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Rhodium catalysis has been extensively used for ortho-C—H functionalization reactions, and successfully
extended to meta-C—H functionalization. Its application to para-C—H activation remains an unmet
challenge. Herein we disclose the first example of such a reaction, with the Rh-catalyzed para-C-H
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The transformation of carbon-hydrogen (C-H) bonds into
diverse classes of carbon-carbon (C-C) and carbon-heteroatom
(C-X) bonds is a cornerstone of organic synthesis. There is
intense interest in the discovery of new strategies for regiose-
lective C-H functionalization.' A daunting challenge is imposed
by the innate inertness of C-H bonds combined with the subtle
reactivity differences among the C-H bonds of a given substrate.
Directing group (DG)-assisted transition metal-catalyzed C-H
activation has proven a successful strategy for regioselective
C-H functionalizations in a general and predictable manner.>
Most commonly coordination of a directing group to a transi-
tion metal to form a kinetically and thermodynamically stable 5-
or 6-membered metallacycle is used to achieve ortho-C-H
functionalization. In sharp contrast, distal C-H activation of
meta® and para* sites is more challenging. In particular, para-C-
H activation, which entails the formation of large macro-
cyclophane type metallacyclic intermediates, has remained
elusive.® In a recent breakthrough, palladium-catalyzed systems
employing a carefully designed ‘D-shaped’ directing group/
linker template, based on a cyanobiphenyl motif, led to the
first examples of distal para-C-H olefinations and acetox-
ylations.>® Subsequent modifications of the 1% generation DGs
through steric and electronic tuning led to 2" generation DGs
capable of effecting para-selective silylations” and acylations.®
To the best of our knowledge, for template assisted para-
selective functionalization palladium catalysis has been
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highly para-selective arene—olefin couplings.

employed so far; albeit, other transition metals are also known to
deliver para-selective functionalization relying on steric and
electronic governance.>® As part of our ongoing interest in C-H
functionalization, we have now translated this reaction into the
realm of rhodium catalysis and we report here the first example
of a Rh-catalyzed para-C-H olefination. Existing Rh-catalyzed
approaches to C-H activation,' using Rh(i)/Rh(m) redox cycles,
are complementary to the Pd(0)/Pd(u) or Pd(u)/Pd(wv) cycles prev-
alent in palladium catalysis. The use of Rh offers benefits over Pd:
(a) in contrast to Pd catalysis, which usually requires super-
stoichiometric quantities of silver salts, Rh catalysis can be per-
formed with alternative, often cheaper, oxidants; (b) compared
with Pd catalysis, which employ monoprotected amino acids
(MPAA) as ligands, the different coordination environment of Rh
is expected to provide advantageous opportunities for stereo-
selective synthesis; and (c) importantly, Rh-catalysis does not
require use of hexafluoroisopropanol (HFIP), often unavoidable
in Pd-catalysed distal C-H activation. With these thoughts in
mind, we set about examining a Rh-catalyzed, DG-assisted distal
para-C-H olefination, as shown in Scheme 1.

We commenced with the olefination of toluene scaffold
DG, by ethyl acrylate (Scheme 2). Our first attempt, using

Present work: First example of Rh catalyzed para-C—H olefination
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Scheme 1 Rh-catalyzed para-C—H olefination.
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[Rh(COD)CI], (5 mol%) as catalyst, N-Ac-Gly-OH (10 mol%) as
ligand, and AgOAc (3 equiv.) as oxidant, was unsuccessful.
However, use of copper trifluoroacetate [Cu(TFA),] as oxidant
with V,05 as a co-oxidant provided the desired para-olefinated
product in 30% yield. Encouraged by this initial result, we
examined how the outcome could be improved by modifying
the DG (Scheme 2). Analysis of cyano-based DGs (DG;-DGs)
showed that the presence of an electron-withdrawing fluorine
substituent (DG,) diminished the yield to 15% whereas an
electron donating methoxy group (DGj;) elevated the yield to
38%. By further enhancing the electron richness of the DG,
the piperonal derivative DG, afforded a 42% yield of the ole-
finated product. The dimethoxy-substituted DGjs gave
a further improvement in yield, to 62%, with 15:1 para
selectivity. The strong o-donating DGs DGe-DGg failed to
provide any of the desired olefinated products. A range of
different tethers, containing carbonyl (T,), sulfonyl (T,), and
silyl (T3) linkers, were tested, as was a nitrile-free biphenyl
template (T,); only the silyl based template T3 successfully
delivered the desired olefinated product under the Rh-
catalyzed conditions. These results indicate that the combi-
nation of sterically bulky silyl linker, nitrile group, and alkoxy
groups present in DGj is crucial for obtaining good yields of
the para-olefinated product.

iPr\s JPr [Rh(COD)CIL, (5 mol%) "Pr\S /Pr
'~pG Cu(TFA), (2 equiv) '~pG
V205 (3 equiv)
+ PCOogEt -
DCE, 120 °C, 24 h
z
CO,Et
o

OMe

NC N: NCOMeNCO

DGy, 30%
(p:others 12:1)

Nf X A X A

OMe

DG,, 15% DG;3, 38% DGy, 42% DG, 62%
(p:others 15:1) (p:others 12:1) (p:others 14:1) (p:others 15:1)

DGg, 0% DG;, 0% DGg, 0%
——————— enhancement of coordination strength
[o] Me Me Me Me
n O5 0
~o ~o

9 BP9 é O é O

Ne NG Q H H

g e O
OMe OMe OMe
OMe
Ty, nd Tz, nd T; (same as DGs), 62% Ta,nd

(p:others 15:1)
———— spacer length optimization c
Yield and selectivity (p:others) determined by the TH NMR of crude reaction mixture
using trimethoxybenzene (TMB) as internal standard

Scheme 2 Evaluation of directing groups.*
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Using best-performing directing group DGs, we optimized
the reaction with respect to oxidants. A wide variety of silver and
copper salts were tested." In contrast to Pd-catalyzed olefina-
tions, silver salts were found to be ineffectual in these Rh-
catalyzed reactions, delivering the olefinated products in only
trace amounts. Use of Cu(TFA), as the oxidant in conjunction
with V,0s5 as a co-oxidant gave a 62% yield of olefinated product
with excellent (15 : 1) para selectivity. Use of CuCl, provided
a lower (30%) yield of product, but a combination of CuCl,,
V,05 and trifluoroacetic acid (TFA) furnished the olefinated
product in excellent (85%) yield, with 15 : 1 para selectivity.**
Interestingly, in the absence of either V,05 or TFA, the yield was
significantly lower (40% and 30%, respectively). Other acidic
additives such as acetic acid (AcOH), triflic acid (CF3SO3;H) and
pivalic acid (Piv-OH) failed to yield the para-olefinated
product.*

With optimized conditions in hand, we explored the scope of
the reaction with respect to olefin (Table 1), arene (Tables 2 and
3), and benzylic substituents (Table 4). With respect to the olefin
coupling partner (Table 1), a range of acrylates reacted effi-
ciently, including alkyl acrylates 2a-2d, cyclohexyl acrylate 2e,
and trifluoroethyl acrylate 2f. The olefinated products were
obtained in excellent yields with synthetically useful para-
selectivities ranging from 7 : 1 to 15 : 1. Apart from acrylates,
vinyl sulfones including methyl vinyl sulfone (2g) and phenyl
vinyl sulfone (2h) also gave the olefinated products, in 48% and
62% yields, respectively.

Next an array of substituted arenes was examined (Tables 2
and 3). For monosubstituted arenes, excellent yields and
selectivities were obtained irrespective of the electronic nature
of the substituent (Table 2). Both electron-rich and electron-
deficient arenes were well tolerated, providing yields of up to
75% with upto 17 : 1 para selectivity.

Table 1 Scope of olefin coupling partners®*

iPr\S_/iPr [Rh(COD)CI], (5 mol%) ipr_/Pr
"~be CuCl, (2 equiv), TFA (2 equiv) '~pe,
V,05 (3 equiv)
. AR >
DCE, 120°C, 24 h
z .

1 R 2, isolated
ipr_/Pr ipr, /Pr ipr_ /Pr iPry_/Pr
Sig, Si Sie i

DGs DGs DGs DGs
z z Z z
CO,Me CO,Et CO,"Bu CO,Bn
2a, 75% (12:1) 2b, 78% (15:1) 2c, 74% (7:1) 2d, 71% 10:1)
iPry /Pr Pry _/iPr iPry /Pr Pry /Pr
[N Siq Si Si
DGs DGs DGs ~DGs
SO ” ’
CO,CH,CF =0 =0
0“>o S Me/s\‘o Ph’s\b

2e, 77% (9:1) 2f, 69% (8:1) 29, 48% (15:1) 2h, 62% (15:1)

“ Ratio of para: others determined by the "H NMR of crude reaction
mixture.
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Table 2 Scope of monosubstituted toluene derivatives™t

iPr\s _,"Pr [Rh(COD)ClI], (5 mol%) iPr\S _,"Pr
"“pe; CuCl, (2 equiv), TFA (2 equiv) '~pG;
V,05 (3 equiv]
N PN 205 (3 equiv) o N
R + R rI
> DCE, 120 °C, 24 h >
3 Z 4, isolated
R
ipry_/Pr 'Pr\ / IPr\ / 'Pr\ / lPr\ /
S
"~pg,
Me. Me.
z
CO,Me CO,Et co, "Bu CO,Bn COZCHZCF;,

4a, 72% (9:1)  4b, 75% (10:1) 4c, 71% (10:1) 4d, 65% (14:1)

'PT\ / ’Pr\ , ’Pr\ / ’Pr\ ,
co Cy CO,Et CO,Et CO,Et

4f,69% (15:1) 49, 64% (3:1) 4h, 72% (8:1)  4i,64% (5:1)

‘Pr\ / ipry /P! ’Pr\ /’Pr

4e, 58% (10:1)

’Pr\ /

“§>

CO,Et

4j, 69% (7:1)

Pry, /P

i ‘f @é %9

CO,Et
ak, 72% (17:1)

CO,Et
41, 68% (8:1)

CO,Et
4m, 71% (10:1)

CO,Et

4n, 64% (5:1)

“ Ratio of para: others determined by the "H NMR of crude reaction

mixture.

Disubstituted arenes were also extremely well tolerated
(Table 3). The reaction was successfully applied to a range of 2,2,
2,5, 3,5 and 2,6-disubstituted toluenes containing methyl, flu-
oro, and/or chloro substituents (6a-6q). The selectivities of
these reactions were generally higher than those observed for
monosubstituted arenes, with all =15 : 1 para selective. Even
a tetramethyl-substituted arene was tolerated, reacting with

ethyl acrylate to give 6r in 61% yield.

The protocol is also applicable to a-substituted toluene
derivatives (Table 4). Substrates bearing methyl, phenyl, or
substituted phenyl substituents at the benzylic position reacted
with methyl or ethyl acrylate to afford para-olefinated products
8a-8d. The reaction also worked well with a more complex
olefin coupling partner, namely, the acrylate derived from

cholesterol, which furnished 8e-8g in 59-68% yield.

The DGj; directing group can be readily removed from the
olefinated product in several ways (Scheme 3). Treatment of 2b
with TBAF furnished the desilylated product 9 in 92% yield
and allowed the DG5 alcohol 10 to be recovered in 88% yield
for reutilization. Alternatively, treatment of 2b with p-TSA
generated the corresponding silanol derivative 11 in 82% yield
along with an 85% recovery of the DG5 alcohol. In principle,
silanol 11 could be further used as a directing group for ortho
functionalization. Therefore, the silyl-linked DG; represents
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Table 3 Scope of disubstituted toluene derivatives in Rh-catalyzed
para-C—H olefination™*

ipr, Pr [Rh(COD)CI], (5 mol%) pr, jPr
b CuCly (2 equiv), TFA (2 equiv) s \DG
° V505 (3 equiv)
S = > S
R * R DCE, 120°C, 24 h Rt
5 z
R 6, isolated
’Pr\ ,‘Pr 'Pr\ ,’Pr ’Pr\ ,‘Pr ‘Pr\ ,‘Pr
|E |E DG5 |E |E DG5
COZMe COZEt COZ"Bu COan

6a, 70% (>20:1) 6b, 72% (>20:1) 6c, 65% (>20:1)  6d, 81% (>15:1)

’Pr\ / ’Pr\ ,’Pr 'P"\ ,’Pr Pr / iPr, /'F'r
~DGs DG5
Me Me cj CI
COsz COZCHZCF3 COZMe COzEt
6e, 67% 6f, 73% 69, 54% 6h, 59% 6i, 62%
(>20:1) (>20:1) (>20:1) (>20:1) (>20:1)
'Pr\ , fpr /’Pr 'Pr\ /P' 'Pr\ , iPr, /Pr
DG5 ~DGs SI\DGs
Me Me
Me' F
z z
COan ,"\Ph COzMe CO,Et CO,Et
6j, 71% 6k 55% 61, 71% 6m, 70% 6n, 65%
(>20:1) (>20:1) (>20:1) (>20:1) (>20:1)
ipry /Pr iPr, JPr ipr, /Pr ipry JPr
/ ) r sf
'“pe, Sispe, "“pe, '“pe,
F Me Me
Me' Me F F F Me' Me
z z z z
CO,Me CO,Et CO,Et CO,Et
60, 56%(15:1) 6p, 63% (>20:1) 6q, 61% (>20:1) 6r,61%

“ Ratio of para: others determined by the '"H NMR of crude reaction
mixture.

a traceless directing group enabling access to multi-
functionalized arenes. While the para-olefinated product 6g
has been treated with KF, KHCO; and H,O0,, it produced the
corresponding silanol (12). The silanol derivative was then
employed under modified Tamao's oxidation condition to
produce corresponding benzyl alcohol (13). Another derivative
2¢ was treated under similar condition to provide the benzyl
alcohol which subsequently oxidized to the corresponding
benzaldehyde derivative (14) in 76% yield. The silyl based
template can act as a nucleophile in presence of TBAF. To
demonstrate that,
thaldehyde (17) was treated with para-olefinated product 2e
and 6c, respectively to produce corresponding benzyl alcohols
(16 and 18 in 83% and 72%, respectively).

4-nitrobenzaldehyde (15) and 2-naph-

This journal is © The Royal Society of Chemistry 2019
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Table 4 Scope of a-substituted toluene derivatives and more
complex olefin coupling partners™!

[Rh(COD)CI]; (5 mol%)

Pry, /"Pr ’Pr\ /
R SI\DG CuCls (2 equiv), TFA (2 equiv)
V7,05 (3 equiv)
+ 2R DCE, 120 °C, 24 h
R 8 isolated

O ’Pr\ /‘Pr

ipr, JPr
SI\

'p,\ ,Pr cl l Py
\

C02Me COzEt Cone
8a, 78% (10:1) 8b, 71% (10:1) °°2"'e
(mono:di - 5:1) (mono:di - 3:1) 8¢, 72% (9:1) 8d, 86% (9:1)
Pry /ip, Me,

8e, 68% (10:1)

O ’Pr\s /’ Pr Me
I\
DG
2

“ Ratio of para: others determined by the "H NMR of crude reaction
mixture.

Isotope labeling experiments were conducted involving an
intermolecular competition using substrate 1a and its deuterated
analogue D;-1a and a Py/Pp, value of 2.9 and ky/kp value of 2.6
were obtained (Scheme 4)." Furthermore, a detailed kinetic study
indicated that the reaction was first order with respect to the
substrate and zero order with respect to the olefin."* Together,
these results suggest that the C-H bond activation is likely to be
the rate-determining step of the catalytic cycle. A plausible cata-
lytic cycle for the para-olefination is shown in Scheme 5. In this
mechanism, the Rh(1) catalyst precursor is first oxidized to Rh(m).
The main steps in the cycle consist of C-H activation, migratory
insertion, B-hydride elimination, and reductive elimination.*

We explored the C-H activation process using density
functional theory (DFT) (Fig. 1). Computations with the M06
functional using a model of DG, with trifluoroacetate anion as
the base predicted that the C-H bond activation follows an
electrophilic aromatic substitution pathway, with a distinct
intermediate Int1, rather than a concerted metalation-depro-
tonation pathway.'®** Transition structures for C-H bond
breaking at the para and meta positions are shown in Fig. 1.

The para transition state, TS1-para, is 6.5 kcal mol ™~ * lower in
energy than the meta transition state TS1-meta. A fragment-
based analysis of the TSs' reveals that the preference for
para-C-H activation is due to a B-silicon effect. The interaction
of the arene with Rh(m) endows it with arenium cation char-
acter, and this interaction is strengthened in TS1-para because

This journal is © The Royal Society of Chemistry 2019
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TBAF
dry THF, rt
Me Me
CO,Et 9, 92%
10, 88 /o OMe
Me Me
OH
Z NC
oM p-TSA O
CO.Et © | EOHH,0
NC l
11,82% 10, 85% OMe
COZEt OMe
Me Me Me Me
OH
e
KF, KHCO;4 Me Me
e 30% H202 Me KHF3, KF
THF:MeOH ( H20,, KHCO3
MeOH:THF (1:1) z
,12h ~o
S=!
—0 oM s:O ‘\o
Ph/s\\’ ©
13, 92%
12 81%
Me Me a. KF, KHCOj, 30% Hy0,, THF:MeOH (1:1)
b. KHF,, KF, H,0,, KHCO3
MeOH:THF (1:1), 1t, 12 h
c. Ag,0
THF, 80 °C
COZ"Bu
Z NC 14, 76%
n
CO,"Bu OMe No2
Me Me
CHO TBAF, THF
,12h
NO,
Z NC
COZCy ome 15 CO;Cy
16, 83%
Me Me ‘
e TBAF, THF
+
e O
COZ"Bu ome 17
CO,"Bu
18,72%

Scheme 3 Removal of the directing group and diversification of the
para-olefinated products.™*

the C-Si bond (which lies perpendicular to the ring) stabilizes
the positive charge through hyperconjugation. Computations
also revealed the roles of the DG methoxy and nitrile substitu-
ents."” Incorporation of two methoxy groups on the DG activates
the substrate toward C-H bond breaking, lowering the barrier
by 1.6 kcal mol " relative to TS1-para. A TS in which the nitrile
is not bound to Rh was computed to be 23 kcal mol " higher in
energy than TS1-para, indicating that the coordination of the
nitrile to Rh strongly stabilizes the C-H activation transition
state.

Chem. Sci,, 2019, 10, 7426-7432 | 7429
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ipr_ JPr
Sie
DGs A co,Et

ipry_/Pr ipr, /Pr

[Rh(COD)Cl, (5 mol%) \S(‘DG ",

CuCly (2 equiv), TFA (2 equiv) s D DGs

1a; 0.1 mmol V,05 (3 equiv) | A5 o

- . + - s
Pry_/Pr DCE, 120 °C, 20 h 7

I\
D DGs z z
| N, Pi/Pp-2.9 & kylkp-2.6 (o ey Coet
5

Dz-1a; 0.1 mmol

Scheme 4 Experiments with a deuterium-labeled substrate.**

[Rh!(COD)CI],
HoX reducti l substrate,
-X reductive
elimination, (RhIIL] CF3CO,~
oxidation/—— n.
[L,RA"H
product
B-hydride
elimination
R, /R
Si\O C-H bond OMe
activation via

aromatic OMe

electrophilic ﬁ
substitution

[L,RAM]

R
R, R
i’
migratory Si ~o0
insertion

[LnRT”]—NEC

[LRhM—N=C
RO,C™X HO® O

Int2
CFy

/= Int3

RO,C olefin

TFA  coordination

Scheme 5 Possible catalytic cycle for para-selective Rh-catalyzed
olefination.

TS1-meta
AG, =65

Fig.1 Transition states for Rh(i)-mediated para-C—H and meta-C-H
bond activation, computed with M06/6-311+G(d,p)-SDD//M06/6-
31G(d,p)-LANL2DZ in SMD dichloroethane. Distances in A,
AGly in kcal mol ™.

Conclusions

In summary, herein we have reported the first example of a Rh-
catalyzed distal para-C-H functionalization reaction. The Rh-
catalyzed olefination of toluenes using the Si-linked DGs
directing group displays broad substrate tolerance. Electron-

7430 | Chem. Sci., 2019, 10, 7426-7432
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rich and electron-deficient arenes are coupled with electron-
deficient olefins in high yield and selectivity. Mechanistic
studies are consistent with a catalytic cycle in which the C-H
bond activation is rate-determining. This work reveals the
potential of Rh catalysis to diversify the scope of functionali-
zations in the realm of remote para-C-H activation.
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We also considered several other mechanisms in which the
CH bond cleavage step is mediated by either Rh(ur) or Rh(1),
details are provided in the ESL{
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