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A palladium-catalyzed oxidative borylation reaction of conjugated
enynones is developed. This reaction represents a new method for
the synthesis of furyl-substituted alkenylboronates. The reaction
works well with a series of conjugated enynones. Boryl migratory
insertion of the palladium carbene intermediate is proposed as the
key step in these transformations.

Transition-metal-catalyzed carbene-based cross-coupling reactions
have emerged as powerful synthetic methods for C-C and C=C
bond formation." In these transformations, the organometallic
species, which can be generated from oxidative addition,
transmetalation,> C-H activation® or other processes,’ reacts
with a carbene precursor to form a metal carbene intermediate.
Then, carbene migratory insertion occurs to generate a new organo-
metallic species that undergoes further transformation to afford
various coupling products. Diazo compounds are the most common
carbene precursors, which can be decomposed by transition-metal
catalysts to generate a metal carbene species with the release of
nitrogen gas.® Recently, we have explored other carbene precursors
for this type of coupling reaction.” In particular, we have previously
focused on the carbene coupling with conjugated enynones, which
have been used as furyl carbene precursors in traditional carbene
transformations,® such as X-H insertion,’ cyclopropanation,® ylide
formation'* and other transformations.”> We have developed a
series of transition-metal-catalyzed cross-coupling reactions between
conjugated enynones and various coupling partners, demonstrating
that the migratory insertion can also be applied to these non-
diazo carbene precursors.'® These reactions constitute efficient
approaches for the synthesis of furan derivatives, which are
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important frameworks of many bioactive compounds and
pharmaceuticals.™*

As a continuation of our interest in carbene-based coupling
reactions, we have envisioned that a boron-metal species
generated from transmetalation between diboron compounds
and transition-metal catalysts may also participate in carbene
migratory insertion to form C-B bonds followed by B-H elimination,
which may provide a new method for the synthesis of alkenyl-
boronates (Scheme 1a).">'® Alkenylboronates are versatile building
blocks in transition-metal-catalyzed cross-coupling reactions and
other functional group transformations.'” The established methods
for their synthesis include alkyne borylation,'® alkene cross-
metathesis,'® Miyaura borylation,?® alkene C-H borylation,>"
Boryl-Heck reaction®” and Boron-Wittig reaction.>® Nevertheless,
the methods for the synthesis of furyl-substituted alkenylboronates
are still rather limited.** Herein, we reported a palladium-catalyzed
oxidative cross-coupling reaction between conjugated enynones
and diboron compounds for the synthesis of furyl-substituted
alkenylboronates (Scheme 1b). We have also demonstrated the
transformations of the furyl-substituted alkenylboronates.

The investigation was initiated with conjugated enynone 1a
and bis(pinacolato)diboron 2a as the model substrates. The
reaction was carried out in methanol at 40 °C with Pd(OAc), as
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Scheme 1 Carbene boryl migratory insertion for the synthesis of alkenyl-
boronates.
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Table 1 Optimization of the reaction conditions?

Pd Catalyst (5 mol%)

(o}
Ligand (10 mol%)
1 o o, 0 Base (2 equiv)
+ B_B\ n .
\\ o] o) Oxidant (1.2 equiv) O—B\ npr
By MeOH (0.05 M), 40 °C O
1a 2a 3a

N,

Entry  Pd catalyst Ligand Base Oxidant Yield® (%)
1 Pd(OAc), PPh, KOAc BQ 51

2 Pd(PPh;), — KOAc  BQ 35

3 Pd(PPh;),Cl, — KOAc BQ 37

4 PA(TFA), PPh, KOAc  BQ 48

5 Pd(OAc), PPh; K,COj3 BQ 19

6 Pd(OAc), PPh, K;PO, BQ Trace
7 Pd(OAc), PPh; KOMe BQ Trace
8 Pd(OAc), PPh, KOAc 2,5-DPhBQ 63

9 Pd(OAc), PPh, KOAc 2,6-DMBQ 65

10 Pd(OAc), PPh, NEt; 2,6DMBQ 67

11 Pd(OAc), PPh, 'Pr,NEt 2,6-DMBQ 78

12° Pd(OAc), PPh, 'Pr,NEt 2,6-DMBQ 78

134 Pd(OAc), PPh, 'Pr,NEt  2,6-DMBQ  80(80)°

% Reaction conditions are the following if not otherwise noted: 1a
(0.1 mmol), 2a (0.12 mmol), Pd catalyst (5 mol%), ligand (10 mol%),
base (2 equiv.) and oxidant (1.2 equiv.) in methanol (2 mL) at 40 °C for 10 h.
b Determined by 'H NMR using nitromethane as the internal standard if
not otherwise noted. ¢ Pd(OAc), (2 mol%), PPh; (5 mol%). ¢ 2a (2 equiv.),
2,6-DMBQ (2 equiv.). * E/Z = 10:1. Isolated yield shown in brackets.

the catalyst, PPh; as the ligand, KOAc as the base and benzo-
quinone (BQ) as the oxidant. Gratifyingly, we could observe the
corresponding product 3a in 51% yield (Table 1, entry 1). Some
other palladium catalysts such as Pd(PPh;),, Pd(PPh;),Cl, and
Pd(TFA), were then examined, however, the yields were slightly
diminished with these palladium catalysts (entries 2-4). We
also investigated the effect of substituted benzoquinones (entries 8
and 9). The yield could be improved to 65% with sterically-bulky
2,6-dimethylbenzoquinione (2,6-DMBQ) as the oxidant (entry 9).
Inorganic bases such as K,CO;, K;PO, and KOMe gave inferior
results due to the side reactions (entries 5-7). Organic bases such
as triethylamine and diisopropyl ethylamine were found to afford
better results (entries 10 and 11). With diisopropyl ethylamine as
the base, the catalyst loading was further reduced to 2 mol%
(entry 12). Finally, increasing the loading of 2a and oxidant to
2 equiv., the reaction could give 80% yield with 10:1 E/Z
ratio (entry 13). The configuration of the double bond of 3a
was confirmed by "H NMR analysis of the protodeboronation
product of 3a.>®

With the optimized conditions in hand, the scope of conjugated
enynones was evaluated (Scheme 2). It should be mentioned that
the hydrogens on the carbon adjacent to the alkyne moiety of the
enynone substrates are required. Thus, a f-hydride elimination
process can occur to complete the catalytic cycle. We first investi-
gated the conjugated enynones bearing the primary alkyl group
adjacent to the alkyne moiety (Scheme 2). The coupling reaction
worked smoothly in all cases, affording a series of trisubstituted
alkenylboronates in moderate to good yields and high stereo-
selectivities (3a-n). Notably, the enynone substrates 1f-1 are all
1:1 mixtures of E/Z isomers. However, the reaction with the
mixture of (E)- and (Z)-enynones afforded the corresponding
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Scheme 2 Scope of the enynones. Reaction conditions: 1a—g (0.2 mmol),
2a (0.4 mmol), Pd(OAc), (2 mol%), PPhs (5 mol%), 'ProNEt (0.4 mmol), and
2,6-DMBQ (0.4 mmol) in MeOH (4 mL) at 40 °C for 10 h. ?Isolated yields
using column chromatography. ® The E/Z ratio was determined by *H NMR.

products through cyclization of the ketone carbonyl oxygen
in moderate to good yields (3f-1), which indicated that the
isomerization of the double bonds occurred easily under the
reaction conditions. Functional groups, such as phosphate and
cyano groups, were tolerated in this reaction (3m-n). Furthermore,
several conjugated enynones bearing secondary alkyl groups
adjacent to the alkyne moiety were explored, leading to the
formation of tetra-substituted alkenylboronates. The reaction
proceeded smoothly and afforded the acyclic or exocyclic products
in good yields (30-s).

We also evaluated other diboron compounds, which are typically
used in borylation reactions (Scheme 3). The use of B,mpd, and
B,dmpd, gave the corresponding alkenylboronates in good yields
and good stereoselectivities (4a-b). However, for the diboron
compounds B,neo, and B,cat,, no desired products were
observed (4c, 4d).

To demonstrate the synthetic utility of furyl-substituted
alkenylboronates, further transformations of 3q were carried

This journal is © The Royal Society of Chemistry 2019
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Scheme 3 Scope of the diboron compounds. Reaction conditions: 1a
(0.2 mmol), 2b—e (0.4 mmol), Pd(OAc), (2 mol%), PPhs (5 mol%), 'ProNEt
(0.4 mmol), and 2,6-DMBQ (0.4 mmol) in MeOH (4 mL) at 40 °C for 10 h.
Isolated yields. The E/Z ratio was determined by *H NMR.

out (Scheme 4). First, protodeboronation could occur in the
presence of a silver catalyst (5a). Alkenyl chloride or bromide
could be formed with stoichiometric copper halides (5b-c).
Besides, the alkenylboronate could be easily oxidized into a
ketone with sodium perborate as a mild oxidant (5d). Finally,
Suzuki-Miyaura coupling of 3q with 4-bromo-1,1’-biphenyl or

5a, 77%

AgNO; (6 mol%) CuCl, (2 equiv)

" THF/H,0O
Et3N (1 equiv) o 2
EtOH/H,0 70°C,8h
80°C,2h
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Scheme 4 The transformations of furyl-substituted alkenylboronates.
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Scheme 5 The proposed reaction mechanism.

(1-bromovinyl)benzene could afford the furyl-substituted alkene
and 1,3-diene in good yields (5e-f).

On the basis of our previous studies,'® a plausible mechanism
has been proposed for the Pd-catalyzed oxidative borylation
reaction (Scheme 5). First, palladium acetate reacts with diboron
compound 2 through transmetalation to generate the palladium(u)-
boron species B,*® which activates the alkyne moiety of conjugated
enynones 1 to form palladium-carbene complexes C. Then boryl-
migratory insertion occurs to generate intermediate D, followed by
B-H elimination to produce the final product 3. The intermediate E
undergoes reductive elimination in the presence of a base to
produce Pd(0), which can be oxidized by 2,6-DMBQ to regenerate
catalytically reactive Pd(u) species A to complete the catalytic
cycle. The E selectivity is presumably attributed to the different
steric hindrances of the furyl and boryl groups in the cis f-H
elimination step.

In summary, we have developed a Pd-catalyzed oxidative
borylation reaction of conjugated enynones as the carbene
precursors. A wide range of substrates were tolerated in this
reaction, and various furyl-substituted alkenylboronates were
obtained in good yields. The products could be converted into
various furan derivatives, demonstrating the synthetic utility of
this reaction. The strategy by using carbene boryl migratory insertion
to form C-B bonds may open a new door for the synthesis of
organoboron compounds.
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