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With the wide applications of terahertz (THz) devices in future communication technology, THz protection

materials are essential to overcome potential threats. Recently, THz metamaterials (MMs) based on two-

dimensional (2D) materials (e.g., graphene, MXenes) have been extensively investigated due to their

unique THz response properties. In this review, THz protection theories are briefly presented first,

including reflection loss and shielding mechanisms. Then, the research progress of graphene and other

2D material-based THz MMs and intrinsic materials are reviewed. MMs absorbers in the forms of single

layer, multiple layers, hybrid and tunable metasurfaces show excellent THz absorbing performance.

These studies provide a sufficient theoretical and practical basis for THz protection, and superior

properties promised the wide application prospects of 2D MMs. Three-dimensional intrinsic THz

absorbing materials based on porous and ordered 2D materials also show exceptional THz protection

performance and effectively integrate the advantages of intrinsic properties and the structural

characteristics of 2D materials. These special structures can optimize the surface impedance matching

and enable multiple THz scatterings and electric transmission loss, which can realize high-efficiency

absorption loss and active controllable protection performance in ultra-wide THz wavebands. Finally, the

advantages and existing problems of current THz protection materials are summarized, and their

possible future development and applications are prospected.
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1. Introduction

As most promising waveband for next generation communica-
tion (6G) applications, THz waves have attracted extensive
attention.1–4 However, due to potential threats of this unknown
waveband to human health, electromagnetic interference,
information security and military stealth, essential THz
protection materials should be fully studied before their large-
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scale application. To achieve effective reection loss or trans-
mission shielding of the surplus THz energy, the THz protection
materials are mainly THz absorbing and shielding materials.
From the point of view of the interaction between electromag-
netic (EM) waves and materials, the response mechanism of
natural materials is not continuous across the whole spectrum.
Within wavebands of hundreds of gigahertz, electrons domi-
nate the response process to EM waves. Moreover, in the
infrared to ultraviolet waveband, the EM waves mainly interact
with photons of the materials. However, between the two
response areas, the 0.1–10 THz band is a “terahertz gap” which
lacks material response; therefore, it is an important topic to
develop effective THz protection materials.5,6

Two-dimensional (2D) materials such as graphene and
MXenes, due to their high conductivity, ultra-thinness, large
specic surface area, ultra-light weight, high strength and
adjustable electromagnetic response, have shown excellent
microwave attenuation performance,7–9 which has encouraged
researchers to realize their THz protection abilities.10–13

However, single atomic layered 2D materials cannot absorb the
incident THz energy effectively, and simply stacked materials
lead to impedance mismatching.14,15 Therefore, in order to
make full use of the advantages of 2D materials, it is very
important to reasonably design the forms of 2D materials in
THz protective materials, such as patterning the resonance
units of MM absorbers and forming nanostructured mate-
rials.13,16–18 Because MMs have been proved to respond to THz
radiation5 and fully absorb microwave energy,19,20 THz MMs
have potential to be perfect THz absorbers. MMs are articial
EM dielectric materials, and are usually composed of an MM
layer (high-conductivity materials with periodically repeated
patterns), a dielectric spacer and ametal ground layer. Electrons
resonated in these subwavelength scale unit structures can
form THz absorption;21 therefore, the THz response of MMs can
be controlled by designing the unit structure and component
materials. Similar to traditional metal resonant MMs layers,22–27

coherent and patterned graphene 2D materials applied as MM
layers have been widely studied because of their high conduc-
tivities and unique EM responses (such as Surface Plasmon
Zechen Li is a PhD candidate at
the School of Materials Science
and Engineering, Tsinghua
University, China. He received
his B.S. degree from Tsinghua
University in 2019. His research
interests focus on the synthesis
and structural engineering of
nanomaterials for photoelectric
detection.
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Polaritons (SPPs)).17,18,28–30 Otherwise, for the single atomic layer
thickness and tunable chemical potential, 2D materials are easy
to composite with other materials, and their EM properties can
be controlled by external stimuli. Recently, by optimizing the
composite structures and active control approaches of MMs,
many THz protection MMs with wide response bands and
adjustable absorption performance have been designed.20,31,32

In addition to 2D materials-based THz protection MMs, the
nanostructured 2D materials are effective THz protection
materials in the form of intrinsic loss.10,16,33 The enhanced
absorption of nanostructured materials is mainly contributed
by their porous structures and long-distance conductive
networks. On the one hand, the porous structure ensures proper
effective permittivity, which gives a good impedance match to
reduce the surface reection. On the other hand, the cross-
linked 2D materials can generate large surface-induced
current, so that the THz radiation rapidly decays and turns
into heat in the resistance network. Furthermore, by compos-
iting the nanostructured 2D materials with other THz loss
materials, the THz response properties would be further regu-
lated to achieve a wider effective waveband and stronger
attenuation capability.16

In this Review, we focus on recent progress in THz protection
materials based on 2D materials, including THz protection
MMs and intrinsic loss materials, as shown in Fig. 1. The 2D
materials discussed here are mainly graphene and MXenes,
along with phosphorene and other 2D materials. Firstly, the
THz protection theories are briey presented, including reec-
tion loss and shielding mechanisms. Secondly, the research
progress of graphene and other 2D materials-based THz
protection MMs and intrinsic materials is reviewed. Finally, the
advantages and existing problems of current THz protection
materials are summarized, and their future development and
applications are prospected.
2. THz protection theory

For different applications, THz protection materials should
show different properties. In many cases, the THz protection
Hongwei Zhu is a Professor of
School of Materials Science and
Engineering, Tsinghua Univer-
sity, China. He received his B.S.
degree in Mechanical Engi-
neering (1998) and his PhD
degree in Materials Processing
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doctoral studies in Japan and
the USA, he began his indepen-
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Fig. 1 Schematic of THz protection materials based on 2D materials.

Fig. 2 Schematic models of (a) THz reflection loss and (b) THz
shielding theories.
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materials must efficiently absorb THz radiation to reduce
the THz echo as much as possible and form reection loss.
In some other cases, the THz transmittance must be strictly
low, which can shield the incident THz radiation. The two
THz protection theories are briey presented as follows.
2.1 THz reection loss

According to electromagnetic transmission theory,
a simplied transmission model of THz reection loss can
be established, as shown in Fig. 2a.34,35 The incident THz
radiation E0 is transmitted into the absorbing material from
the air. The absorbing material is an innite at plate with
a thickness of d, which is covered with a total reection
metal plate on the back. Er1, Er2 to Ern represent the THz
radiation intensity of the rst reection and the second
reection until the n-th reection, respectively, which are
formed aer multiple reections of incident THz through
the metal back plate and absorbing material surface. The
R ¼ PR

P0

¼ lim
n/N

Er
2ðuÞ

E0
2ðuÞ

¼
�½nðuÞ � 1�2 þ k2ðuÞ�2

�½nðuÞ þ 1�2 þ k2ðuÞ�2
þ 16

n2ðuÞ þ k2ðuÞ�½nðuÞ þ 1�2 þ k2ðuÞ�2
� �½nðuÞ þ

© 2021 The Author(s). Published by the Royal Society of Chemistry
accumulation of multiple reection energies forms the total
reection.

When the THz radiation is normally incident to medium 2
(absorbing material) from medium 1 (air), according to the
Fresnel formula, the reectivity R and transmittance T at the
interface can be expressed as follows:35–37

R12 ¼ ~n2 � ~n1
~n1 þ ~n2

(1)

T12 ¼ 2~n1
~n1 þ ~n2

(2)

R21 ¼ ~n1 � ~n2
~n1 þ ~n2

(3)

T21 ¼ 2~n2
~n1 þ ~n2

(4)

where ñ1 and ñ2 are the complex refractive indices of medium 1
and medium 2, respectively. For a lossy medium, ñ ¼ n � ki,
where n and k represent the real and imaginary parts of the
refractive index, respectively.

The THz wave is attenuated with propagating a certain
distance L in the lossy medium, so the intensity of THz radia-
tion EL(u) can be expressed as follows:35

EL(u) ¼ E0(u) � e�iñ(u)L/c (5)

where c is the speed of light (3 � 10�8 m s�1), u is the angular
frequency (rad s�1), and E0(u) is the initial THz signal intensity.
The propagation loss Pñ(u,L), which is dened as the power
ratio of the THz signal aer a propagation length to the initial
THz signal, can be expressed as follows:35

Pñ(u,L) ¼ e�iñ(u)L/c (6)

In this case, the total THz energy reected by the absorbing
material can be expressed as follows:34,35

Er
2(u) ¼ Er1

2(u) + Er2
2(u) + Er3

2(u) +, /, + Ern
2(u) ¼ E0

2(u)

� R12
2 + E0

2(u) � T12
2 � T21

2 � Pñ
4(u,L) + E0

2(u)

� T12
2 � T21

2 � R21
2 � Pñ

8(u,L) +, /, + E0
2(u) � T12

2

� T21
2 � R21

2n�4 � Pñ
4n�4(u,L) (7)

The whole reectivity (R), which represents the ratio of the
total reected power (PR) to incident power (P0), can be
expressed as follows:35–37
½n2ðuÞ þ k2ðuÞ � 1�2 � exp

��4u� kðuÞ � d

c

�

1�2 þ k2ðuÞ�� �½nðuÞ � 1�2 þ k2ðuÞ�� exp

��4u� kðuÞ � d

c

�

(8)
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Fig. 3 (a) Diagram of graphene-based Salisbury screen MMs. (b) THz absorption of the MMs illustrated in (a) with different square resistances (sample A:
1295U,�1 (C), sample B: 817U,�1 (-), and sample C: 689U,�1 (:)) (reproducedwith permission from ref. 56. Copyright 2014 AIP Publishing). (c)
Unit cell ofMMswith the rectangular array. (d) THz absorptionof theMMs illustrated in (c) for various values of length L. (e) Unit cell ofMMswith the cross-
shaped array. (f) THz absorption of the MMs illustrated in (e) for various values of length L. (g) Electric field distributions of the MMs illustrated in (e) at the
absorption peak for different values of L (reproduced with permission from ref. 59. Copyright 2017 The Optical Society).
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Therefore, the reection loss (RL) can be written in decibels
(dB) as follows:16,34,35

RL ¼ �10� lg

�
lim
n/N

Er
2ðuÞ

E0
2ðuÞ

�
(9)
Fig. 4 (a) Schematicof theTHzabsorber consistingof theGCDR. (b) Simulated
(reproduced with permission from ref. 66 Copyright 2018 The Optical Society)
Simulated absorptions for grapheneHilbert structuresof levels I, III, andV (reprod

1518 | Nanoscale Adv., 2021, 3, 1515–1531
2.2 THz shielding

Similar to the THz reection loss, a THz shielding model was
built with a slight difference, as shown in Fig. 2b.34 The THz
shielding material is also an innite at plate, but without
a metal layer on the back. Therefore, in addition to multiple
absorptionsof theproposedGCDRabsorberwithdifferent graphenepatterns
. (c) Iterative construction of the Hilbert curve for the first five (I–V) levels. (d)
ucedwith permission fromref. 69Copyright 2016AmericanPhysical Society).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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reections, there are corresponding THz transmission waves,
labeled as Et1, Et2 to Etn.

Accordingly, the total THz transmission of the shielding
material can be expressed as the sum of all multiple trans-
mission energies:34,36

Et
2(u) ¼ Et1

2(u) + Et2
2(u) + Et3

2(u) +, /,

+ Etn
2(u) ¼ E0

2(u) � T12
2 � T21

2 � Pñ
2(u,L)

+ E0
2(u) � T12

2 � T21
2 � R21

4 � Pñ
6(u,L)

+ E0
2(u) � T12

2 � T21
2 � R21

8 � Pñ
10(u,L) +, /,

+ E0
2(u) � T12

2 � T21
2 � R21

4n�4 � Pñ
4n�2(u,L) (10)

Thus, the whole THz transmittance (T) can be written by the
total transmitted power (PT) and the incident power (P0).34,36
T ¼ PT

P0

¼ lim
n/N

Et
2ðuÞ

E0
2ðuÞ ¼ 16�

½n2ðuÞ þ k2ðuÞ� � exp

��2u� kðuÞ � d

c

�

�½nðuÞ þ 1�2 þ k2ðuÞ�2 � �½nðuÞ � 1�2 þ k2ðuÞ�2 � exp

��4u� kðuÞ � d

c

� (11)
Therefore, the electromagnetic shielding effectiveness (EMI
SE) can be written in dB as follows:16,34,35

EMISE ¼ �10� lg

�
lim
n/N

Et
2ðuÞ

E0
2ðuÞ

�
(12)

3. Graphene-based THz protection
materials
3.1 Graphene-based THz protection MMs

3.1.1 Single-layer graphene MMs. Because of the obvious
SPPs in the THz band,30 graphene has been widely studied for
Fig. 5 (a–d) Structure, (e) transmission line model and (f) simulated abs
from ref. 15 Copyright 2018 The Optical Society).

© 2021 The Author(s). Published by the Royal Society of Chemistry
THz protection.38–54 However, atomic monolayer graphene is
almost transparent to THz waves; thus, the overall intrinsic
absorption of monolayer graphene is highly limited.14,15 There-
fore, originating from the SPPs effect, well-designed continuous
or patterned graphene in the MMs layer can generate collective
oscillation of the charge density and light on the interface
between graphene and its surroundings, which is benecial to
effective THz absorption and protection.39 The THz response of
continuous lms was extensively studied, which is promising
for further application in THz protection.17,43,55,56 By using pol-
ymethyl methacrylate (PMMA), Min et al.56 transferred
a continuous 2D graphene sheet grown on nickel to a polymer
substrate with a gold-bottomed lm. The whole structure built
up a Salisbury screen MM, as shown in Fig. 3a, in which the
graphene sheet worked as the resistance layer. The conductivity
of the graphene sheet could be regulated by chemical doping to
match the free space impedance; therefore, the incident THz
attenuated directly in the MMs by way of destructive interfer-
ence. The measured results showed that when the square
resistance of the graphene sheet was 689 U$ ,�1, maximum
absorptions of 0.95 and 0.97 could be achieved at 0.97 and 1.5
THz (Fig. 3b). In addition, some patterned graphene, such as
square,38,57 cross,58–61 disk,60,62 ribbon,63,64 ring39,65,66 and pixel67

shapes, have been designed and simulated for THz absorption.
Xiao et al.59 designed rectangular and cross-shaped graphene
metasurfaces for THz absorption (Fig. 3c and e). The full-wave
orption of multiple-layer graphene MMs (reproduced with permission

Nanoscale Adv., 2021, 3, 1515–1531 | 1519
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simulation showed that bothMMs indicated effective absorbing
ability, and the effective absorption (absorption above 90%)
bandwidth of the cross-shaped MMs could reach 1.13 THz
(Fig. 3d and f). Furthermore, generated from the higher real part
conductivity of graphene surface and larger propagation loss of
the SPPs, the absorbing range in the low-frequency region was
broadened. As shown in Fig. 3g, the electric eld distribution at
the absorption peak revealed that the localization elds on the
edges of the patterned graphene were obviously stronger
because of the charge accumulation excited by the electric
dipole resonances.

Meanwhile, some complex or composite graphene patterns
were proposed to enhance THz absorption39,60,66,68,69 so that the
absorbing bandwidth could be broadened by the multiple
resonant peaks generated from the multi-structures. Mou
et al.66 designed a patterned graphene concentric double rings
(GCDR) metasurface to enlarge the absorbing bandwidth by
forming plasmonic hybridization between two graphene rings
(Fig. 4a). The calculated absorption results shown in Fig. 4b
revealed that the MMs with GCDR can effectively absorb THz
energy above 90% ranging from 1.18 to 1.64 THz, with two
isolated absorption peaks located at 1.26 and 1.54 THz. Mean-
while, the MMs with only inner or outer graphene single rings
exhibited single absorption peaks and narrow bandwidths,
corresponding to the high-frequency and low-frequency peaks
Fig. 6 (a–c) Schematic view of a graphene–metal MMs THz absorber.
(reproduced with permission from ref. 85 Copyright 2019 The Royal Soc
THz absorber. (g) Simulated THz absorption of graphene–water MMs (A12

without the patterned graphene metasurface) (reproduced with permiss

1520 | Nanoscale Adv., 2021, 3, 1515–1531
of the GCDR structures. The coupling effect between the two
graphene rings obviously enhanced the THz absorption, with
stronger dissipating ability and wider bandwidth. Moreover, to
further broaden the absorption bandwidth, Wu et al.69 proposed
broadband MMs based on the self-affine fractal Hilbert curves,
in which the self-affine multi-scale structures could induce
different resonant frequencies, and the rst ve (I–V) iterative
levels of the Hilbert curves are shown in Fig. 4c. As shown in
Fig. 4d, with the increment of the Hilbert curve level, the
responsive absorption bandwidth was clearly broadened for the
multiple resonant behaviors, which originated from the self-
affine structures.

3.1.2 Multi-layer graphene MMs. Multi-layer graphene
MMs were also commonly introduced to achieve broadband
THz protection. The resonant frequencies and coupling effects
can be manipulated by designing the graphene patterns of each
metasurface to enable the multi-layer graphene MMs to
respond to more frequencies and wider THz band-
widths.15,28,70–78 Rahmanzadeh et al.15 designed the three-layer
MMs composed of different graphene metasurfaces with
square, cross and circle-shaped patterns, respectively. The
multi-layer structures and graphene patterns of each layer are
shown in Fig. 5a–d. According to the equivalent circuit model,
the patterned graphene layers could be simulated as the
dispersion complex impedances (Fig. 5e), in which the
(d) Simulated THz absorption and reflection of graphene–metal MMs
iety of Chemistry). (e and f) Schematic view of a graphene–water MMs
: graphene–water hybrid MMs, A1: A12 MMs without water, A2: A12 MMs
ion from ref. 94 Copyright 2020 Elsevier).

© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0na01046d


Review Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ja

nu
ar

 2
02

1.
 D

ow
nl

oa
de

d 
on

 2
4.

01
.2

6 
20

:4
7:

26
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
structural parameters could be theoretically designed for the
optimal absorption performance. The THz absorption results of
the full-wave simulation shown in Fig. 5f revealed that the
multi-layer graphene MMs achieved ultra-wide effective band-
width, ranging from 0.55 to 3.12 THz. By analyzing the induced
electric eld, surface current and power loss density of each
patterned graphene metasurface, it was clear that the SPPs
played a dominant role in the THz dissipation process and
formed the physical absorption mechanism of the multi-layer
graphene MMs. Meanwhile, the simulation results also veri-
ed that the designed structure was omnidirectional and
polarization insensitive; therefore, the MMs could effectively
protect the device under multi-polarization THz incidences
from wide incident angles.

3.1.3 Hybrid graphene MMs. In order to further expand the
THz response bandwidth and strengthen the THz absorption
capability of THz protection materials, it is also effective to
combine graphene with other THz responsive materials, such as
Fig. 7 (a) Schematic structure, operating principle and (b) calculated po
with permission from ref. 110 Copyright 2012 American Chemical Socie
tunable MMs THz absorber based on graphene film (reproduced with p
Schematic view and (i) simulated THz absorption of the tunable MMs TH
from ref. 104 Copyright 2019 Elsevier).

© 2021 The Author(s). Published by the Royal Society of Chemistry
metals,18,79–88 Si,89–93 water94 and other materials.95,96 By reason-
ably designing the meta-structures of each component, the
comprehensive advantages of each material can be utilized.
Peng et al.85 designed the hybrid MMs based on four graphene
shing net structures and double metal rings (Fig. 6a–c). As the
simulated results show in Fig. 6d, the effective absorption
bandwidth of the graphene–metal hybrid MMs could reach as
high as 6.46 THz (1.24–7.70 THz). Meanwhile, the absorber was
insensitive to different polarizations and incident angles of the
THz incidence. The ultra-wide effective THz absorption band-
width of the graphene–metal hybrid MMs was formed by the
following three factors: (i) the SPPs of the graphenemetasurface
were enhanced by the metal metasurface, leading to the
enhancement of the conned eld. (ii) The resonance coupling
of the metal and graphene metasurface could trap the incident
THz wave between the two metasurfaces, which could form
energy exchange and dissipation. (iii) The multiple THz reec-
tions and their superposition between themetasurface and gold
wer reflectance of a graphene THz absorption modulator (reproduced
ty). (c and d) Schematic view and (e) simulated THz reflection of the
ermission from ref. 103 Copyright 2020 John Wiley and Sons). (f–h)
z absorber based on patterned graphene (reproduced with permission
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substrate further enhanced the THz absorption. In addition, the
absorption bandwidth could be broadened by composing gra-
phene MMs with water by taking advantage of the intrinsic
dispersive permittivity of water. Zhang et al.94 designed a gra-
phene–water hybrid MMs THz absorber with an ultra-wide
effective waveband, in which water was encapsulated in the
polytetrauoroethylene (PTFT) dielectric material with the
patterned graphene metasurface on the top (Fig. 6e and f). The
simulated results shown in Fig. 6g present a broad THz effective
bandwidth covering 4.52–9.02 THz. It also could be seen that
the broadband absorption was superimposed by three absorp-
tion peaks, in which two low-frequency absorption peaks were
excited by the graphene metasurface, and the high-frequency
peak was induced by the water. Moreover, by introducing the
lling water, the absorption bandwidth of the hybrid absorber
was obviously increased by 57.34% compared to the absorber
without water, while the absorption peak of the graphene
metasurface was not shied. Otherwise, the graphene–water
MMs absorber was conrmed to be insensitive to the incident
angles and polarizations.

3.1.4 Tunable graphene MMs. Because graphene is
a typical 2D semiconductor, its electron mobility and Fermi
level can be controlled by external stimulations, such as an
electrostatic eld,59,90,97–110 magnetic eld,111,112 optical pump113

and temperature.83,114 The resonance frequencies of the
designed graphene structures can thus be regulated by external
stimulation, which can form effective and broadband THz
absorption. According to the Kubo formula, the surface
conductivity of graphene could be expressed as follows:103
Fig. 8 (a) Cross-section SEM image of the 3D graphene foams. (b) Refle
curves of the T1000 samples with 4 mm thickness at different incident a
Wiley and Sons). (d) SEM image, structural diagram, (e) EDS maps and (f)
with permission from ref. 35 Copyright 2019 American Chemical Societ

1522 | Nanoscale Adv., 2021, 3, 1515–1531
sg ¼ i
e2KBT

pħ2ðuþ i=sÞ

�
EF

KBT
þ 2 ln

�
exp

�
� EF

KBT

�
þ 1

��

þ i
e2

4pħ
ln

�
2jEFj � ħðuþ i=sÞ
2jEFj þ ħðuþ i=sÞ

�
(13)

where KB, e, ħ, s, T and EF are the Boltzmann constant, electron
charge, reduced Planck's constant, relaxation time, temperature
and Fermi level, respectively. From the formula, it is obvious
that the surface conductivity of graphene can be actively
controlled by the Fermi level and temperature. Sensale-
Rodriguez et al. designed an extraordinary controllable THz
modulator by transferring single-layer graphene onto a SiO2/p-
Si substrate (Fig. 7a).110 The carrier concentration and Fermi
level in graphene could be tuned when the voltage employed
between the graphene and back metal was changed. While the
Fermi level was modulated to the Dirac point (V ¼ VCNP), the
THz absorption was at its minimum. Moreover, the THz
absorption increased as the Fermi level shied into the valence
or conduction band, due to the intraband transition of the
available density of states. The calculated power reectance in
Fig. 1b showed that the eld intensity in graphene is maximum
when the optical thickness of the substrate is an odd-multiple of
the THz wavelength, in which obvious absorption swings
occurred when the conductivity in graphene was extraordinarily
controlled. However, the THz absorption was very low and did
not change when the substrate thickness was an even-multiple
of the THz wavelength. Furthermore, by integrating the metal
grating into chemical vapor deposition (CVD)-grown graphene
sheet Salisbury screen MMs, Chen et al.103 realized an electri-
cally tunable hybrid THz MM absorber based on an ion gel/
ction loss curves of some graphene foam samples. (c) Reflection loss
ngles (reproduced with permission from ref. 10 Copyright 2018 John
reflection loss curve of the graphene/Fe3O4 hybrid foams (reproduced
y).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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graphene/stripe Al/polyimide (PI)/Al thin lm structure (Fig. 7c
and d). The Fermi level of the graphene layer could be changed
by the external bias voltage, which could lead to controllable
THz absorbing ability. The experimental results showed that it
is feasible to achieve tunable THz absorption based on gra-
phene grown by CVD with low carrier mobility, and the modu-
lation depth of the THz absorption could reach 25% by applying
relatively small bias voltage (�2 to 2 V), as shown in Fig. 7e.
Then, the numerical simulations based on transmission line
theory and full-wave simulation soware also veried the
measured results. In addition to graphene nanosheets, some
patterned graphene structures were also designed and prepared
for tunable THz absorption. Jin et al.104 designed a coherent
perfect absorber based on the square patterned graphene
structure, which was composed of two alternately arranged
graphene MM layers (Fig. 7f–h). The Fermi level of each stag-
gered metastructure could be independently controlled by the
applied bias voltage distributed on the side. The numerical
simulation results showed that the absorbing frequency peaks
can be effectively controlled by changing the applied voltage
values, and the absorber presented two independent tunable
absorption peaks when the applied voltages of each staggered
metastructure were different (Fig. 7i). Moreover, when the
absorber was stacked by the metastructures in layers, multiple
THz absorption peaks could be formed to achieve an ultra-wide
THz absorbing waveband. Although the preparation of tunable
patterned graphene MMs is currently difficult, it can also be
achieved by template selective etching and some other new
methods.101
Fig. 9 (a) Schematic of electrically and optically controlled graphene foa
absorbing graphene foams. (c) The absorptivity curves of tunable graphen
Schematic of THzwave propagation and interactionwith free electrons in
the laser light and (f) excited by the electric field (reproduced with perm

© 2021 The Author(s). Published by the Royal Society of Chemistry
3.2 Graphene intrinsic THz protection materials

3.2.1 Graphene foams. As an advanced carbon material
with high thermal conductivity, high strength, large specic
surface area, optical transparency and adjustable electromag-
netic response, graphene has been widely used in radar wave
attenuation and showed excellent loss performance;7 therefore,
its THz protection applications have attracted much atten-
tion.10–12,35 In contrast to the reectionmechanism of traditional
metal THz shielding materials, Zdrojek et al.11 prepared exible
THz shielding materials by dispersing graphene nanosheets in
a polydimethylsiloxane (PDMS) matrix, whose shielding effect
was mainly contributed by absorption. The shielding material
showed excellent unit shielding efficiency exceeding 30 dB cm�3

g�1. However, because of their inhomogeneous dispersion and
interface mismatch, the THz shielding materials of this type
would produce large surface reections; thus, the maximum
absorption hardly reached 80%. Therefore, adjusting the THz
characteristics and improving THz attenuation are still chal-
lenging.10 In recent years, with the fabrication development of
3D porous materials, such as graphene foams, THz absorbers
with conductive networks and large surface areas can be
established which can provide excellent impedance matching
and THz energy attenuation.7,10,35,115 Huang et al.10 prepared
a 3D porous graphene foam with a density of only 0.8 g cm�3 by
a solvothermal method (Fig. 8a). The optimal reection loss of
the THz absorber could reach 19 dB at 0.88 THz, and the
effective absorbing bandwidth (reection loss above 10 dB)
could cover 95% of the test band (0.1–1.2 THz) under normal
conditions, as shown in Fig. 8b. Moreover, when the incident
ms for THz modulation and absorption. (b) SEM image of tunable THz
e foams stimulated by different electrical voltages and laser excitations.
the graphene foams (d) without external field excitations, (e) excited by
ission from ref. 36 Copyright 2019 John Wiley and Sons).
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angle was 45�, the effective bandwidth covered the whole test
bandwidth, while the optimal reection loss was 28.6 dB at 0.64
THz (Fig. 8c). It was found that the outstanding THz absorbing
ability of 3D graphene foam mainly originates from the porous
structure and long distance conductive network. On the one
hand, the effective dielectric constant and impedance matching
degree can be optimized by designing the porous structures to
reduce the surface reection. On the other hand, the 3D gra-
phene sheets could induce surface currents under the THz
radiation so that the incident THz energy would be rapidly
decayed in the resistance network by being converted into heat.

3.2.2 Graphene hybrid foams. To further enhance the THz
protection properties, 3D graphene foams composited with
carbon nanotubes,116 Fe3O4 (ref. 35) and other dielectric/
magnetic particles were proposed to perform multiple attenu-
ation mechanisms. Chen et al.35 prepared high-performance
graphene/Fe3O4 3D porous electromagnetic protection foams
with ultra-lightweight and ultra-wide effective wavebands
(Fig. 8d and e). The measured results showed that the 3D foams
could achieve an effective absorption waveband covering 3.4
Fig. 10 (a) Digital images, (b) structural diagram and (c) SEM image of M
with different thicknesses after compression 0, 100 and 200 times (repro
Society). (e) Structural diagram, (f) sectional SEM image, (g) EDS maps,
efficiency curves and (k) reflection loss curves of MXene/GO/Zn2+ com
2020 American Chemical Society).

1524 | Nanoscale Adv., 2021, 3, 1515–1531
GHz to 2.5 THz, while the average reection loss reached �38
dB (Fig. 8f). In addition, the 3D composite foams exhibited
excellent absorption properties under oblique incidence and
different compression strains, while the absorber still main-
tained a stable absorption ability aer 200 repeated
compression/release cycles. The addition of magnetic particles
further regulated the electromagnetic characteristics of the 3D
graphene porous cross-linked structures, which greatly broad-
ened the response waveband and provided a strong techno-
logical foundation for active protection materials according to
the increasingly complex electromagnetic environments in the
future.

3.2.3 Tunable graphene THz protection materials. In
addition, because the Fermi level and carrier concentration
of graphene can be conveniently regulated by some external
stimuli, such as electric eld and optical radiation, THz
absorbing modulation of graphene foams is also available.
Xu et al.36 studied the active modulation behaviors of an
800 nm laser and bias electric eld on graphene foams, and
they realized exible regulation of THz shielding and
Xene/GO 3D foam. (d) Reflection loss curves of MXene/GO 3D foams
duced with permission from ref. 37 Copyright 2019 American Chemical
(h) HAADF-STEM image, (i) THz shielding schematic, (j) THz shielding
posite 3D foams (reproduced with permission from ref. 16 Copyright

© 2021 The Author(s). Published by the Royal Society of Chemistry
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absorbing performance. A schematic of the external stimulus
control and the microstructures of the graphene foams are
shown in Fig. 9a and b. The absorptivity curves shown in
Fig. 9c reveal that the THz absorption was strongly related to
the frequency when there was no external eld, with an
absorptivity change from 0.04 at 0.2 THz to 0.8 at 1.6 THz.
Furthermore, the absorption increased sharply with the
increment of the excitation intensity. The absorptivity
changed rapidly from 0.13 to 0.954 at the low frequency of 0.3
THz, while the absorptivity at the high frequency of 1 THz
varied from 0.62 to 0.995. The excellent THz absorbing
modulation properties can be explained as follows: (i)
without external stimulation, the cross-linked graphene
networks can be regarded as numerous coupling circuits of
resistance, inductance and capacitance; therefore, the time-
varying THz eld could excite induced currents on the cell
wall of graphene. These long-range induced currents atten-
uated rapidly in the high resistance networks, resulting in
sharp decay of the incident THz wave (Fig. 9d). (ii) When the
graphene foams were stimulated by a laser or electric eld,
the nonequilibrium carriers could be generated to raise the
Fermi level to a higher conduction band and enhance the
THz absorption (Fig. 9e and f). (iii) Fundamentally, because
the laser radiation could not penetrate the interior of the
graphene foams, the photo-generated carriers could only be
generated in the shallow layer of the foams. However, the
electric eld could pass through the whole graphene foams,
resulting in more nonequilibrium carriers on the graphene
sheets, which caused a superior regulating effect compared
to laser radiation.
Fig. 11 (a) THz shielding modulation schematic of the MXene film stimul
film. (c) THz transmittance and (d) shielding effectiveness changes under
MXene film at 290 and 95 K without external stimuli. (f) THz transmittance
290 and 95 K. (g) THz shielding effectiveness changes 2 ps after pho
(reproduced with permission from ref. 117 Copyright 2020 American Ch

© 2021 The Author(s). Published by the Royal Society of Chemistry
4. Other 2D THz protection materials
4.1 MXene-based intrinsic THz protection materials

In addition to graphene, MXenes have been commonly used as
2D THz protectionmaterials in recent years.13,16,37,117 MXenes are
2D transition-metal carbide and nitride materials with the
general formula Mn+1XnTx. MXenes have attracted extensive
attention for their unique mechanical, structural, physical and
chemical properties, among which the ultra-high conductivity
(1500 S cm�1) and hydrophilic surface endow them with excel-
lent electromagnetic response characteristics and controllable
structures.9,118,119 2D MXene nanosheets can induce conduc-
tance of incident electromagnetic waves between the nano-
sheets due to their good internal conductivity and particular
layer spacing, which has been proved to enhance the electro-
magnetic absorption effectively.9,120 Furthermore, Jhon et al.121

theoretically conrmed the intrinsic THz response characteris-
tics of MXenes through rst principles. Thus, Ma et al.37

prepared ultra-light and compressible THz-absorbing 3D
porous MXene/graphene oxide (GO) foams by a solvothermal
method (Fig. 10a–c). The absorber combined the advantages of
MXenes and GO, forming tunable and ultra-wideband THz
absorption properties. MXene/GO foams showed high THz loss
efficiency during the whole test range (0.2–2.0 THz) with the
maximum reection loss of 37 dB at 2 THz. Also, when the mass
ratio of MXene and GO was 1 : 5, the absorber presented the
maximum average absorption loss of 30.6 dB. Moreover, aer
compression was repeated 200 times, the THz absorption
performance of the composite foams was almost unchanged
(Fig. 10d). Similar to graphene foam structures, 3D porous
ated by optical radiation. (b) AFM micrograph of a 25 nm-thick Ti3C2Ty
different optical radiation times. (e) THz shielding effectiveness of the
changes after excitation with 800 nm and 950 mJ cm�2 laser pulses at

toexcitation at 290 and 95 K with 800 nm and 950 mJ cm�2 pulses
emical Society).
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MXene/GO foams could produce better impedance matching
and larger induced current loss, and the introduction of
MXenes with high THz response could further improve the THz
absorption performance. By utilizing the cross-linking rein-
forcement of the multivalent metal ions to MXene and GO
nanosheets, Lin et al.16 prepared free-standing, lightweight,
foldable and highly stable MXene/GO/Zn2+ THz shielding foams
by an ion-diffusion-induced gelation method (Fig. 10e). The
measured morphology results showed that a small amount of
the Zn component was evenly distributed in the homogenous
foams, and the nanosheets were tightly packed in the cell walls
of the foams (Fig. 10f–h). The unique cross-linked porous
structures and moderate conductivity endowed the foams with
higher THz shielding ability and lower surface reection
(Fig. 10i). The THz protection test results showed that when the
thickness of the 3D foams was only 85 mm, the electromagnetic
shielding effectiveness could reach 51 dB, while the reection
loss below �10 dB could cover 0.86–2.0 THz (Fig. 10j and k).

4.2 Tunable MXene-based THz protection materials

Because the electric conductivity of MXenes can be inhibited by
external optical stimulation, it is possible to modulate their THz
shielding properties. Therefore, Li et al.117 studied the THz
shielding regulation of MXene lms stimulated by an ultrafast
optical pulse (Fig. 11a). Due to the synergistic effects of THz
absorption and reection, the THz shielding effectiveness per
unit thickness of the highly conductive Ti3C2Ty thin lm with
Fig. 12 (a) Unit cell, (b) structural details in each group, (c) top view acr
phorene MMs (reproduced with permission from ref. 127 Copyright 2
absorbing MMs comprising MCDRs and gold metal separated by a thin la
absorber and MSR absorbers (reproduced with permission from ref. 131

1526 | Nanoscale Adv., 2021, 3, 1515–1531
a thickness of only 25 nm (Fig. 11b) could reach 4 � 105 dB
cm�2 g�1, which indicates that the THz shielding effectiveness
of a micron-thickness lm could reach tens of decibels. Aer
the stimuli of 400 and 800 nm optical pulses, the transient THz
transmittance of theMXene lm could be enhanced within 2 ps.
The THz shielding was suppressed by the photoinduced tran-
sient decrease of the real conductivity components which were
proportional to the THz absorption, leading to more THz
transmission. Additionally, with increasing irradiation time,
the inuence on the THz transmittance and shielding gradually
weakened (Fig. 11c and d). Moreover, the measured results
revealed that the THz shielding effectiveness could be reduced
within nanoseconds through ultrafast optical pulses ranging
from 95 K to room temperature (Fig. 11e–g). Due to these
unique properties, MXenes are promising for the dynamic
control of THz shielding and detection devices.

4.3 Other 2D THz protection materials

Because of the resemble properties observed in 2D materials,
other 2D materials such as phosphorene (2D black phos-
phorus)122–130 and molybdenum disulde (MoS2)131 were also
studied for THz protection in recent research. Based on the
SPPs and localized plasmon resonance in phosphorene, it was
convenient to produce THz-absorbing MMs comprised of
period structural phosphorene arrays. Wang et al.127 designed
ultra-wideband MMs by assembling dozens of phosphorene/
dielectric pairs with different widths, in which the meta-
oss one phosphorene section and (d) THz absorption curves of phos-
019 Springer Nature). (e) Schematic structure of the proposed THz-
yer of silicon dioxide. (f) THz absorption curves of the designed MCDR
Copyright 2019 Elsevier).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Typical THz protection materials

Sample Absorption
Effective
bandwidth

Shielding
effectiveness

Active control
excitations Ref.

Graphene/SiO2/p-Si/Au MMs �0.8@620 GHz — — Electric eld 110
Graphene/polymer/Au MMs 0.95@0.5 THz, 0.97@1.5 THz — — — 56
Porous graphene/cross-shape
Au/liquid crystal/Au MMs

0.96@1THz (TM), 0.97@0.87THz (TE) — — Electric eld 95

MXene/Au nano-slot MMs — — 20 dB@1.0 THz — 13
Patterned graphene/PI/Au MMs — 1.54–2.23 THz 108
Ion gel/graphene/stripe Al/PI/Al MMs �20 dB@0.43 & 0.75 THz — — Electric eld 103
rGO paper 17.6 dB@0.7 THz — 72.1 dB@ 0.6 THz — 132
3D rGO foam 28 dB@1.6 THz 0.2–1.6 THz 28 dB@1.6 THz Electric and

optical eld
10
and 36

WCNT/rGO foam 30 dB 1.5 THz
(0.1–1.6 THz)

61 dB 33

Fe3O4/rGO foam 38 dB (average) 3.4 GHz–2.5 THz 35
MXene/rGO foam 30.6 dB (average) 0.2–2.0 THz 37
MXene/GO/Zn2+ foam 0.86–2.0 THz 51 dB 16
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structures were divided into 4 groups and distributed in 4 layers
(Fig. 12a–c). The widths of the phosphorene stripes were iden-
tical in each group and different in distinct groups. Because of
the asymmetrical structure and strong anisotropy, the simu-
lated THz absorption results of the phosphorene MMs absorber
showed that the absorption above 90% could cover 3.4–9.6 THz
for normal incidence, while the absorber could retain high and
ultra-wideband absorption within the incident angle of around
40� (Fig. 12d). In addition, as a typical 2D semiconductor with
unique electrical, optical and magnetic properties, transition-
metal dichalcogenides (MoS2) were also studied to design
THz-absorbing MMs. Wang et al.131 proposed angle-insensitive
THz absorbing MMs composed of a monolayer MoS2 concen-
tric double ring (MCDR) metastructure and a metal lm sepa-
rated by a dielectric layer (Fig. 12e). For the plasma
hybridization caused by the lateral coupling between the two
separate MoS2 rings, the THz absorption bandwidth and effec-
tiveness could both be improved. Moreover, due to its special
concentric structures, the absorber was insensitive to the inci-
dent angles and polarizations of the THz sources. Compared to
the MoS2 single ring (MSR) MMs with only separate outer or
inter rings, the calculated results conrmed that the MCDRs
absorber demonstrates obviously superior THz absorption in
a wider THz waveband (Fig. 12f).
5. Summary and perspectives

With unique THz response characteristics, MM absorbers based
on 2D materials in the forms of single layer, multiple layers,
hybrid and tunable metasurfaces showed excellent THz
absorbing performance. Recent advances in this eld provided
a sufficient theoretical and practical basis for THz protection,
and the superior properties of 2D material MMs endow them
with wide application prospects. However, due to the prepara-
tion limitations of the patterned 2D material metasurfaces,
current research is mostly focused on theoretical designs and
simulations, which has slowed the practical application of 2D
material MMs. In addition, 3D intrinsic THz absorbing
© 2021 The Author(s). Published by the Royal Society of Chemistry
materials based on porous or ordered 2D materials show
exceptional THz protection performance; they effectively inte-
grate the advantages of the intrinsic properties and structural
characteristics of 2D materials. These special structures could
optimize the surface impedance matching and form THz
multiple scattering and electric transmission loss, which could
realize high-efficiency absorption loss and active controllable
protection performance in a wide THz waveband. Without
considering the material thickness, 3D porous THz protection
materials are more suitable for practical application in high-
performance THz protection devices. Some typical THz protec-
tion materials and their performance are summarized and lis-
ted in Table 1.

The THz protection materials in future 6G applications
should meet application requirements such as reduced
dimensions, light weight, wide effective absorption bandwidth
and high absorbing ability. Meanwhile, THz protection mate-
rials should also realize tunable THz protection performance.
For THz protection MMs, the advances in nanomaterials
science and nano-manufacturing technology should be adopted
to realize enhanced THz protection and tunable characteristics
of 2D materials, and the device integration fabrication ability
should be fully considered to improve their performance in
practical applications. For THz intrinsic protection materials,
the inuence of intrinsic properties (scale, defects, functional
groups and ake sizes, etc.), inner nanostructures (hole struc-
ture or layer spacing, etc.) and doping behaviors with other loss
materials (dielectric or magnetic particles, etc.) on the THz
responses should be systematically studied.
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