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Targeting virulence: salmochelin modification
tunes the antibacterial activity spectrum of -
lactams for pathogen-selective killing of
Escherichia colit

Phoom Chairatana, Tengfei Zheng and Elizabeth M. Nolan*

New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic
resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which
include minimal perturbation to the commensal microbiota. We present a strategy for targeting
antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-
negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin.
The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores
allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-
2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated
enterobactin—B-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx),
hereafter GlcEnt—Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where
one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that
GlcEnt—Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli
relative to the parent B-lactams. Moreover, GlcEnt—-Amp/Amx based on a diglucosylated Ent (DGE)
platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence
of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus
rhamnosus GG. Moreover, GlcEnt—Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low
toxicity to mammalian cells. Our work establishes that siderophore—antibiotic conjugates provide a
strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and
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Introduction

Bacterial infections, the rise in antibacterial resistance in
hospital and community settings, and the paucity of new anti-
biotics in the current drug pipeline create a worldwide public
health crisis.”* New strategies to diagnose and treat bacterial
infections as well as counteract the emergence and spread of
antibiotic resistance in bacterial pathogens are urgently needed
to reduce morbidity and mortality, as well as the economic
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burden, caused by these infections.** The discovery of narrow-
spectrum antibiotics that target select pathogens is one
important and necessary facet of this large and complex
problem.>*>* Pathogen-specific antibiotics that minimally per-
turb the normal microbial flora are expected to reduce the
likelihood of colonisation by pathogenic and drug-resistant
microbes during or after antibiotic treatment, and prevent life-
threatening secondary infections such as those caused by
Clostridium difficile.>” Moreover, the availability of narrow-
spectrum antibiotics, coupled with rapid diagnostics, is expec-
ted to reduce the use of broad-spectrum therapeutics and
thereby slow down the evolution of drug resistance.>>” Among
current and emerging microbial threats, Gram-negative
bacteria, including pathogenic Escherichia coli, Klebsiella pneu-
moniae, Acinetobacter baumannii, and Salmonella spp., pose a
challenge for antibiotic drug discovery."*® These strains have an
outer membrane that serves as a permeability barrier and
prevents the cellular entry of many antibiotics.® In this work, we
report a stealth antibiotic delivery strategy that overcomes the

This journal is © The Royal Society of Chemistry 2015
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outer membrane permeability barrier of Gram-negative E. coli
and targets pathogenicity by hijacking the iron import
machinery utilised by virulent strains during colonisation in the
mammalian host.

Iron is an essential nutrient for almost all bacterial patho-
gens.'" Because iron exhibits low solubility in aqueous solu-
tions at physiological pH and enables Fenton chemistry, the
levels of “free” iron in mammals (ca. 10~>* M in serum)* are
tightly regulated by homeostatic mechanisms, which include
the expression of the iron transport and storage proteins
transferrin and ferritin.”® Most bacterial pathogens require
micromolar concentrations of iron to colonise and cause
disease, and bacterial iron acquisition machineries contribute
to virulence.'®**

One way that bacteria scavenge iron in the host environ-
ment is to biosynthesize and export siderophores, secondary
metabolites that chelate Fe(u) with high affinity.” The ferric
siderophores are recognised and transported into the cell by
dedicated uptake machinery. In this work, we consider the
catecholate siderophore enterobactin 1 (Ent, Fig. 1a), its glu-
cosylated congeners 2-4 (GlcEnt, Fig. 1a), and the outer
membrane receptors for these iron chelators. Ent is bio-
synthesized by all E. coli and the ferric complex is transported
across the outer membrane by the TonB-ExbB-ExbD-depen-
dent outer membrane receptor FepA (Fig. 1b)."” In addition to
Ent, many pathogenic E. coli as well as Salmonella spp. bio-
synthesize salmochelins, C-glucosylated derivatives of Ent
(Fig. 1a)."® The iroA gene cluster (iroBCDEN)*'"'* encodes
enzymes that tailor the Ent scaffold to provide the salmoche-
lins (IroBDE), and proteins for salmochelin transport (IroCN).
Expression of genes encoded by the iroA locus contributes to
virulence by providing Gram-negative pathogens with addi-
tional iron acquisition machinery and enabling the pathogens
to overcome the host innate immune response.*** In the battle
against such invading pathogens, the mammalian host
mounts a metal-withholding response and secretes lipocalin-2
(Len2), a 22 kDa antimicrobial protein that captures ferric
Ent."*"** Gram-negative pathogens that utilise salmochelins
for iron acquisition readily evade this innate immune mecha-
nism because the salmochelins cannot be sequestered by
Len2.*
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Because bacteria utilise siderophores to acquire nutrient
iron during infection, these molecules, as well as the corre-
sponding biosynthetic and transport machineries, provide
opportunities for antibiotic development.'®****” The notion of
using siderophores or siderophore mimics to deliver antibac-
terial cargo into bacterial cells has garnered attention over
several decades.”®*** Our approach to siderophore-based tar-
geting focuses on harnessing native siderophore platforms used
by pathogens in the human host for cargo delivery, and we seek
to modify these scaffolds in ways that minimally perturb iron
binding and receptor recognition. We have designed and uti-
lised a monofunctionalized Ent platform to assemble a variety
of Ent-cargo conjugates, and we reported that the Ent uptake
machinery (FepABCDG) provides a means to transport small-
molecule cargo, including antibiotics in clinical use, into E.
coli**** For instance, the Ent-B-lactam conjugates 5 and 6
(Fig. 1c) target and kill E. coli expressing FepA.** Because all E.
coli use Ent for iron acquisition, the Ent-fB-lactam conjugates
target and kill both non-pathogenic and pathogenic E. coli
strains. Some E. coli are commensal microbes, comprising <1%
of the total microbial community in the human gut, that bio-
synthesize vitamin K that is needed by the host.***” Thus, the
ability to target pathogenic E. coli has utility for minimally
perturbing the normal flora. Inspired by prior investigations of
native siderophore transport,’®*® we hypothesised that sal-
mochelin-antibiotic conjugates will be specifically recognised
by IroN, the outer membrane receptor for the salmochelins, and
afford a strategy for overcoming the outer membrane perme-
ability barrier, achieving narrow-spectrum antibacterial activity
against pathogenic E. coli, and evading capture by Len2.

In this work, we report the design and chemoenzymatic
preparation of siderophore-p-lactam conjugates based on sal-
mochelin platforms, and demonstrate targeting of B-lactam
antibiotics to pathogenic E. coli that harbour the iroA gene
cluster and express IroN. Salmochelin-inspired GlcEnt-B-lac-
tam conjugates based on the diglucosylated Ent (DGE, Fig. 1a)
platform provide selective antibacterial activity against patho-
genic E. coli and up to 1000-fold enhanced potency relative to
the parent B-lactam antibiotics. Moreover, the salmochelin—-
inspired conjugates remain antibacterial in the presence of
Len2. These investigations establish a chemoenzymatic route to

= HO™ i
- Gle= "Pg 4 All E. coli

OI : @ @ H &ﬂ%O\I

o Ent/MGE Ent /MGE / DGE o
R transport transport 5, R = H, Ent-Amp
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3, R=R'=Glc, R" = H, Diglucosylated Ent (DGE)
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Fig. 1 Siderophores and outer membrane siderophore receptors relevant to this work. (a) Chemical structures of enterobactin 1, and its glu-
cosylated derivatives 2—4. (b) A cartoon representation of the outer membrane receptors FepA and IroN considered in this work. (c) Chemical

structures of Ent—Amp/Amx 5 and 6.

This journal is © The Royal Society of Chemistry 2015

Chem. Sci, 2015, 6, 4458-4471 | 4459


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc00962f

Open Access Article. Published on 22 Mee 2015. Downloaded on 14.02.26 13:24:32.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

functionalized salmochelins and provide a new approach for
transforming a broad-spectrum antibiotic in clinical use into a
narrow-spectrum therapeutic that targets microbial pathogens
on the basis of siderophore receptor expression.

Results and discussion
Design and syntheses of GlcEnt-B-lactam conjugates

We present a family of salmochelin-inspired GlcEnt-f-lactam
conjugates 7-10 that exhibit ampicillin (Amp) or amoxicillin
(Amx) attached to either monoglucosylated Ent (MGE, 2) or
diglucosylated Ent (DGE, 3) by a stable polyethylene glycol
(PEG3;) linker. The design of the GlcEnt-f-lactam conjugates 7-
10 builds upon Ent-Amp/Amx 5 and 6 (Fig. 1C).** These
conjugates are based on a monosubstituted Ent platform where
one catechol moiety is modified at the C5 position for cargo
attachment. We sought to install glucose moieties at the C5
position of one or both of the unfunctionalized catechol rings to
afford MGE-Amp/Amx 7 and 8 and DGE-Amp/Amx 9 and 10,
respectively. Although the total chemical syntheses of sal-
mochelins have been reported, nine steps are required to ach-
ieve the requisite glucosylated 2,3-dihydroxybenzoic acid
building block.** We therefore established a chemoenzymatic
approach that employs enzymes involved in salmochelin
biosynthesis, which affords the desired glucosylated conjugates
and requires only one additional step compared to the reported
preparation of Ent-Amp/Amx.

IroB and MceC are C-glucosyltransferases that catalyse C-
glucosylation of Ent at the C5 positions of the catechol rings.
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MceC is encoded by the MccE492 gene cluster of K. pneumoniae
RYC492, and has 75% amino acid sequence identity with IroB.>
IroB catalyses up to three C-glucosylation events, affording
MGE, DGE and TGE as products (Fig. 1a).”* MceC, in contrast,
produces only MGE and DGE.* On the basis of these observa-
tions, we hypothesised that both IroB and MceC would accept
monofunctionalized Ent as a substrate, providing a preparative
route to 7-10. Initial activity assays where either IroB or MceC
was incubated with Ent-PEG;-N; 11, UDP-Glc, and Mg(u)
revealed that both enzymes accept Ent-PEG;-N; 11 as a
substrate and afford MGE-PEG;-N; 12 and DGE-PEG;-N; 13 as
products (Fig. S1 and S2t). Accumulation of 12 was observed in
the MceC-catalysed reactions, whereas 13 accumulated in
reactions catalysed by IroB. When Ent-Amp/Amx 5 and 6 were
employed as substrates, complex product mixtures were
obtained. LC/MS analysis of the mixtures revealed the desired
products as well as multiple byproducts, including products of
B-lactam decomposition. We therefore performed large-scale C-
glucosylation reactions employing Ent-PEG;-N; 11 as a
substrate to afford milligram quantities of MGE-PEG;-N; 12,
and DGE-PEG;-N; 13 (Scheme 1). We subsequently employed
copper-catalysed azide/alkyne cycloaddition to install the B-
lactam moieties (Scheme 1).** This route achieved the mono-
and diglucosylated conjugates 7-10 in high purity and in yields
of 26-59% from 7 following HPLC purification. As expected, the
GlcEnt-B-lactam conjugates 7-10 bind iron.”* Each Fe(m)
complex exhibits a broad absorption band (ca. 400-700 nm,

MeOH) characteristic of ferric Ent and its derivatives
(Fig. S37).*4*>%
o{/\
(o} 14,R=
AN, 15R=
COOH
14 or15
CuSOy,, TBTA, NaAsc
DMSO/H0, rt
OH
7, R=H, MGE-Amp
8, R = OH, MGE-Amx
R
14 or15
HO OHon
N

9, R=H, DGE-Amp
10, R = OH, DGE-Amx

Scheme 1 Chemoenzymatic syntheses of GlcEnt—Amp/Amx 7-10. The synthetic route consists of MceC- or IroB-catalysed glucosylation of
Ent-PGEs-N3 11 followed by a copper-catalysed click reaction to achieve the GlcEnt—B-lactam conjugates 7-10. We abbreviate the siderophore
family 1-4 (Fig. 1a) as (Glc)Ent and the siderophore—f-lactam conjugates 5-10 as (Glc)Ent—Amp/Amx.
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DGE-B-lactam conjugates target pathogenic E. coli expressing
IroN

To evaluate whether GlcEnt-Amp/Amx 7-10 target pathogenic E.
coli expressing IroN, we compared the antibacterial activities of
the parent antibiotics Amp/Amx, Ent-Amp/Amx 5 and 6, and
GIcEnt-Amp/Amx 7-10. We selected five E. coli strains on the
basis of siderophore receptor expression (Table S1%). E. coli
CFT073 ** and UTI89 *¢ harbour the iroA gene cluster, bio-
synthesize and utilise salmochelins for iron acquisition in the
host, and cause urinary tract infections.>”*® In contrast, E. coli
H9049 is a clinical isolate that does not have the iroA cluster.”® E.
coli K-12 ** and E. coli B *° are non-pathogenic laboratory strains
that also lack the iroA cluster. To ascertain the effect of iron
limitation on antibacterial activity, we performed antibacterial
activity assays in the absence or presence of the metal-ion
chelator 2,2'-dipyridyl (DP, 200 uM). This concentration of DP
inhibits E. coli growth (Fig. S41). These assays revealed that DGE-
Amp/Amx 9 and 10 target pathogenic E. coli that express IroN.
Amp/Amx exhibit minimum inhibitory concentration (MIC)
values of 10 uM against the five E. coli strains (+DP, Fig. 2 and
S$5-S9t). Under conditions of iron limitation, Ent-Amp/Amx
provide 100- to 1000-fold enhanced activity against all five
strains (50% MHB, +DP). These results are in agreement with
our prior studies of Ent-Amp/Amx killing of E. coli.** Glucosy-
lation affords strain-dependent antimicrobial activity that
correlates with IroN expression (Fig. 2a and b, S5 and S6t). Like
Ent-Amp/Amx 5 and 6, GlcEnt-Amp/Amx 7-10 provide 100- and
1000-fold enhanced antimicrobial activity against E. coli UTI89
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and E. coli CFT073, respectively (+DP). The susceptibility of E.
coli CFT073 to GIcEnt-Amp/Amx remains enhanced in the
absence of DP, as observed previously for Ent-Amp/Amx.** The
antibacterial activity of GlcEnt-Amp/Amx 7-10 against E. coli
H9049, K-12, and B is attenuated relative to that of Ent-Amp/
Amx 5 and 6 (+DP, Fig. 2c-e and S7-S971). Moreover, for these
non-pathogenic strains, the MIC values of (Glc)Ent-Amp/Amx
follow the trend Ent-Amp/Amx < MGE-Amp/Amx < DGE-Amp/
Amx. The MGE modification provides enhanced potency rela-
tive to Amp/Amx because growth reduction (K-12) or complete
growth inhibition (H9049 and B) occurs at 1 pM MGE-Amp/Amx
(+DP). In contrast, the DGE-B-lactam conjugates exhibit negli-
gible antibacterial activity against the three strains that lack
IroN (MIC > 10 uM). The growth medium contains =4 uM iron
(Table S2t) and we attribute the growth inhibition observed at
10 pM DGE-Amp/Amx to iron deprivation that results from
DGE-Amp/Amx sequestering the iron in the growth medium
(Table S27).

In the antibacterial activity assays described above, we
treated the bacterial cultures with the apo conjugates and
expected that the siderophore moieties chelate iron from the
growth medium, allowing for recognition of the ferric-side-
rophore complexes by FepA and IroN. We previously reported
that preloading of Ent-Amp/Amx with Fe(m) prior to antibac-
terial activity assays against E. coli K-12 had negligible effect on
the MIC value.** Here we report that preloading of MGE-Amp/
Amx and DGE-Amp/Amx also has a negligible effect on the
growth inhibitory properties (Fig. S1071). This result is expected

uTI89
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Fig. 2 Antibacterial activity of (Glc)Ent—Amp against five E. coli strains. (a)—(e) Antibacterial activity of (Glc)Ent—Amp 5/7/9 against (a) uropa-
thogenic E. coli CFT073, (b) uropathogenic E. coli UTI89, (c) non-pathogenic clinical isolate E. coli H9049, (d) laboratory strain E. coli K-12, (e)
laboratory strain E. coli B. All assays were performed in 50% MHB medium supplemented with 200 uM DP (t =19 h, T = 30 °C) (mean =+ standard
deviation, n = 3). The data for (Glc)Ent—Amx 6/8/10 and for the assays performed in the absence of DP are presented in Fig. S5-S9.+

This journal is © The Royal Society of Chemistry 2015

Chem. Sci,, 2015, 6, 4458-4471 | 4461


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc00962f

Open Access Article. Published on 22 Mee 2015. Downloaded on 14.02.26 13:24:32.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

given that the concentration of iron in the growth medium far
exceeds the MIC values obtained for the conjugates under
conditions where FepA and IroN are expressed. Lastly, mixtures
of unmodified Amp/Amx and (Glc)Ent 1-3 against E. coli
CFT073 and UTI89 provide the same MIC values as Amp/Amx
alone and confirm that the enhanced antibacterial activity of
(Glc)Ent-Amp/Amx 5-10 requires the covalent attachment of -
lactams to the siderophore scaffolds (Fig. S11 and S127).

Siderophore modification accelerates killing of pathogenic E.
coli CFT073

E. coli CFT073 is rapidly killed by conjugates 5-10 (Fig. 3a and
$131). The ODgy, value of E. coli CFT073 culture (10° CFU mL ™)
treated with 5 uM (Glc)Ent-B-lactam is reduced to almost the
baseline value (=0.04) after 1 h, which corresponds to a
=~2-fold log reduction in CFU mL ', whereas the change in
ODgoo and CFU mL™* for E. coli CFT073 treated with 50 pM
Amp/Amx is negligible over this time period. In contrast,
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Fig. 3 Time-kill kinetics of (Glc)Ent—Amp against E. coli CFT073 and
UTI89. (a and b) Time-kill kinetics of (Glc)Ent—Amp 5/7/9 against (a)
uropathogenic E. coli CFT073 (=108 CFU mL™?) treated with 50 pM
Amp or 5 puM (Glc)Ent—Amp 5/7/9 and (b) uropathogenic E. coli UIT89
(=108 CFU mL™?) treated with 50 pM Amp or 50 uM (Glc)Ent—Amp 5/
7/9. All assays were performed in 50% MHB medium supplemented
with 200 uM DP (T = 37 °C) (mean =+ standard deviation, n = 3). The
data for (Glc)Ent—-Amx 6/8/10 and for the assays performed in the
absence of DP are presented in Fig. S13-S14.1
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siderophore modification has negligible effect on the time-kill
kinetics observed for E. coli UTI89 (Fig. 3b and S147); the (Glc)
Ent-B-lactam conjugates provide similar profiles as observed
for Amp/Amx. This result is reminiscent of our prior observa-
tions for E. coli K-12 where attachment of Ent to Amp/Amx
provided only a modest increase in the time-kill kinetics
compared to the parent antibiotics.** The origin of this strain-
dependence is unclear and warrants further investigation.
Nevertheless, these data show that glucosylation of Ent-Amp/
Amx does not alter the time-kill kinetics of Ent-Amp/Amx for
either E. coli CFT073 or UTI89, and (Glc)Ent-Amp/Amx 5-10 kill
CFT073 more rapidly than UTI89.

Siderophore competition supports recognition of (Glc)Ent-pB-
lactam conjugates by IroN

To investigate the interactions between (Glc)Ent-B-lactam
conjugates 5-10 and the siderophore receptors FepA and IroN of
E. coli CFT073 and UTI89, we performed modified antimicrobial
activity assays where varying concentrations (0-10 pM) of
(Glc)Ent 1-3 were combined with 100 nM (Glc)Ent-Amp/Amx
5-10 (Fig. 4 and S151). These mixtures provide a means to probe
competition between exogenous native siderophores and the
conjugates for receptor recognition because siderophore uptake
of the former molecules results in growth promotion whereas
the latter afford growth inhibition. The competition assays
establish that Ent and MGE attenuate the antibacterial activity
of all (Glc)Ent-B-lactam conjugates 5-10 to varying degrees,
whereas DGE only inhibits the activity of the glucosylated
congeners 7-10. Moreover, DGE fully attenuates DGE-Amp/Amx
9-10 but not MGE-Amp/Amx 7 and 8. These conclusions are
drawn from the following observations: (i) a 100-fold molar
excess of Ent recovers the growth of E. coli CFT073 treated with
Ent/MGE-Amp/Amx 5-8 to levels comparable to that of the
untreated control (Fig. 4a and S15at). In contrast, a 100-fold
excess of Ent provides only partial growth recovery of E. coli
CFT073 treated with DGE-Amp/Amx 9 and 10. (ii) A 100-fold
excess of MGE fully recovers the growth of E. coli CFT073 treated
with (Glc)Ent-Amp/Amx 5-10 (Fig. 4b and S15bt). (iii) A 100-fold
molar excess of DGE does not recover the growth of E. coli
CFT073 treated with Ent-Amp/Amx 5 and 6, whereas it provides
partial and complete growth recovery of E. coli CFT073 treated
with MGE-Amp/Amx 7 and 8 and DGE-Amp/Amx 9 and 10,
respectively (Fig. 4c and S15ct). In total, this work indicates that
FepA recognises and delivers Ent/MGE-Amp/Amx 5-8 but not
DGE-Amp/Amx 9 and 10, whereas IroN binds and transports all
conjugates based on the three siderophore scaffolds. Competi-
tion assays employing E. coli UTI89 afford overall trends that are
similar to those observed for E. coli CFT073 except that lower
concentrations of exogenous siderophores effectively block the
antibacterial action of (Glc)Ent-Amp (Fig. 4d-f and S15d-f¥).

GlcEnt-Amp/Amx kill pathogenic E. coli in the presence of
other microbes that include non-pathogenic E. coli and
commensal Lactobacilli

To further probe the activity spectrum and investigate strain
selectivity of GlcEnt-Amp/Amx, we performed mixed-species

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Exogenous (Glc)Ent compete with (Glc)Ent—Amp conjugates for FepA and IroN recognition. (a)—(c) Growth of E. coli CFT073 in the
presence of 100 nM (Glc)Ent—Amp 5/7/9 and mixtures of 100 nM (Glc)Ent—-Amp 5/7/9 and 1, 5, 20, or 100 equiv of exogenous (a) Ent 1, (b) MGE 2,
or (c) DGE 3 in the presence of 200 uM DP. (d)-(f) Growth of E. coli UTI89 in the presence of 100 nM (Glc)Ent—Amp 5/7/9 and mixtures of 100 nM

(Gle)Ent—Amp 5/7/9 and 1, 5, 20, or 100 equiv of exogenous (d) Ent 1,

(e) MGE 2, or (f) DGE 3 in the presence of 200 uM DP. All assays were

performed in 50% MHB medium (t = 19 h, T = 30 °C) (mean =+ standard deviation, n = 3). An asterisk indicates ODggo < 0.01. The data for (Glc)

Ent—-Amx 6/8/10 are presented in Fig. S15.F

assays to determine whether these conjugates will selectively kill
pathogenic E. coli that express IroN cultured in the presence of
other organisms. These assays confirmed that GIcEnt-Amp/Amx
7-10 selectively kill pathogenic E. coli that express IroN in the
presence of E. coli strains that do not express this receptor.
Treatment of co-cultures of pathogenic E. coli (CFT073 or UTI89,
transformed with the chloramphenicol resistance plasmid
PSG398) and non-pathogenic E. coli K-12 (transformed with the
kanamycin resistance plasmid pET29a) with 100 nM Ent-Amp/
Amx 5 and 6 results in complete killing of both strains (Fig. 5a-d
and S16a-dt). In contrast, treatment of the co-cultures with 100
nM GIcEnt-Amp/Amx 7-10 affords killing of the uropathogenic
E. coli concomitant with E. coli K-12 survival (Fig. 5a-d and S16a-
dt). Taken together, these results demonstrate that GlcEnt-p-
lactam conjugates 7-10 provide strain-specific targeting of the
antibacterial cargo to virulent E. coli that express IroN.
(Glc)Ent-Amp/Amx 5-10 also target pathogenic E. coli in the
presence of commensal microbes. Lactobacilli are Gram-posi-
tive commensal bacteria of the human gastrointestinal tract,
and are also found in the urinary and genital tracts.®* Some
Lactobacilli reduce recurrent urinary tract infections in

This journal is © The Royal Society of Chemistry 2015

women.®* Lactobacilli have little-to-no minimal metabolic iron
requirement, and do not employ enterobactin or salmochelins
for iron acquisition.**** Lactobacillus rhamnosus GG (ATCC
53103), a human commensal that is considered to be a pro-
biotic, is susceptible to B-lactam antibiotics, and we obtained a
MIC value of 10 pM for Amp/Amx against this strain (1 : 1 MRS/
MHB medium, +DP) (Fig. S17). In contrast, 10 uM (Glc)Ent-
Amp/Amx 5-10 have negligible effect on L. rhamnosus GG
growth (Fig. S171). Treatment of E. coli CFT073 and L. rham-
nosus GG co-cultures with (Glc)Ent-Amp/Amx 5-10 affords
selective killing of E. coli CFT073 (Fig. 5e and f, S16e and f¥t).
We previously reported that modification of Amp/Amx with
Ent attenuated the activity of the B-lactam against Staphylo-
coccus aureus ATCC 25923.* In the current work we obtained a
similar result with GIcEnt-Amp/Amx, and found that the sal-
mochelin modification lowers the antibacterial activity of Amp/
Amx against S. aureus by 10-fold (Fig. S181). Moreover, treat-
ment of E. coli CFT073 and S. aureus co-cultures with DGE-Amp/
Amx 9,10 affords selective killing of E. coli CFT073 (Fig. S19a
and b, S20a and bt). Selective killing of E. coli CFT073 co-
cultured with Acinetobacter baumannii ATCC 17961 also
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Fig.5 MGE/DGE-Amp selectively kill uropathogenic E. coli in the presence of non-pathogenic E. coli K-12 and the probiotic L. rhamnosus GG.
(a and b) Bacterial growth monitored by (a) ODggo and (b) CFU mL~ for cultures of E. coli K-12 only, CFT073 only, and 1 : 1 K-12/CFT073 mixtures
treated with 100 nM Amp or 100 nM (Glc)Ent—Amp 5/7/9 in the presence of 200 uM DP. (c and d) Bacterial growth monitored by (c) ODggg and (d)
CFU mL~*for cultures of E. coli K-12 only, UTI89 only, and 1 : 1 K-12/UTI89 mixtures treated with 100 nM Amp or 100 nM (GIc)Ent—Amp 5/7/9 in
the presence of 200 uM DP. (e and f) Bacterial growth monitored by (e) ODggo and (f) CFU mL™ for cultures of L. rhamnosus GG only, E. coli
CFT073 only, and 1 : 1 L. rhamnosus GG/E. coli CFT073 mixtures treated with 1 uM Amp or 1 uM (Glc)Ent—Amp 5/7/9 in the presence of 200 uM
DP. All mixed-E. coli antimicrobial assays were performed in 50% MHB medium and all mixed-species antimicrobial assays were conducted in
1:1MRS/MHB medium (t =19 h, T = 30 °C) (mean =+ standard deviation, n = 3). An asterisk indicates ODggg < 0.01 or no colony formation. The

data for (Glc)Ent—Amx 6/8/10 are presented in Fig. S16.

occurred (Fig. S19c and d, S20c and d, S217). Substitution of E.
coli CFT073 with UTI89 in these assays afforded similar selec-
tivity trends (Fig. S22 and S237). In total, the mixed-species
assays provide support for DGE-based targeting of the antibac-
terial cargo to IroN-expressing strains.

GIcEnt-Amp/Amx Kkill E. coli in the presence of lipocalin-2

To ascertain whether GlcEnt-Amp/Amx 7-10 overcome Lcn2
sequestration, in analogy to Lcn2 evasion by the salmoche-
lins,"*** we conducted antibacterial assays with E. coli CFT073 in
the absence or presence of Len2 or bovine serum albumin (BSA,
control). These assays were conducted in modified M9
medium,* and 100 nM (Glc)Ent-Amp/Amx 5-10 provide
complete growth inhibition of E. coli CFT073 in this medium
(Fig. 6). A 10-fold excess of Lcn2 attenuates the antibacterial
activity of Ent-Amp/Amx 5 and 6, in agreement with prior
work.** In contrast, Len2 has negligible effect on the antimi-
crobial activity of GlcEnt-Amp/Amx 7-10 against E. coli CFT073
(Fig. 6 and S24%).

GIcEnt-Amp/Amx exhibit low cytotoxicity to human T84 cells

The cytotoxicity of apo and iron-bound GlcEnt-Amp/Amx 7-10
(=10 uM) against human T84 colon epithelial cells was evaluated
by the MTT assay. In all cases, the cell viability was =80% of that
of the untreated control, indicating that the conjugates exhibit
negligible cytotoxicity to T84 cells over a 24 h period (Fig. S257).

4464 | Chem. Sci., 2015, 6, 4458-4471

Conclusions

In this work, inspired by the siderophore recognition strategies
utilised by E. coli for iron acquisition in the host, we report a
siderophore-based approach for antibiotic delivery that targets
strains that express IroN, a siderophore receptor that contrib-
utes to virulence. First, we establish that the tailoring enzymes
IroB and MceC can C-glucosylate monofunctionalized Ent and
therefore be employed in chemoenzymatic synthesis to afford
functionalized salmochelins. Next, we demonstrate that
GlcEnt-B-lactam conjugates are recognised by siderophore
transport machinery, target IroN, provide =100-fold enhanced
antibacterial activity against uropathogenic E. coli relative to the
parent B-lactams, afford killing of virulent E. coli in the presence
of non-pathogenic E. coli and other commensal strains, and
overcome the enterobactin-sequestering host-defense protein
Len2. Our results establish that conjugation of a broad-spec-
trum antibiotic to a siderophore tunes the activity profile of the
parent antibiotic. With the appropriate choice of siderophore,
the antibacterial activity spectrum can be modulated to afford
species- and strain-specific targeting. In broad terms, targeting
pathogens is important for pharmaceutical development, which
will ultimately afford treatment options that minimally perturb
the commensal microbiota.***’

IroN was first discovered in Salmonella® and subsequently
identified in other Enterobacteriaceae. Our current work
focuses on antibiotic delivery to uropathogenic E. coli that

This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Antibacterial activity of (Glc)Ent—Amp/Amx against E. coli
CFTO073 in the presence of Lcn2 or bovine serum albumin (BSA). E. coli
CFT073 was treated with (a) 100 nM (Glc)Ent—Amp 5/7/9 or (b) 100 nM
(Glc)Ent—-Amx 6/8/10 in the absence (control) and presence of 1 uM
Lcn2 or 1 uM BSA. The assays were conducted in modified M9 medium
(t=24h, T = 37°C) (mean £ standard deviation, n = 3). An asterisk
indicates ODggo < 0.01. The data for the conjugates preloaded with
Fe(n) are presented in Fig. S24.1

harbour the iroA gene cluster, and we expect that this strategy
will be applicable to other pathogens that employ salmoche-
lins for iron acquisition. At present, 121 completely
sequenced E. coli genomes are available, which include 46
human pathogens. A BLAST search using iroN from E. coli
CFT073 afforded hits with =99% sequence identity for three
uropathogenic E. coli (UTI89, 536, and 83792), adherent
invasive E. coli UM146, the meningitis isolate E. coli IHE3034,
and a carbapenemase-producing isolate E. coli ECONIH1
(Table S4t). The probiotic E. coli Nissle 1917 and the labora-
tory reference strain for antimicrobial testing E. coli ATCC
25922 were the only other E. coli revealed as hits. Studies of the
distribution of siderophore biosynthetic machinery in E. coli
isolated from feces of healthy mammals indicate that =20%
of the commensal isolates produce salmochelins.®® This
observation suggests that one potential limitation of GlcEnt-
based antibiotic delivery is that a fraction of commensal E. coli
harbour the iroA cluster are susceptible and, conversely, that
some pathogenic E. coli do not. Regarding the former possi-
bility, the healthy gut is considered to be a reservoir for E. coli
that cause infections of the urinary tract,®**7* and the ability
to target such pathobionts using siderophores may be
advantageous in certain cases. In addition to Salmonella and
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E. coli, BLAST revealed that the genomes of the human path-
ogens Shigella dysenteriae 1617 and Sd197, Enterobacter
cloacae, Klebsiella pneumoniae, and Enterobacter aerogenes
encode iroN (Table S4t). Thus, it will be informative to
determine whether DGE also provides targeted antibiotic
delivery to these problematic strains.

Our current investigations also provide fundamental
insights into siderophore recognition and transport. Prior
studies of siderophore uptake in Salmonella revealed that
both FepA and IroN recognise and transport Ent.”> Our
competition assays employing uropathogenic E. coli are in
agreement with this observation, and indicate that both
receptors deliver Ent-Amp/Amx 5 and 6 into E. coli. Moreover,
our competition data suggest that MGE 2 and MGE-Amp/Amx
7 and 8 are recognised and transported by FepA as well as IroN
of E. coli. In contrast, DGE 3 only competes with GlcEnt-Amp/
Amx 7-10 and most effectively blocks the activity of DGE-
Amp/Amx 9 and 10. These observations support exclusive
transport of DGE-Amp/Amx 9 and 10 through IroN. Indeed,
prior studies demonstrated that IroN is required for trans-
porting salmochelin extracts isolated from several S. enterica
strains,'® and in vitro activity assays reveal that IroB accumu-
lates DGE 3.*

We previously reported that E. coli CFT073 exhibits greater
sensitivity to Ent-Amp/Amx 5 and 6 than E. coli UTI89,* and we
observe the same trend with GlcEnt-Amp/Amx 7-10. The
physiological origins of this observation remain unclear. One
possible explanation may be differences in the siderophore
biosynthetic and uptake machineries employed by these two
uropathogens. E. coli CFT073 expresses a third catecholate
siderophore receptor, IhA,”” whereas E. coli UTI89 bio-
synthesizes yersiniabactin, a siderophore mainly used by Yer-
sinia spp.”* Alternatively, as-yet unidentified factors may
account for these trends, and further studies are warranted to
understand these observations.

In closing, this investigation establishes that siderophores
and the siderophore uptake machinery employed by virulent
bacteria provide a powerful approach for targeting pathogenesis
in the context of antibacterial drug discovery. Narrow-spectrum
and species-specific antibiotics are needed for treating infec-
tions where the causative agent is known and, when coupled
with rapid diagnostics, will ultimately reduce the onset of
secondary infections and evolution of antibiotic resistance.>>’
The current study focuses on targeting broad-spectrum f-lac-
tam antibiotics to pathogenic E. coli on the basis of iron
acquisition machinery that is employed by these pathogens
during colonisation in the host. We establish that native sal-
mochelins can be used as scaffolds for “Trojan horse” antibiotic
delivery to hijack the iron acquisition machinery that contrib-
utes to pathogenicity. It will be important to ascertain whether
this salmochelin-inspired strategy is applicable to other Gram-
negatives, such as Salmonella and K. pneumoniae, which cause
human disease and utilise salmochelins for iron acquisition.
Leveraging this strategy to target other antibacterial cargos and
thereby modulate activity and mitigate off-target effects is
another important avenue of future chemical and biological
investigation.
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Experimental section
Synthetic reagents

Anhydrous dimethyl sulfoxide (DMSO) was purchased from
Sigma-Aldrich and used as received. All other chemicals and
solvents were purchased from Sigma-Aldrich or Alfa Aesar in the
highest available purity and used as received. The syntheses of
Ent 1,” MGE 2,*” DGE 3,°* Ent-Amp 5,* Ent-Amx 6,** Ent-PEG;-
N; 11,** Amp-alkyne 14,* and Amx-alkyne 15 ** are reported
elsewhere.

Instrumentation

Analytical and semi-preparative high-performance liquid chro-
matography (HPLC) were performed using an Agilent 1200
series HPLC system outfitted with a Clipeus reverse-phase C18
column (5 pm pore size, 4.6 x 250 mm; Higgins Analytical, Inc.)
at a flow rate of 1 mL min " and an Agilent Zorbax reverse-phase
C18 column (5 um pore size, 9.4 x 250 mm) at a flow rate of 4
mL min~ ", respectively. The multi-wavelength detector was set
to read the absorbance at 220, 280, and 316 (catecholate
absorption) nm. HPLC-grade acetonitrile (MeCN) and tri-
fluoroacetic acid (TFA) were purchased from EMD and Alfa
Aesar, respectively. For HPLC analyses, solvent A was 0.1% TFA/
H,O and solvent B was 0.1% TFA/MeCN, unless stated other-
wise. The HPLC solvents were prepared with HPLC-grade MeCN
and TFA, and Milli-Q water (18.2 mQ c¢m), and filtered through a
0.2 pm filter before use. For analytical HPLC to evaluate
conjugate purity, the entire portion of each HPLC-purified
compound was dissolved in a mixture of 1 : 1 MeCN/H,O and
an aliquot was taken for HPLC analysis. The remaining solution
was subsequently lyophilized.

High-resolution mass spectrometry was performed by using
an Agilent LC-MS system comprised of an Agilent 1260 series LC
system outfitted with an Agilent Poroshell 120 EC-C18 column
(2.7 um pore size) and an Agilent 6230 TOF system housing an
Agilent Jetstream ESI source. For all LC-MS analyses, solvent A
was 0.1% formic acid/H,O and solvent B was 0.1% formic acid/
MeCN (LC-MS grade, Sigma-Aldrich). The samples were ana-
lysed using a solvent gradient of 5-95% B over 10 min with a
flow rate of 0.4 mL min~'. The MS profiles were analysed and
deconvoluted by using Agilent Technologies Quantitative
Analysis 2009 software version B.03.02.

Optical absorption spectra were recorded on a Beckman
Coulter DU800 spectrophotometer (1 cm quartz cuvettes,
Starna). A BioTek Synergy HT plate reader was used to record
absorbance at 600 nm (ODggo) for antimicrobial activity assays
and absorbance at 550 nm for cytotoxicity assays.

Enzymatic activity assays for IroB and MceC

The enzymes MceC and IroB were overexpressed as N-terminal
Hise-fusion proteins in E. coli BL21(DE3) and purified as
reported.”* To a 405 pL solution containing Ent-PEG;-N; 11
(100 pM), uridine diphosphoglucose (UDP-Glc, 3 mM), and
MgCl, (5 mM) prepared in 75 mM Tris-HCl buffer, pH 8.0,
MceC (10 pM, 45 pL) or IroB (10 uM, 45 pL) was added to afford a
final enzyme concentration of 1 uM. The reaction was incubated
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at room temperature and an aliquot (100 pL) was quenched by
adding 10 pL of 6% TFA (aq) after 0, 15, 30, 60 min. The
quenched reaction aliquots were immediately vortexed, centri-
fuged (13 000 rpm x 10 min, 4 °C), and analysed by HPLC
(0-100% B over 30 min, 1 mL min~"). The results are shown in
Fig. S1 and S2.f

Synthesis of MGE/DGE-PEG;-N; (12 and 13)

A 6.3 mL solution containing Ent-PEG;-N; 11 (500 uM), uridine
diphosphoglucose (UDP-Gle, 3 mM), and MgCl, (5 mM) was
prepared in 75 mM Tris-HCI buffer, pH 8.0 and divided into
seven 900 uL aliquots. MceC (50 puM, 100 pL) or IroB (50 uM,
100 pL) was added to each aliquot to afford a final enzyme
concentration of 5 pM. The 1 mL reactions were incubated at
room temperature and quenched by addition of 100 pL of 6%
TFA (aq) after 15 min (MceC reaction) or 2 h (IroB reaction). The
quenched reaction aliquots immediately vortexed,
combined, and lyophilized to dryness. The resulting powder
was dissolved in 3 mL of 1:1 MeCN/water and centrifuged
(13 000 rpm x 10 min, 4 °C). MGE-PEG;-N; 12 and DGE-PEG3;-
N; 13 were purified from the supernatants of MceC- and IroB-
catalysed reactions, respectively, by using semi-preparative
HPLC (20-45% B over 8.5 min, 4 mL min~"). Both compounds
were obtained as white powders (MGE-PEG;-N; 12, 0.66 mg,
41% from MceC-catalyzed reaction; DGE-PEG;3-N; 13, 0.85 mg,
45% from IroB-catalysed reaction). HRMS (ESI): MGE-PEG;-N3
12, [M + H]" m/z caled. 1076.3215, found 1076.3214; DGE-PEG-
N; 13, [M + H]" m/z calcd. 1238.3743, found 1238.3744. The
analytical HPLC traces of the purified compounds are reported
in Fig. S26 and S27.}

were

Synthesis of MGE-Amp (7)

Amp-alkyne 14 (50 pL of a 50 mM solution in DMSO, 2.5 pmol)
and MGE-PEG;-N; 12 (73 puL of an 11.3 mM solution in DMSO,
0.825 pmol) were combined and 100 pL of DMSO was added. An
aliquot of aqueous CuSO, (50 pL of a 90 mM solution in water,
4.5 pmol) and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
(TBTA, 100 pL of a 50 mM solution in DMSO, 5 pmol) were
combined to give a blue-green solution, to which sodium
ascorbate (NaAsc, 100 pL of a 180 mM solution in water, 18.0
umol) was added. This solution became light yellow and was
immediately added to the alkyne/azide solution. The reaction
was gently mixed on a bench-top rotator for 2 h at room
temperature and conjugate 7 was purified by semi-preparative
HPLC (20% B for 5 min and 20-50% B over 11 min, 4 mL min %,
0.005% TFA was used in solvents A and B because of the acid-
sensitive B-lactam moiety). Conjugate 7 was obtained as white
powder (0.75 mg, 59%). HRMS (ESI): [M + H]" m/z calcd,
1519.4730; found, 1519.4639. The analytical HPLC trace of the
purified product is reported in Fig. S28.F

Synthesis of MGE-Amx (8)

As described for MGE-Amp with the exception that Amx-alkyne
15 was used instead of Amp-alkyne 14. Conjugate 8 was purified
by semi-preparative HPLC (20% B for 5 min and 20-42% B over
11 min, 4 mL min~") and obtained as white powder (0.49 mg,

This journal is © The Royal Society of Chemistry 2015
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31%). HRMS (ESI): [M + H]" m/z caled, 1535.4679; found,
1535.4685. The analytical HPLC trace of the purified product is
reported in Fig. S29.

Synthesis of DGE-Amp (9)

As described for MGE-Amp with the exception that DGE-PEG;-
N; 13 was used instead of MGE-PEG;-N; 12. Conjugate 9 was
purified by semi-preparative HPLC (0% B for 5 min and 0-50%
B over 13 min, 4 mL min~ ') and obtained as white powder (0.67
mg, 48%). HRMS (ESI): [M + Na]" m/z caled, 1703.5077; found,
1703.5069. The analytical HPLC trace of the purified product is
reported in Fig. S30.t

Synthesis of DGE-Amx (10)

As described for MGE-Amp with the exception that Amx-alkyne
15 and DGE-PEG;-N; 13 were used instead of Amp-alkyne 14
and MGE-PEG;-N; 12. Conjugate 10 was purified by semi-
preparative HPLC (0% B for 5 min and 0-50% B over 13 min, 4
mL min~ ") and obtained as white powder (0.36 mg, 26%).
HRMS (ESIL): [M + H]" m/z caled, 1697.5207; found, 1697.5235.
The analytical HPLC trace of the purified product is reported in
Fig. $31.F

Storage and handling of siderophores and siderophore-
antibiotic conjugates

All (Glc)Ent 1-3 and siderophore-antibiotic conjugates 5-10
were stored as DMSO stock solutions at —20 °C. The stock
solution concentrations for (Glc)Ent-Amp/Amx 5-10 ranged
from 2 to 5 mM. These values were determined by diluting the
DMSO stock solution in MeOH and using the reported extinc-
tion coefficient for enterobactin in MeOH (316 nm, 9500 M
cm™!).7° To minimize multiple freeze-thaw cycles, the resulting
solutions were divided into 50 uL aliquots and stored at —20 °C.
The B-lactam moieties and enterobactin trilactone are suscep-
tible to hydrolysis, and aliquots were routinely analysed by
HPLC to confirm the integrity of the samples.

General microbiology materials and methods

Information pertaining to all bacterial strains used in this study
is listed in Table S1.7 Freezer stocks of all Escherichia coli strains
(E. coli K-12, B, H9049, CFT073, and UTI89), Staphylcoccus
aureus ATCC 25923, and Acinetobacter baumannii ATCC 17961
were prepared from single colonies in 25% glycerol/Luria Broth
(LB) medium. Freezer stocks of Lactobacillus rhamnosus GG
ATCC 53103 were prepared from single colonies in 25% glyc-
erol/de Man, Rogosa, and Sharpe (MRS) medium.

LB, MRS, 5x M9 minimal medium and agar were purchased
from BD. Mueller Hinton Broth (MHB) was purchased from
Fluka. Recombinant human Lcn2 was purchased from R&D
System (Minneapolis, MN). The iron chelator 2,2'-dipyridyl (DP)
was purchased from Sigma-Aldrich. All growth medium and
Milli-Q water used for bacterial cultures or for preparing solu-
tions of the enterobactin-antibiotic conjugates were sterilised
by using an autoclave. A DP stock solution (200 mM) was
prepared in DMSO and used in the bacteria growth assays
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requiring iron-depleted conditions. Working dilutions of the
siderophore and siderophore-antibiotic conjugate stock solu-
tions were prepared in 10% DMSO/H,O. For all assays, the final
cultures contained 1% v/v DMSO. Sterile polypropylene culture
tubes and sterile polystyrene 96-well plates used for culturing
were purchased from VWR and Corning Incorporated, respec-
tively. The optical density at 600 nm (ODgq,) was recorded on a
Beckman Coulter DU800 spectrophotometer or by using a Bio-
Tek Synergy HT plate reader.

Growth studies of E. coli in the presence of DP

Overnight cultures of E. coli were prepared by inoculating 5 mL
of Luria Broth (LB) medium with bacterial freezer stocks. The
cultures were incubated at 37 °C in a tabletop incubator with
shaking at 150 rpm for 16-18 h. The overnight culture was
diluted 1: 100 into 5 mL of fresh LB medium containing DP
(200 uM) and incubated at 37 °C with shaking at 150 rpm until
ODgoo reached 0.6. The cultures were subsequently diluted to an
ODgqo value of 0.001 using 50% MHB medium (11.5 g L™"). A
90 pL aliquot of the diluted culture was combined with a 10 pL
aliquot of a 10x solution of DP (0, 0.25, 0.5, 1, 2, 4, and 8 mM) in
a 96-well plate, which was wrapped in Parafilm and incubated at
30 °C with shaking at 150 rpm. Bacterial growth was determined
att=0, 2,4, 6, 8, 10, and 20 h by measuring the ODg, using a
BioTek Synergy HT plate reader. Each well condition was
prepared in duplicate and at least three independent replicates
were conducted on different days and using two different DP
stock solutions. The resulting mean ODyg, values are reported
and the error bars represent the standard deviation.

General procedure for antimicrobial activity assays

Overnight cultures of E. coli, S. aureus, and A. baumannii were
prepared by inoculating 5 mL of Luria Broth (LB) medium with
bacterial freezer stocks. The cultures were incubated at 37 °C in
a tabletop incubator with shaking at 150 rpm for 16-18 h. The
overnight culture was diluted 1:100 into 5 mL of fresh LB
medium containing DP (200 uM) and incubated at 37 °C with
shaking at 150 rpm until ODg, reached 0.6. The cultures were
subsequently diluted to an ODg value of 0.001 using 50% MHB
medium (11.5 g L™") with or without DP (200 uM). A 90 pL
aliquot of the diluted culture was combined with a 10 pL aliquot
of a 10x solution of Amp/Amx or (Glc)Ent-Amp/Amx 5-10 in a
96-well plate, which was wrapped in Parafilm and incubated at
30 °C with shaking at 150 rpm for 19 h. Bacterial growth was
determined by measuring the ODgg, using a BioTek Synergy HT
plate reader. Each well condition was prepared in duplicate and
at least three independent replicates were conducted on
different days and using different synthetic batches of each
conjugate. The resulting mean ODgy, values are reported and
the error bars represent the standard deviation.

For L. rhamnosus GG ATCC 53103, the bacterial culture was
grown in MRS medium overnight. The resulting culture was
diluted 1 : 50 into 5 mL of fresh MRS medium containing DP
(200 uM) and incubated at 37 °C with shaking at 150 rpm until
ODgoo reached 1.0. The culture was subsequently diluted to an
ODgo value of 0.004 in 1 : 1 MRS/MHB medium with or without

Chem. Sci,, 2015, 6, 4458-4471 | 4467


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc00962f

Open Access Article. Published on 22 Mee 2015. Downloaded on 14.02.26 13:24:32.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

DP (200 uM). The antibacterial activity assays were performed as
described above for E. coli.

Time-kill kinetic assays

A 5 mL overnight culture of E. coli CFT073 or UTI89 grown in LB
medium was diluted 1 : 100 into 5 mL of fresh LB medium with
200 uM DP and incubated at 37 °C with shaking at 150 rpm until
ODggo reached =0.3. The culture was centrifuged (3000 rpm x
10 min, rt) and the resulting pellet was resuspended in 50%
MHB and centrifuged (3000 rpm x 10 min, rt). The resulting
pellet was resuspended in 50% MHB with or without DP (200
uM) and the ODg, was adjusted to 0.3. A 90 pL aliquot of the
resulting culture was combined with a 10 pL aliquot of a 10x
solution of Amp/Amx or (Glc)Ent-Amp/Amx 5-10 in a 96-well
plate, which was wrapped in Parafilm and incubated at 37 °C
with shaking at 150 rpm. The ODgq, values were recorded at t =
0, 1, 2, and 3 h. In a parallel experiment, a 10 pL aliquot of the
culture was taken at ¢t = 0, 1, 2, and 3 h and serially diluted by
using sterile phosphate-buffered saline (PBS) and plated on LB
agar to obtain colony forming units (CFU mL ™). Each well
condition was repeated at least three times independently on
different days. The resulting mean ODgy or CFU mL™ " is
reported and the error bars are the standard deviation.

Antimicrobial activity assays in the presence of unmodified
(Glc)Ent

These assays were performed following the general procedure
described above except that varying concentrations of Ent,
MGE, or DGE were mixed with Ent-Amp/Amx 5 and 6, MGE-
Amp/Amx 7-8, or DGE-Amp/Amx 9 and 10. Ent was synthesized
following a literature procedure,”” MGE 2 and DGE 3 were
prepared from Ent using MceC and IroB as described for MGE-
PEG;-N; 12 and DGE-PEG;-Nj; 13. Stock solutions of (Glc)Ent 1-
3 were prepared in DMSO and stored at —20 °C.

Mixed-E. coli assays

The pET29a plasmid (kanamycin resistance) was transformed
into E. coli K-12, and the pHSG398 plasmid (chloramphenicol
resistance) was transformed into E. coli CFT073 and UTI89, by
electroporation. Overnight cultures of the bacterial strains were
prepared by inoculating 5 mL of LB medium containing the
appropriate antibiotic (kanamycin, 50 ug mL™"; chloramphen-
icol, 34 pg mL ') with bacterial freezer stocks, and the cultures
were incubated at 37 °C in a tabletop incubator shaker set at 150
rpm for 16-18 h. Each overnight culture was diluted 1 : 100 into
5 mL of fresh LB medium containing 200 pM DP, but no anti-
biotics, and incubated at 37 °C with shaking at 150 rpm until
ODggo reached 0.6. The cultures were diluted to an ODg, value
of 0.001 in 50% MHB separately or in a 1 : 1 mixture (10° CFU
mL ™" for each strain), with or without 200 uM DP. No antibiotic
marker was included in these cultures. Aliquots of these
cultures were serially diluted by using sterile PBS and plated on
LB agar plates with or without corresponding antibiotic to
confirm the CFU of the starter cultures. A 90 pL aliquot of each
culture was combined with a 10 pL aliquot of a 1 uM solution of
Amp/Amx or (Glc)Ent-Amp/Amx 5-10 in a 96-well plate. The
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plate was then wrapped in Parafilm and incubated at 30 °C with
shaking at 150 rpm for 19 h. Bacterial growth was evaluated by
measuring ODgqo as well as counting colonies formed on LB
agar with or without kanamycin/chloramphenicol after serial
dilution with sterile PBS. Each well condition was repeated at
least three times independently on different days. The resulting
mean ODgy, and CFU mL ™' values are reported and the error
bars are the standard deviation.

Mixed-species assays

These assays were performed following the mixed-E. coli assay
procedure except that E. coli CFT073 and L. rhamnosus GG ATCC
53103 were used. A 5 mL culture of E. coli CFT073 or L. rham-
nosus GG was grown for 16-18 h in LB or MRS medium,
respectively. The overnight culture was diluted 1 : 100 (E. coli) or
1 : 50 (L. rhamnosus GG) into 5 mL of fresh LB or MRS medium
with 200 uM DP and incubated at 37 °C with shaking at 150 rpm
until ODgg, reached 0.6 (E. coli) or 1.0 (L. rhamnosus GG). The
cultures were diluted to an ODg, value of 0.001 (E. coli) or 0.004
(L. rhamnosus GG) in 1:1 MRS/MHB containing 200 uM DP
separately or in a 1 : 1 mixture (10® CFU mL " for each strain).
Aliquots of these cultures were serially diluted by using sterile
PBS and plated on LB and MRS agar plates to confirm the CFU
of the starter culture. A 90 pL aliquot of each culture was
combined with a 10 pL aliquot of a 10 uM solution of Amp/Amx
or (Glc)Ent-Amp/Amx 5-10 in a 96-well plate, which was wrap-
ped in Parafilm and incubated at 30 °C with shaking at 150 rpm
for 19 h. Bacterial growth was assayed by both measuring ODggo
and counting colonies formed on LB and MRS agar plates after
serial dilution with sterile PBS. Each well condition was
repeated at least three times independently on different days.
The resulting mean ODgoo and CFU mL ! values are reported
and the error bars are the standard deviation. Comment: E. coli
CFT073 forms colonies more quickly than L. rhamnosus GG on
LB agar plates, whereas L. rhamnosus GG colonies appear more
quickly than those of E. coli CFT073 on MRS agar plates, and
these behaviours allow for each strain to be monitored inde-
pendently over a 24 h period.

The assays were also performed by co-culturing E. coli
CFT073 or UTI89 with S. aureus ATCC 25923 or A. baumannii
ATCC 17961. A 5 mL culture of each individual bacterial strain
was grown for 16-18 h in LB. The overnight culture was diluted
1:100 into 5 mL of fresh LB with 200 uM DP and incubated at
37 °C with shaking at 150 rpm until ODg, reached 0.6. The
cultures were diluted to an ODg, value of 0.001 in 50% MHB
containing 200 pM DP separately or in a 1 : 1 mixture (10° CFU
mL~" for each strain). A 90 pL aliquot of each culture was
combined with a 10 pL aliquot of a 10 pM solution of Amp/Amx
or (Gle)Ent-Amp/Amx 5-10 in a 96-well plate, which was wrap-
ped in Parafilm and incubated at 30 °C with shaking at 150 rpm
for 19 h. Bacterial growth was assayed by both measuring ODggo
and counting colonies formed on HardyCHROM UTI plates
after serial dilution with sterile PBS. Plating E. coli strains on
these plates results in pink colonies, whereas S. aureus and A.
baumannii provide white colonies. Each well condition was
repeated at least three times independently on different days.

This journal is © The Royal Society of Chemistry 2015
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The resulting mean ODggo and CFU mL ™" values are reported
and the error bars are the standard deviation.

Antimicrobial activity assays in the presence of lipocalin 2

Cultures of E. coli CFT073 were grown in modified M9 minimal
medium® (Na,HPO, 6.8 ¢ L', KH,PO, 3 g L', NaCl 0.5 g L,
NH,Cl1gL™", 0.4% glucose, 2 mM MgSOy,, 0.1 mM CacCl,, 0.2%
casein amino acids, and 16.5 pg mL™ " of thiamine) for 16-18 h.
The overnight culture grew to saturation and was diluted 1 : 100
into 5 mL of fresh modified M9 minimal medium and incu-
bated at 37 °C with shaking at 150 rpm until ODgq reached 0.6.
The ODgq of the culture was adjusted to 0.001, and the culture
was further diluted 1 : 100 with the M9 medium in two steps
(1:10 x 1:10). The corresponding CFU was determined to be
~10" CFU mL ™" by plating on LB agar plates. Lipocalin 2 (Lcn2,
R&D Systems) was diluted into PBS, pH 7.4 to a concentration of
20 uM and frozen at —20 °C until use. Bovine serum albumin
(BSA, Sigma-Aldrich) was prepared in PBS, pH 7.4 to achieve a
concentration of 20 uM. A 90 pL aliquot of the diluted culture
was combined with a 5 pL aliquot of a 20x solution of (Glc)Ent—
Amp/Amx 5-10 and a 5 pL aliquot of Len2 or BSA in a 96-well
plate, which was wrapped in Parafilm and incubated at 37 °C
with shaking at 150 rpm for 24 h. Bacterial growth was deter-
mined by ODggo. Each well condition was repeated at least three
times independently on different days. The resulting mean
ODy is reported and the error bars are the standard deviation.

Cytotoxicity assays

The human colon epithelial T84 cell line was purchased from
ATCC and cultured in 1 : 1 DMEM/F12 medium with 10% fetal
bovine serum, and 1% penicillin and streptomycin (v/v, ATCC).
The cells were grown to approximately 95% confluency and
treated with 3 mL of trypsin-EDTA (Corning). A 12 mL portion of
fresh medium was added to the detached cells, and the T84 cell
suspension was centrifuged (600 rpm x 5 min, 37 °C). The
supernatant was discarded and the cell pellet was resuspended
in 6 mL of the fresh culture medium. The concentration of cells
was quantified by using a manual hemocytometer (VWR Inter-
national) and adjusted to 1 x 10° cells per mL. A 90 uL aliquot
of T84 cells were then added to 96-well plates and incubated at
37 °Cand 5% CO, for 24 h. Stock solutions (10x) of Amp/Amx or
(Glc)Ent-Amp/Amx 5-10 were prepared in sterile-filtered 10%
DMSO/H,0O and 10 pL of each solution was added to the
appropriate well. The plate was incubated at 37 °C and 5% CO,
for another 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT, Alfa Aesar) was dissolved in sterile
PBS and the concentration was adjusted to 5 mg mL~". The
resulting yellow solution was filtered through a 0.2 pm filter and
a 20 pL aliquot of the resulting MTT solution was added to each
well. The plate was incubated at 37 °C and 5% CO, for 4 h and
the supernatant was removed from each well. DMSO (100 pL)
was added to each well and the absorbance at 550 nm was
recorded by using a plate reader. Blank readings were recorded
on wells that contained only the medium. The assay was
repeated in triplicate on different days, and the mean and
standard deviation are reported.
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