still required as inputs. The ExpNN-dft
predictions achieve a *C MAE of 1.25 ppm and RMSE of
1.74 ppm for the held-out testing set. When compared with
experimental chemical shifts, the accuracy of ExpNN-dft
apparently surpasses that of DFTNN by more than 30% with
a >C MAE of 1.90 ppm.

We compared the above approach against training a model
whose parameters are randomly initialized (i.e., from scratch).
Fig. 3b illustrates the efficiency of TL in the present work, and
also highlights the fact that the performance of ExpNN-dft is
superior to the DFTNN model and DFT computations, even
though the experimental training set is relatively sparse. The
success of this approach arises from the strong correlation
between DFT chemical shifts and experimental shifts, the
molecular structures shared by DFT8K and Exp5K, and the
strategy of freezing 94% of GNN hyperparameters during TL.

Transfer learning to use inexpensive
molecular geometries

Our GNN models give rapid NMR chemical shift predictions,
which through the inclusion of experimental training data,
outperform DFT accuracy. However, the requirement of DFT
optimized structures as inputs significantly limits a model's
practicality and applicability. Therefore, we opted to retrain
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the ExpNN-dft model using 3D structures obtained from
inexpensive molecular mechanics (MM) calculations
(MMFF94)®* as input, retaining experimental chemical shifts
from Exp5K as targets. Transfer learning was again employed
for this retraining. This time, however, to reflect the fact that
the training data contains modified molecular geometries,
the six hidden layers in the edge updating block were opti-
mized (Fig. 1b), while all other parameters were held fixed.
This second round of transfer learning led to a **C MAE of
1.43 ppm against experiment. This final GNN model, named
ExpNN-ff, retains the high accuracy of the previous models
while processing MM input structures, facilitating real-time
3C chemical shift prediction.

The three trained GNN models (DFTNN, ExpNN-dft, and
ExpNN-ff) were evaluated using an external dataset of
chemical shifts, CHESHIRE, which is widely used to
benchmark DFT methods (Fig. 4a). ExpNN-ff, which avoids
expensive DFT structure optimizations, took 10 seconds of
CPU time to predict all **C chemical shifts for 24 molecules
in the CHESHIRE test set compared to 19 hours for those
methods requiring DFT structure optimization. Note that
the GNN model in the ExpNN-ff workflow only cost 3% of the
total CPU time (0.35 s), while the highest cost is still on
conformer searching. Even though using MMFF structures
as inputs, the performance of ExpNN-ff does not degrade
compared to ExpNN-dft (Fig. 4b). In contrast, performing
DFT chemical shift predictions on MMFF geometries
(FFDFT),"®*? leads to a noticeable degradation in perfor-
mance for this testing set. Out of 25 electronic structure
methods mPW1PW91/6-311+G(2d,p)//M062X/6-311+G(2d,p)
calculations provide the lowest MAE for this dataset (ESI
Table 2t), however, all are outperformed by our two GNN
models augmented by transfer learning against

s
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Fig. 4 GNN performance on the CHESHIRE set of organic molecules. Performance and computational cost for three GNN models (ExpNN-ff,
ExpNN-dft, and DFTNN) and DFT methods (DFT and FFDFT) for the CHESHIRE testing set.** DFT indicates optimizations and chemical shift
prediction at this level, while FFDFT indicates DFT shift predictions on MMFF geometries. CPU times are shown in logarithmic scales. TCPU: total
CPU time of computing chemical shifts from smile strings for CHESIRE testing set; NCPU: CPU time for NMR chemical shift computations;
CCPU: CPU time for conformer searching through MMFF94; OCPU: CPU time for structure optimizations.
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experimental data. Of these, ExpNN-ff is around four orders
of magnitude faster. Encouraged by this comparison against
DFT methods that have been applied successfully to revise
organic structures,®”® we next set out to apply whether the
ExpNN-ff model can be accomplish more challenging
applications of structure elucidation in seconds.

Application to structure elucidation
and reassignment

We first confirmed the ability of ExpNN-ff to describe
stereochemical and conformational effects upon chemical
shift. We were pleased to see that for the three cases outlined
in Scheme 1, our approach was able to (a) successfully
discriminate between the diastereomers of 1,3-hydrox-
ymethylcyclohexane, (b) predict different chemical shift
values for the diastereotopic methyl groups of r-valine, and
(c) show differences between the two conformers of methyl-
cyclohexane (quantitative comparisons are shown in ESI Text
67). Importantly, in each case the use of a conventional
HOSE-based or 2D graph approach would be unable to
provide any such distinction. We then turned to significantly
more challenging tasks of structure elucidation, several of

View Article Online
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which would be extremely taxing for conventional DFT-based
approaches due to their complexity in terms of size and
conformational flexibility (Fig. 5a-f). Constitutional isomers
are compared in the first three examples, while the final two
involve pairs of diastereomers. For cases (a-e), we compare
the predicted chemical shifts for two candidate structures
against the experimental 13C spectrum. All analyses are
automated from SMILES queries, with sorted lists of pre-
dicted and experimental shifts being compared. ExpNN-ff
gives a lower MAE for the correct assignment across all five
examples. A detailed breakdown for (a) is shown in Fig. 5f, in
which the most egregious errors of the originally proposed,
incorrect assignment (e.g., at C1, C11, and C16) are high-
lighted. Predicted chemical shifts for these atoms in the
revised, correct structure are much closer to the experi-
mental data. We further tested ExpNN-ff to match the four
diastereoisomers of a conformationally flexible 1,3-diol with
four experimental NMR spectra (Fig. 5f). Since ExpNN-ff
generates conformer-specific predictions (ESI Fig. 87),
these were Boltzmann weighted (using MMFF relative ener-
gies) from around 200 conformers to yield final predictions.
The lowest MAE was obtained for the correct diastereomer in
three out of four cases. However, ExpNN-ff could still be used
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Fig. 5 Structure elucidation using ExpNN-ff. (a)—(e) Historical cases of natural product structural misassignment. MAE values are compared for
the originally proposed, but incorrect, structure and the revised, correct structure against experimental *C spectra. In each case a better match is
obtained for the correct structural assignment in seconds. (f) MAE values obtained by comparing all four diastereomeric structures of a highly-
flexible 1,3-diol against four sets of experimental data. In three of four cases the lowest MAE value matches the correct spectrum. (g) The error
between predicted and experimental chemical shifts for each atom in proposed and revised structures for example (a).
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to correctly assign all four diastereoisomers by considering
the cumulative MAE values across all structures.

We next investigated the performance of the ExpNN-ff model
for organic structures larger than those used for network
training (MW > 500). We compared our predicted *C chemical
shifts against experimental values for 650 large molecules (MW
> 500) taken from NMRShiftDB (Fig. 6a). Each prediction
requires at least one MMFF conformation of a given molecule
and where multiple conformers were present a Boltzmann-
weighted average was used. As an illustrative example, we
used ExpNN-ff's predictions to detect obvious database errors/
misassignments in an automated, high-throughput fashion.
Predicted chemical shifts were first compared against the
structural assignments from NMRShiftDB. For structures with
MAE values >3.5 ppm the experimental shift values were reor-
dered to find the optimal assignment (i.e., lowest MAE, Fig. 6b).
One such example automatically identified is shown in Fig. 6c,
where enoate a- and B-carbon shifts were found to be swapped
in the experimental assignment. After this workflow was
complete, remaining egregious outliers were then inspected
manually. The structure of Taxol C (ID: 20244313) was found to
be incorrectly recorded in the database, with a cyclohexyl rather
than phenyl ring. This approach highlights the application of
ExpNN-ff as high-throughput method to detect assignment
errors, however, the incorporation of sophisticated metrics such
as Goodman's DP4 (ref. 18) would be necessary for a more
rigorous evaluation of possible structural assignments, and is
the subject of further work.

Application as atomic descriptors in
selectivity prediction

NMR chemical shift is influenced by the electron density
around a nucleus of interest. It is therefore an attractive choice

12020 | Chem. Sci, 2021, 12, 12012-12026

of physically-motivated and interpretable atomic descriptor for
use in predictive machine learning models.**** By foregoing
expensive quantum chemical computations, chemical shifts
accurately predicted by ExpNN-ff provide easier and faster
access to descriptors for use in regression tasks such as reac-
tivity and selectivity prediction. We have investigated this
approach in predicting the regioselectivity of electrophilic
aromatic substitution (EAS) reactions. Previously, the combi-
nation of DFT-computed atomic Fukui coefficients, atomic
partial charges, bond orders, and partitioned solvent-accessible
surface areas with semi-empirical regioSQM®® predictions was
used to develop a random forest (RF) model with 93% accuracy
in predicting the site of substitution using 80/20 train/test splits
for 376 molecules.® Below (Fig. 7) we demonstrate comparable
accuracy with fewer atomic descriptors, using just (i) the '*C
chemical shift, (ii) the attached proton 'H chemical shift, and
(iii) the regioSQM prediction. We also find that using GNN
predicted shifts gives similar performance in place of more
expensive DFT (mPW1PW91/6-311+G(d,p)//M062X/def2TZVP)
values. The prediction accuracy averaged across 10 runs for
different RF models is shown in Fig. 7d. After optimization of
model hyperparameters, accuracy increases with the inclusion
of chemical shift descriptors to 90.7% from 88.5% using
regioSQM alone. ROC and precision-recall plots (Fig. 7e and f)
illustrate that the inclusion of chemical shift descriptors
increase the performance of an RF classification (i.e., correctly
labelling reactive and unreactive positions) from 0.90 to 0.94
and that the average precision is also higher with chemical shift
descriptors. These GNN-derived atomic descriptors impose low
computational cost such that we anticipate future utility in
related prediction tasks of organic reactivity and selectivity, for
example in combination with other machine-learned
representations.®”

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Regioselectivity prediction of electrophilic aromatic substitutions. (a) Representative molecules present in the EAS dataset. The high-
lighted atoms depict the experimental (red) and the predicted (green) site of substitution. (b) DFT computed *C chemical shifts vs. GNN-
predictions. (c) DFT computed *H chemical shifts vs. GNN-predictions. (d) Random forest classifier accuracies in identifying reactive/unreactive
ring positions. (e) ROC curves comparing the true positive vs. false positive rate. (f) Precision—recall curves for the different random forest

classifiers.

© 2021 The Author(s). Published by the Royal Society of Chemistry

Chem. Sci, 2021, 12, 12012-12026 | 12021


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc03343c

Open Access Article. Published on 09 August 2021. Downloaded on 18.02.26 10:20:10.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

Conclusion

Predicting NMR chemical shifts in real-time that can distinguish
stereoisomers and configurations/conformations poses both
conceptual and technical challenges. The GNN model we have
presented in this work overcomes this hurdle by learning suitable
atomic environments from 3D structures and predicting chem-
ical shifts based on these learned environments. MAEs between
GNN predicted chemical shifts and DFT are 0.16 ppm for 'H and
1.26 ppm for '*C, which compare favorably with other
approaches. This approach requires large quantities of labelled
chemical shift data, which was provided by a large-scale quantum
chemical dataset. To mitigate errors associated with using DFT
training data, we also curated a smaller dataset of experimental
chemical shifts that was used for retraining the NN model
through transfer learning. Additionally, the model was retrained
to process inexpensive molecular mechanics 3D geometries so
that high-quality structures are not a prerequisite. These steps
resulted in a predictive model of comparable accuracy to DFT
when compared against experimental chemical shifts of small
organic molecules, with a 7000-fold performance increase. This
efficiency enabled us to (i) perform GNN "C predictions for
flexible structures impractical to study with DFT with sufficient
accuracy to discriminate between correct and incorrect assign-
ments, (ii) carry out high-throughput screening and error detec-
tion of a large database of NMR assignments and (iii) rapidly
obtain chemical shifts to be used as atomic descriptors in
a machine learning model for regioselectivity. The resulting deep
learning model can be used as a command line tool or as a web-
based product-level calculator that allows real-time chemical shift
predictions from a molecule sketch or SMILES input (http://
nova.chem.colostate.edu/cascade/predict/).

Just as every model has limitations, the framework we
present in this work still leaves room for improvement. We
mention that the accuracy of the model depends on the
quality of 3D structures generated by MMFF to some extent.
We have found several examples where the poor MMFF
structure leads to a discrepancy in prediction, for instance,
ketenimines. Thus, the model is likely to improve further with
more robust empirical or semi-empirical structures, along
with associated relative energies that are used to carry out
Boltzmann averaging, such as those from xTB.** Other
potential improvements will include extending the model to
biomolecules, coupling constant prediction, and the adop-
tion of probability metrics such as DP4 for structure
elucidation.

Methods

Computational details

NMR isotropic chemical shifts in the present work are predicted
using a GNN derived from Schnet.*>*””® The network receives 3D
molecular structures via a vector of atom types and a vector of
interatomic distances. The network is directly trained against
chemical shifts for individual atoms. As discussed above, these
chemical shifts are sourced from empirically-scaled DFT
computations and this training data is augmented by

12022 | Chem. Sci., 2021, 12, 12012-12026
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experimental values during later stages of model training. Atom
indices are also processed by the neural network, which is used
to pool out corresponding node features in the readout layer.
Detailed architectures, hyper-parameters, and training
processes are given in the ESI Section 1.t

Three subsets of organic structures from the NMRShiftDB
are used in this work, referred to as NMR8K, DFT8K, and Exp5K.
The NMRSK dataset contains 8000 neutral molecules with
molecular weights up to 500, comprising elements: C, H, O, N,
F, Cl, P, S. 3016 of these structures have associated "H NMR
experimental spectra; 6000 have associated '*C spectra. These
structures were processed with a computational workflow to
generate the DFT8K dataset used for our GNN training. Our
workflow involved embedding and molecular mechanics (MM)
conformational analysis with the MMFF94 force field imple-
mented in rdkit.** The most stable MM conformers were then
optimized at the M06-2X/def2-TZVP* level of theory, for which
isotropic shielding constants were then calculated with gauge-
independent atomic orbital (GIAO)*® method at the
mPW1PW91/6-311+G(d,p)** level of theory. This combination of
MM and DFT methods has been used successfully for structure
assignments with NMR chemical shift predictions.”> This
workflow produced 7455 DFT optimized structures with 117 997
'H and 99 105 **C calculated chemical shift values, which make
up the DFT8K dataset. The NMR8K and DFT8K datasets were
then compared to prepare a clean experimental dataset from
which apparent outliers are absent. This produced 5631 struc-
tures labeled with 59 413 experimental *C chemical shifts,
which make up the Exp5K dataset. Further details of dataset
construction are contained in the ESI Section 2.t

Three separate GNNs were trained, referred to as DFTNN,
ExpNN-dft, and ExpNN-ff. Architectures and hyper-parameters
for these networks are the same, but they are trained against
different targets or using different input structures. The DFTNN
is trained against DFT calculated chemical shifts using the
optimized geometries from the DFT8K dataset with randomly
initiated parameters. This model is then retrained against
experimental chemical shifts from the Exp5K dataset while
retaining the DFT geometries, with partially fixed parameters to
generate the ExpNN-dft model. Finally, the model is again
retrained using experimental chemical shifts from Exp5K while
geometries are replaced by MMFF structures, with partially fixed
parameters to produce the ExpNN-ff model. Further details on
transfer-learning and frozen parameters are given in the ESI
Section 3.t

Practical usage considerations

All code is openly accessible from GitHub under an MIT license
at https://github.com/patonlab/CASCADE. This includes the
automated workflow to process a SMILES query, perform
conformational analysis and 3D structure optimization, and
generate NMR chemical shift predictions, as well as the three
ML models (DFTNN, ExpNN-dft, and ExpNN-ff) presented here.
Training and testing data for each deep learning model are also
publicly available from the same GitHub repository. For ease of

use, a real-time web-app has been developed, http:/

© 2021 The Author(s). Published by the Royal Society of Chemistry
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nova.chem.colostate.edu/cascade/predict/which performs 'H
and '*C predictions for SMILES queries or via a graphical
molecular editor. Boltzmann averaged and individual
conformer-specific chemical shifts are rendered with JSmol.

Data availability

The Python workflow, final trained models, raw and processed
datasets, and analyses are freely available under an MIT license
at https://github.com/patonlab/CASCADE.
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