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design of metal chalcohalide
semiconductors: from chemical composition to
crystal structure†

Daniel W. Davies, a Keith T. Butler, *a Jonathan M. Skelton, a Congwei Xie,b

Artem R. Oganov cde and Aron Walsh *fg

The standard paradigm in computational materials science is INPUT: STRUCTURE; OUTPUT: PROPERTIES, which

has yielded many successes but is ill-suited for exploring large areas of chemical and configurational

hyperspace. We report a high-throughput screening procedure that uses compositional descriptors to

search for new photoactive semiconducting compounds. We show how feeding high-ranking element

combinations to structure prediction algorithms can constitute a pragmatic computer-aided materials

design approach. Techniques based on structural analogy (data mining of known lattice types) and global

searches (direct optimisation using evolutionary algorithms) are combined for translating between

chemical composition and crystal structure. The properties of four novel chalcohalides (Sn5S4Cl2, Sn4SF6,

Cd5S4Cl2 and Cd4SF6) are predicted, of which two are calculated to have bandgaps in the visible range of

the electromagnetic spectrum.
I. Introduction

The past decade has seen the emergence of many databases for
computed materials properties from quantum mechanical
calculations.1–7 This has made it possible to virtually screen
through enormous amounts of data in the search for promising
materials for energy applications such as photovoltaics,8–10 solar
fuels,11–15 and thermoelectrics.16–18 Furthermore, these data-
bases are facilitating the move towards more predictive mate-
rials design using data-mining, machine learning, and other
statistical techniques to reveal hitherto undiscovered trends
and rules.19–29 In order to search for Earth-abundant materials
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for energy applications, it is important to move beyond known
materials and extend screening criteria to new compositions
and structures.

There are vast areas of unexplored chemical space for inor-
ganic compounds.30 Such a space is intractable to high-
throughput rst-principles computation, even with tremen-
dous advances in computing power and algorithms. As such,
a different approach is required to efficiently explore the search
space – one that is less computationally demanding overall, but
sufficiently accurate.

One modern tool that is providing impressive leaps forward
in this area is machine learning (ML), a subeld of articial
intelligence that involves statistical algorithms whose perfor-
mance improves with experience. A growing infrastructure of
ML tools has enabled its application to complex problems in
many areas of chemistry and materials science.6,20,21 This
includes the development of models that relate system
descriptors to desirable properties in order to reveal structure–
property relationships,31 the prediction of the likelihood of
a composition to adopt a given crystal structure,32 and the use of
quantum-mechanics results as training data to extrapolate and
discover new materials at a fraction of the computational
cost.29,33

Another approach is to apply a hierarchy of screening steps,
based on pre-existingmethods, whereby the fact that accuracy is
low in initial steps is counteracted by the idea that as the size of
the search space that can be screened is so large, the chance of
nding a promising material at the end of the process remains
high. Here we present one such workow incorporating simple
chemical descriptors, data mining from public databases,
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Computer-aided-design workflow used for exploring novel photoactive semiconductors. SMACT refers to our screening package, SSE
refers to the solid-state energy scale, HHIR refers to the Herfindahl–Hirschman Index for sustainability, while DFT refers to density functional
theory.
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density functional theory (DFT) calculations and global struc-
ture searching algorithms (Fig. 1) to translate from a composi-
tional search space to compounds predicted to have target
properties by quantum-mechanical calculations.

We employ a multi-stage screening approach in a search for
new photoactive semiconductors. While metal oxides combine
many attractive properties for energy materials (e.g. chemical
stability and low cost), they usually have bandgaps too large to
absorb a signicant fraction of sunlight. The formation of
multi-anion compounds offers a route to modifying the elec-
tronic structure, so we consider all ternary metal chalcohalides,
(i.e., AxByCz with B ¼ [O, S, Se, Te] and C ¼ [F, Cl, Br, I]). As
a target application, we search for materials for solar fuel
generation, specically for photoelectrochemical water split-
ting, where a set of well-dened screening criteria enables us to
quickly narrow down the search space. Our searching method-
ology is built on already established and freely available mate-
rials design tools (SMACT, PYMATGEN and USPEX) and can be adapted
to search for different classes of materials, in a wide range of
contexts of technological interest.
II. Results
II.I. AxByCz compositional screening

There exist various compositional descriptors that enable the
low-cost ltering of chemical space. One such tool is the solid-
state energy (SSE) scale,34 which can be used to estimate the
positions of the valence band maxima (VBM) and conduction
This journal is © The Royal Society of Chemistry 2018
band minima (CBM) of a semiconductor with respect to the
vacuum level using solely the identity of the constituent ions.
We employ the SSE scale to carry out our compositional
screening (see Computational methods section for details).

First, the SMACT code30 is used to narrow down the ternary
compound search space of roughly 32 million compositions to
the chalcohalide search space of 161 000 compositions. The SSE
scale is then used to screen for suitable bandgaps and band-
edge positions. The A cations are restricted to those with
a SSE higher than the water reduction potential (approximately
4.5 V in relation to the vacuum at pH ¼ 0) and the bandgap
window was set to 1.5–2.5 eV. The latter criterion is set to a value
range higher than the free energy for water dissociation (1.2 eV),
in order to compensate for the combination of loss mechanisms
found in practical devices that mean a bandgap as large as
2.2 eV could be required.35,36 This results in in 7676 candidate
AxByCz compositions with unique x, y, z stoichiometries.

Next, we sort the candidates by the sustainability of their
constituent elements based on the Herndahl–Hirschman
Index for elemental reserves (HHIR).37 The HHIR includes
factors such as geopolitical inuence over materials supply and
price, and for a given composition can be obtained as the
weighted average over the constituent elements. At this stage,
because stoichiometry is variable, we consider the mean value
for each AxByCz chemical system. The six most sustainable
chemical systems according to this scale are SnxSyXz, CdxSyXz

and TixSyXz, where X ¼ [Cl, F]. Of these, the Sn- and Cd-
containing compositions are selected and Ti3+ compounds are
Chem. Sci., 2018, 9, 1022–1030 | 1023
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excluded due to the d1 electronic conguration being linked to
fast electron–hole recombination, and, more practically, the
well-known challenges for electronic-structure modelling due to
the high correlation.38

The HHIR scores of ZnxSyXz and CdxSeyXz are the next lowest
in the ranking, making these the next most sustainable
according to this scale. This is because Zn and Se have higher
HHIR scores than Ti and S respectively. These systems could be
of interest for future studies in the same spirit, particularly the
Zn-containing compositions due to their low toxicity. This rapid
screening process based on composition alone constitutes the
rst phase of our overall procedure (part 1 of Fig. 1).

II.II. From chemical composition to crystal structure

Although compositional screening is a key initial step in
materials exploration, the precision with which physical prop-
erties can be predicted from chemical composition alone is
limited. In order to move to the next level of accuracy and make
quantitative predictions, we must introduce a three-
dimensional model of the arrangement of atoms in space. To
our knowledge, no compounds of the compositions identied
by our screening process have yet been reported, so the crystal
structures must be predicted. Crystal structure prediction is
a long-standing challenge in materials science,39 due to the
large number of degrees of freedom (lattice vectors and internal
coordinates) and poor scaling with increasing system
complexity.

We combine two machine learning approaches for gener-
ating candidate crystal structures from chemical composition,
viz. (1) analogy with known crystal structures reported in crys-
tallographic databases, and (2) direct global crystal structure
searching. The rst approach has a much lower computational
cost, exploiting data on existing compounds, and we use this
step to assess the metastability of a candidate composition.
Those compounds that fall within an acceptable window of
metastability are then passed to the second method, which is
a more rigorous search of congurational space and allows for
new structure types to be adopted.

For crystal structure prediction by analogy, we adopt the
structure substitution algorithm developed by Hautier et al.,40

as implemented in the PYMATGEN framework.41 In this method,
Fig. 2 Illustration of the process of crystal structure prediction by ion
substitution into existing lattice types. The Hg5O4Cl2 structure (a) is
identified as a candidate structure for the CdxSyClz chemical system.
The Hg2+ (grey balls) and O2� ions (red balls) are replaced by Cd2+

(purple balls) and S2� ions (yellow balls), respectively, to produce the
Cd5S4Cl2 structure (b). Forces on the ions are then minimised using
DFT with the PBEsol functional43 to produce the relaxed structure (c).

1024 | Chem. Sci., 2018, 9, 1022–1030
a combination of ions are substituted onto lattice sites in
known structures from the Inorganic Crystal Structure Database
(ICSD).42 Each ion substitution is associated with a certain
probability, which comes from a statistical model trained on the
compounds that already exist in the ICSD. If the overall prob-
ability for a given set of substitutions is above a certain
threshold, it is added to a list of possible structures. This
substitution process is performed on each known crystal
structure in the database.

For each S-for-O of the four compositions, the candidate
crystal structures are locally optimized using DFT calculations
and the structure with the lowest energy per atom selected.
Fig. 2 illustrates this process for one of the structures suggested
by the algorithm for the CdxSyClz chemical system. In this case,
the structure suggested is based on Hg5O4Cl2 due to the high
probabilities associated with both Cd-for-Hg and S-for-O
substitutions. Table 2 contains the chemical formulae of the
four compounds deemed to be the most stable as a result of this
process, along with the formulae of their parent structures in
the ICSD. We next assess the thermodynamic stability of the
candidate materials.
II.III. Thermodynamic metastability

By calculating the total energies of all the competing phases of
a chemical system, one can construct an energy – composition
phase diagram and assess the stability of a given compound
with respect to polymorphic transformations and phase sepa-
ration. By creating a bounding surface between the lowest
energy phases of each composition, a convex hull is constructed
above which metastable compounds fall. A key value of interest
Fig. 3 Simulated phase diagrams for the Cd–S–Cl2, Cd–S–F2, Sn–S–
Cl2 and Sn–S–F2 chemical systems. Stable phases (circles) are con-
nected by black tie-lines forming the convex hull, and unstable phases
(crosses) sit above the hull. Those that are above a stable phase are
unstable with respect to polymorphic changes and those above a tie-
line are unstable with respect to decomposition into the stable phases
at each end. The labels indicate the new phases discovered in this
work.

This journal is © The Royal Society of Chemistry 2018
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for assessing the metastability of a compound is this energy
above this convex hull (Ehull).

Fortunately, the existence of databases of DFT total energies
have all but eliminated the need for carrying out calculations for
all phases of a given chemical system. Instead, one can perform
calculations on new compounds using identical parameters to
those used for the data in a given database, thus allowing for
direct comparison of energies. Similarly, one can use the energy
values in a database to construct a phase diagram and identify
where on the diagram the new phase would appear. In doing so,
the set of polymorphs and decomposition products that require
explicit calculation can be identied. We note that it is standard
to calculate such convex hulls based on internal energies, which
neglect nite temperature contributions to the free energy of
a compound.

Here, we use the Materials Project database to construct
phase diagrams using the PYMATGEN code,41 and hence identify
decomposition products. As mentioned above, and as depicted
in the phase diagrams in Fig. 3, it is not necessary to consider
competing polymorphs as no compounds have yet been
Fig. 4 Crystal structures of the four candidate compositions as pre-
dicted by analogy through data mining of other structures and by
a first-principles global structure search algorithm.

This journal is © The Royal Society of Chemistry 2018
reported for these compositions. As can be seen from Table 2,
all of the values of Ehull for the structures predicted by analogy
lie between 18 and 97 meV per atom. Hence, all the compounds
can formally be described as thermodynamically metastable at
0 K, but does this rule out their existence?

Metastable materials exist and are ubiquitous in both nature
and technology. This includes obvious examples such as dia-
mond vs. the lower energy allotrope of carbon, graphite, as well
as classes of materials such as zeolites and metal–organic
frameworks.44 It was recently estimated by Sun et al. that around
half of all known inorganic materials are metastable.25 Whether
or not the value of Ehull is enough to predict the likelihood of
successful synthesis of a material is a question that has yet to be
answered. In the same work by Sun et al., it was shown that the
likelihood of existence drops off exponentially as Ehull increases.
The exact rate of the drop depends on the chemistry of the
system. We use 100 meV per atom as a guiding principle for the
maximum Ehull, as this criteria covers approximately 90% of
compounds in the Materials Project database that represent
fully-characterised structures in the ICSD. The four structures
found by analogy all fall within this metastability window, so
they are all carried forward to the global structure searching
stage.
II.IV. Global structure search

The structure from analogy approach provides an attractive
route to obtaining sensible crystal structures with reasonable
energies, however it does not provide a rigorous route to
obtaining the true ground state. Finding the true global ground
state structure for a given chemical composition is one of the
outstanding problems of theoretical chemistry. Whilst exhaus-
tive searching of parameter space is the only way to nd
a guaranteed global minimum structure, this approach quickly
becomes impractically expensive for even simple chemical
systems. Global searching, based on evolutionary algorithms
offer a solution to this problem and have had enormous success
in discovering new ground state crystal structures. Here we use
USPEX to apply an evolutionary algorithm and perform a global
structure search.

For each of the four compositions, the global structure
search algorithm45,46 yields a different crystal structure to that
found by analogy with known structures (Fig. 4). For each of the
structures generated by the global search, there is no way in
which the data-mining algorithm could have arrived at the same
result. This is an intrinsic limitation of the data-mining
approach, as it relies on a database of known structures and it
is therefore incapable of predicting new structure types. Three
of the four compounds adopt structure types that have not yet
been reported, disregarding those with fractional occupancy on
some lattice sites. The remaining compound, Cd5S4Cl2, adopts
the same structure type as Li5BiO5.47 However, this substitution
is rejected by the structure prediction algorithm on the basis
that the resulting formula is not charge neutral – the structure
we nd is partially inverted in terms of anion/cation occupancy.

The values of Ehull for the structures predicted by global
structure search are also shown in Table 2, and are universally
Chem. Sci., 2018, 9, 1022–1030 | 1025
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Table 1 Structural information for the minimum energy compounds

Compound Space group a (Å) b (Å) c (Å) Formula units per cell

Sn5S4Cl2 Pma2 17.529 5.771 5.817 2
Sn4SF6 R3 8.615 8.615 9.528 3
Cd5S4Cl2 Cm 14.507 4.212 15.631 2
Cd4SF6 R�3m 3.832 3.832 37.148 3
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lower than those found by analogy. While the structural analogy
procedure is limited by the diversity of known structure types,
the global structure search approach is restricted only by the
structural complexity (number of formula units) included in the
search. A holistic assessment of performance in the context of
high-throughput screening must however also take into account
time and resources: the data-mining algorithm takes only a few
minutes to run on a desktop computer, while the global struc-
ture searching requires a supercomputing resource where
around 10 000 CPU hours were needed for each material.

In addition to thermodynamic stability, another factor that
cannot be ignored is dynamic stability, to ensure that the crystal
structures are true local minima (and not saddle points) on the
potential energy surface. Finite-displacement calculations were
carried out to obtain the vibrational (phonon) frequencies of
each of the compounds, and no negative-frequency (imaginary)
phonon modes were found at the zone centre (G point) for any
of the structures. Full details of this analysis can be found in the
ESI.†
II.V. Crystal structures and bonding environments

Table 1 contains the space groups and lattice parameters of the
four minimum energy compounds identied at the end of the
screening process.

Sn5S4Cl2. Eight Sn(II) atoms per crystallographic unit cell
adopt an octahedral environment, forming bilayers of edge-
sharing SnS5Cl polyhedra in the bc plane. The polyhedra are
vertex sharing at the Cl atoms, and the other two Sn atoms in
the unit cell reside in the same plane as the halide ions.

Sn4SF6. Sn(II) adopts both 6-and 4-coordinate environments,
with space for a lone pair in each. The Sn-centred polyhedra are
all vertex sharing and have either 6 F vertices (6-coordinate Sn)
or 3 F vertices and 1 S vertex (4-coordinate Sn).
Table 2 The parent-structure formulae from the ICSD compounds ide
relaxation are shown along with the energies above the convex hull (Eanhu
search (Eglobalhull ). The estimated bandgaps from SSEs (ESSEg ) used at the b
ionisation potentials (IP) calculated using a hybrid exchange-correlation fu
carrier electrons and holes from GGA calculations (me

* and mh
*) are also

Compound Parent Eanalogyhull (meV per atom) Eglobalhull (meV per

Sn5S4Cl2 Hg5 (O2Cl)2 96.5 61.8
Sn4SF6 Hg4OF6 51.8 46.7
Cd5S4Cl2 Hg5 (O2Cl)2 83.5 50.2
Cd4SF6 Cd4F6O 18.2 18.0

a When only polar surfaces could be found, a dipole correction termwas ad
bounds to the EA and IP values (see Computational methods section).

1026 | Chem. Sci., 2018, 9, 1022–1030
Cd5S4Cl2. Two Cd(II) atoms per unit cell locate at the centre of
CdS4 tetrahedra, and seven Cd atoms form the centre of CdS3Cl
tetrahedra. The other two Cd atoms form trigonal bipyramids
with 3 S and 2 Cl vertices. All of the polyhedra are vertex sharing
bar one of the trigonal bipyramids, which is edge sharing with
two of the tetrahedra.

Cd4SF6. Eight Cd(II) atoms per unit cell adopt a distorted 8-
fold coordination with Cl atoms. The S atom locates in mono-
layers in the ab plane, and the four Cd atoms that are adjacent
to these layers are 7-coordinate with 3 neighbouring S and 4
neighbouring F neighbouring atoms. All of the polyhedra in the
structure are edge sharing.

Having established promising compositions and their
candidate structures, we next go on to perform quantitative
analyses of the detailed electronic structure of these materials.
II.VI. Optoelectronic properties

The most critical property for any light-harvesting material,
whether for photovoltaic or solar fuel applications, is the
bandgap (Eg). Indeed, the screening procedure we have
employed thus far relies on making initial estimates of Eg at an
early stage, before considering structure or stability. The
calculations required to accurately predict bandgaps are
signicantly more computationally demanding than those
which can satisfactorily predict equilibrium geometry.

The rst-principles values of Eg are presented in Table 2
alongside the bandgaps estimated using the SSE scale. Two of
the compounds found by the screening procedure, Cd5S4Cl2
and Cd4SF6, have bandgaps in the visible range of 2.75 and
2.15 eV, respectively. Sn5S4Cl2 has a bandgap of 0.9 eV, which is
better suited for solar cell or thermoelectric applications. This is
encouraging, given the small set of compounds that have been
brought through to this stage of the screening process and the
ntified by analogy that led to the lowest energy structures after DFT
alogy
ll ), and the corresponding energies predicted after global structure
eginning of the workflow, bandgaps (Eg), electron affinities (EA) and
nctional at the end of the screening workflow, and effectivemasses for
displayed

atom) ESSEg (eV) Eg (eV) EA (eV) IP (eV) me
* mh

*

2.0 0.91 3.30 4.21 0.50 0.40
2.0 3.36 2.45–2.94a 5.81–6.30a 0.86 2.01
1.9 2.75 3.33 6.08 0.18 2.58
1.9 2.15 4.33 6.48 0.25 2.00

ded to the calculation of the surface dipole, which yields upper and lower

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Simulated optical absorption spectra of the candidate materials
from the complex dielectric function. Calculations were performed
within DFT and the non-local HSE06 exchange-correlation functional,
using the independent particle approximation (excluding excitonic and
phonon-assisted transitions).
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qualitative nature of the SSE metric employed to screen the
bandgaps.

Beyond the bandgap, quantum-mechanical calculations can
also provide access to optical absorption spectra via computa-
tion of the complex dielectric function. Fig. 5 shows the simu-
lated spectra of the four compounds of interest. The Cd
compounds display moderate absorption in the visible region,
indicating their potential for use as solar fuel or photovoltaic
materials. Of the two, Cd4SF6 absorbs photons with energy
across more of the visible range but quite weakly, suggesting
that thicker layers would be needed in a device. Meanwhile,
Cd5S4Cl2 absorbs more strongly but at a higher energy, so would
be suited to incorporation into a tandem solar cell.

The absolute band edge positions are also calculated using
surface (non-polar slab) models of the four materials. The CBM
position is the negative of the electron affinity (EA), and as
indicated in Table 2, the EA values are all <4.5 eV. This indicates
that as well as having promising bandgaps, the two Cd-based
compounds have potential for use in photoelectrochemical
Fig. 6 Electron affinities (EA) and ionisation potentials (IP) for the
candidate materials, from DFT calculations of non-polar crystal
terminations. The water redox potentials (dashed orange lines) are also
shown. For Sn4SF6, a dipole correction was added resulting in lower
and upper (blue solid lines) bounds for the IP and EA values.

This journal is © The Royal Society of Chemistry 2018
water splitting applications, with VBM and CBM positions that
bridge the water oxidation and reduction potentials, enabling
the redox reaction. For Sn4SF6, no slab without an overall dipole
could be found, so we instead report a likely range for the EA
and IP values aer applying a dipole correction in the slab
calculation (see Computational methods section). This material
also bridges these energies, but has too wide a band gap, while
the other Sn-containing compound, Sn5S4Cl2, has an appro-
priate EA, but too small a bandgap, as has already been dis-
cussed. This is summarised in the energy band alignment
diagram, Fig. 6.

Finally, carrier effective mass (m*) is a quantity that can also
provide preliminary insight into the performance of a semi-
conducting material, with smaller m* values being more
desirable as this quantity is inversely proportional to conduc-
tivity. The two Cd-containing compounds have lower me

* values
than the Sn-containing compounds (Table 2). This is a result of
the metallic s-states forming the lower conduction band in the
former casewhich give higher dispersion than themore directional
metallic p-states in the latter (Fig. 7a and b). Themh

* values are in
general much higher, with the sulphur and halide p-states
Fig. 7 Orbital-projected local electronic density of states of Cd5S4Cl2,
Cd4SF6, Sn5S4Cl2 and Sn4SF6. s- p- and d-orbital contributions from
the metal species to the density of states near the band edges for the
Cd-containing (a) and Sn-containing (b) compounds. The s- and p-
orbital contributions from S and the halide species to the upper
valence band for the Sn-containing compounds are also shown (c).

Chem. Sci., 2018, 9, 1022–1030 | 1027
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dominating the upper valence band. One notable exception is
Sn5S4Cl2 with a value of 0.40 me. This is a result of strong hybrid-
isation between the Sn s and S p orbitals which form a two-
dimensional Sn–S network along which carriers can transport
without encountering a Cl atom (Fig. 4). This is possible due to the
Sn2+ oxidation state, which results in the Sn s orbitals remaining
occupied. In the case of Sn4SF6, no such Sn–S network exists and S
p states dominate the VBM, while F p states also contribute
(Fig. 7c).

The calculated band structure of Sn5S4Cl2 reveals the pres-
ence of multiple band extrema (“multi-valley”), a sought-aer
feature in the design of thermoelectric materials.48 Further-
more, the effective number of extrema is increased by the
presence of multiple bands within a few kBT in energy of each
other at the R, T, S and U points in the Brillouin zone (see ESI
Fig. S4†).
III. Conclusion

We have introduced a hierarchical screening procedure and
used it to search through a large space of over 161 000
compositions to identify promising candidate photoactive
semiconductors. Using our approach, which relies on compo-
sitional descriptors and exploits existing data, rst-principles
calculations were carried out on a subset of compounds in
order to establish thermodynamic stability, and global structure
searching was employed for the most promising candidates.
This procedure has enabled us to identify four new chalcohalide
compounds, two of which, Cd5S4Cl2 and Cd4SF6, have bandgaps
in the visible range and good absorption properties for solar
fuel applications. Further detailed investigation into the elec-
tronic structure of these materials show that effective electron
and hole conduction should be possible. The approach consti-
tutes a computer-aided materials design procedure that
employs existing knowledge in a targeted manner in order to
traverse the vast chemical hyperspace.
IV. Computational methods
IV.I. Compositional screening

Construction of the search space and subsequent screening
based on SSE and HHIR is carried out with Python 3 on a desktop
computer using the SMACT library, which is publicly available
online at http://github.com/WMD-group/SMACT. First, the
compositional search space of ternary chalcohalides is con-
structed using the SMACT package: the stoichiometry maximum is
set to 8 and only those compositions which pass both the charge
neutrality and electronegativity balance tests form part of the
initial search space. Every possible combination of AxByCz is
generated with B ¼ [O, S, Se, Te] and C ¼ [F, Cl, Br, I]. All known
oxidation states of all elements in each combination are
considered and charge neutrality is assessed by

xqA + yqB + zqC ¼ 0 (1)

where q is the formal charge associated with each species in the
considered oxidation state. Combinations satisfy
1028 | Chem. Sci., 2018, 9, 1022–1030
electronegativity balance when ccation < canion, where c is the
Pauling electronegativity49 of an element. This ensures the most
electronegative elements carry the most negative charge. For
full details of this method of search space construction, the
reader is referred to ref. 30.

The SSE scale34 is used to limit the A cations to those with
a SSE higher than the water reduction potential and the
bandgap window was set to 1.5–2.5 eV. The SSE provides
information on valence and conduction bands on the basis of
the Frontier orbitals of the constituent ions. It reects ionisa-
tion potential of an anion (lled electronic states) and electron
affinity of a cation (empty electronic states). The energies of 40
elements were originally tted from a test set of 69 closed-shell
binary inorganic compounds, and now the SSE values for 94
elements are available.50 The bandgap (Eg) can then be esti-
mated from the tabulated SSE values as

ESSE
g ¼ SSEcation � SSEanion (2)

For multicomponent systems, the limiting SSE values are
used.

IV.II. Crystal structure prediction by analogy

We use the structure substitution algorithm developed by
Hautier et al.,40 as implemented in the PYMATGEN framework41

with a probability threshold of 0.001. For a given composition
the procedure is carried out for each common oxidation state of
the metal (e.g. for SnxsyClz both Sn(II) and Sn(IV) must be
considered).

IV.III. Crystal structure prediction by global searching

Global crystal structure searches are carried out for each of the
candidate compositions using the same stoichiometries as the
lowest energy crystal structures from the prediction by analogy.
This step is only carried out if a structure found by analogy falls
within the dened “metastability window” of 100meV per atom.
Using the evolutionary structure prediction algorithm USPEX,45,46

we perform global structure searches for the candidate
compositions. No constraints are imposed on the shape or
volume of the unit cell, but the search is restricted to one (11
atoms per cell) and two (22 atoms per cell) formula units for
each of the four compositions. In the evolutionary optimisation
procedure, the rst generation contains 80 randomly generated
structures, and the succeeding generations (each with 60
structures) are produced by random (20%), heredity (50%),
permutation (10%), so-mutation (10%), and lattice mutation
(10%) operations as described elsewhere.46

IV.IV. First-principles calculations

All rst principles calculations are carried out using Kohn–
Sham DFT with a projector-augmented plane wave basis51 as
implemented in the Vienna Ab initio Simulation Package
(VASP).52,53

Total energies. For calculating Ehull we use the PBEsol
exchange-correlation functional.43 A Monkhorst–Pack k-point
grid is generated for each calculation with k-point spacing of
This journal is © The Royal Society of Chemistry 2018
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0.242 Å�1. The kinetic-energy cutoff is set at 520 eV and the force
on each atom converged to within 0.005 eV Å�1. The Materials
Project API54 is used to retrieve DFT total energies of known
phases for each chemical system. Phase diagrams are con-
structed to identify decomposition products and the total
energies of these products recalculated in the same manner as
described above.

Dynamical stabilities. Structures are further relaxed using
a kinetic energy cutoff of 700 eV. The normal modes are
calculated within the harmonic approximation, using the
PHONOPY package55–57 to construct and evaluate the force
constants. The nite displacement method (FDM) approach is
used with a step size of 0.01 Å. Each of the unit cells contains N
atoms (where N ¼ 22 or 33) so has 6N (132 or 198) possible
displacements. The number of unique displacements is
reduced to between 11 and 44 depending on the crystal
symmetry. For computational efficiency, phonons are consid-
ered at the G point only.

Optoelectronic properties. Semi-local exchange-correlation
treatments such as the PBEsol functional provide an accurate
description of crystal structures but tend to underestimate the
electronic bandgaps of semiconductors. To overcome this issue,
more accurate electronic structure calculations are performed
using the hybrid non-local functional HSE06,58 which includes
25% screened Hartree–Fock exact exchange. G-centred homo-
geneous k-point meshes are used, the spacings of which are
determined by the magnitude of the lattice vectors, as per Yu
et al.59 and the kinetic energy cutoff is set at 520 eV. For optical
absorption calculations, the dielectric tensor is calculated using
the VASP code following the Kubo–Greenwood method. This is
then used to calculate the absorption via the Kramers–Kronig
relation.

Absolute electron energies (IP and EA values) are calculated
by generating 2D slab models of low Miller index, non-polar
surfaces of the crystal structures. Hybrid DFT (HSE06 func-
tional) is used to calculate the surface dipole, D, which is the
difference between the average electrostatic potential in the slab
and that in the vacuum level. The VBM and CBM positions from
the bulk calculations can then be used to calculated the true
VBM and CBM positions. These are simply the differences
between D and VBMbulk, and D and CBMbulk, respectively.
Convergence with respect to slab thickness and vacuum
distance was achieved within two repeat layers and 15 Å
respectively, in all cases. When no non-polar surfaces could be
found for a material, a dipole–dipole correction, as imple-
mented in the VASP code, was added to the potential. This leads
to an upper and lower limit of the potential in the vacuum level,
and hence an upper and lower limit to D.

Carrier effective masses are calculated using band structures
generated from hybrid DFT (HSE06 functional) calculations.
The SeeKpath code60 is used to generate a suitable path through
the Brillouin zone, which is sampled at a resolution of 0.01 Å�1

between each k-point. In order to calculate effective masses,
a parabola is t to all points from the minimum (maximum) of
the CBM (VBM) to the points kBT higher (lower).
This journal is © The Royal Society of Chemistry 2018
V. Data access statement

The SMACT package can be accessed from https://github.com/
WMD-group/SMACT. Screening results from these calculations
may be reproduced using the Python code available on-line from
https://github.com/WMD-group/SMACT/tree/master/examples.
Optimised structures are available on-line from https://
github.com/WMD-group/Crystal_structures/Chalcohalides. All
other data may be obtained from the authors on request.
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