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Media additives to promote spheroid circularity
and compactness in hanging drop platform†
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Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms,

especially with the advent of different high throughput spheroid forming technologies. However, compar-

ing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spher-

oid morphologies and transport characteristics. Improving the reproducibility of compact, circular

spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these

drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and

compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen

additives in the culture media can contribute to more compact and circular spheroid morphology. We

demonstrate that improved spheroid formation is not a simple function of increased viscosity of the

different macromolecule additives, suggesting that other macromolecular characteristics contribute to

improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture,

MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-

containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by

reducing motion-induced image blur.

Introduction

Conventional methods for high throughput screening have pri-
marily utilized two-dimensional cell cultures in well plates.
Recently, the trend has been shifting towards three-dimen-
sional (3-D) drug screening, especially in cancer therapeutics,
due to the unique characteristics of these culture platforms.
These cell aggregates allow for increased cell–cell interactions
such as adhesion and junctional connections, reduced pro-
liferation rates more aligned with physiological growth rates,
restricted and non-linear diffusion gradients resulting in non-
uniform metabolic gradients.1 Additionally, 3-D culturing is
desirable as some cells have shown to lose their physiologic
phenotypes and functions when cultured in two dimensional
culture platforms, however, these phenotypes can be retrieved
by culturing cells in 3-D emulating conditions.2 Spheroid

culture has also been applied to creating complex co-culture
systems.3 Multicellular spheroids represent an attractive plat-
form because it provides a model of oxygen, metabolite, nutrient,
and drug gradients observed in tumors due to non-uniform
vascular perfusion in a radially symmetric architecture that is
easier to reproduce and mathematically model.

Multicellular spheroid models have been generated through
various methods, and reviewed thoroughly in recent litera-
ture.4,5 One of the common methods described is the ‘hanging
drop’ technique, in which cells are placed in a suspended drop
of media and as a result of gravity and the meniscus incurred
by the air–liquid interface, cells localize at the bottom of
the hanging drop, typically resulting in intercellular aggrega-
tion and adherence. This method of generating spheroids
has been applied to fabricate 3-D tissues such as embryoid
bodies, cancer tumor models, microlivers, microhearts,
microcartilage.6–9 Spheroid culture in hanging drops has gar-
nered popularity as a high throughput tool supported by pub-
lished systems and methods for more standardized, robust
generation and maintenance of hanging drop cultures.6,10,11 A
major advantage of this system also extends from the ability to
culture and image spheroids directly from the hanging drops
over extended periods of time (weeks to months),11 whereas, in
2-D cultures, cells grown on the culture surface eventually
form a confluent monolayer and begin to slough off the
surface as a sheet or clump.
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Requirements we believe critical to 3-D spheroid screening
models are (1) tightly aggregated spheroids to facilitate physio-
logically relevant cell density, (2) the formation of diffusion
gradients, and (3) tuneable and reproducible spheroid size
based on initial seeding density. However, not all cell types
have demonstrated spontaneous aggregation in spheroid cul-
tures, resulting in loose aggregates, or disconnected, floating
cells.12 This phenomenon poses a barrier in testing different
cell types, which may only be able to establish weak intercellu-
lar interactions, if any, resulting in an inability to form spher-
oids. In order to overcome this inability to coalesce,
researchers have applied different methods to induce cellular
aggregation in cells of interest.4,5 One such method is the
inclusion of additives to 3-D cultures for improved spheroid
formation. Both biological and synthetic additives have been
successfully employed, with mechanisms varying between
cross-linking agents,13,14 adhesion stimulation,15 or rheologi-
cal modifiers and crowding agents.16 Supplementation of
cross-linking agents has generally been done with extracellular
matrix proteins, such as collagen, fibronectin and reconsti-
tuted basement membrane matrigel.12,17 Additional methods
of using cross-linkers to improve spheroidal aggregation
include the use of polymer nanospheres13 or chemically modi-
fying cell surfaces via biotinylation and culturing in the pres-
ence of supplemented avidin.14 Similar to using cross-linking
agents, spheroid formation has also been accomplished by
using β1-integrin-stimulating monoclonal antibodies.15 Unlike
supplements that directly tether or act as a tether to cells,
certain additives have improved the formation of spheroids
through rheological modification or as a crowding agent.
Methylcellulose (MethoCel) has been applied to spheroid for-
mation and even though the mode of action has not been con-
clusively determined, it has been attributed to MethoCel’s
inert semi-solid gel like properties, or viscosity, or additionally
crowding effect induced by the molecule.16,18,19 The addition
of MethoCel to hanging drop cultures has been solely
applied18 or co-supplemented with cross-linking additives,
such as matrigel;17 these modifications have shown improve-
ment in cellular aggregation and formation of 3-D structures.
Additionally, supplemented cultures demonstrated increased
reliability and robustness for spheroid formation; however con-
centrations of supplemented MethoCel have not been
characterized.

In this study we aim to compare the individual and com-
bined effects of two widely used additives (collagen and
MethoCel) in hanging drop cultures to promote the circularity
and compactness of 3-D spheroids for a variety of cell types. To
focus exclusively on the impact of additives of spheroids
within the context of high throughput screening, we used pre-
viously reported high throughput hanging drop array plates
(Fig. S4†) coupled with a liquid handling robot to minimize
sample variability, provide robust culturing conditions with
minimal to no spreading, loss of shape, or rupturing of
hanging drops as compared to the more commonly known
inverted lid methodology.6 Using finite element models we
first demonstrate the importance of these two morphologic

parameters in the establishment of radial transport gradients,
a hallmark feature of spheroid models. We then compare the
effects of different macromolecule thickening agents in
hanging drop cultures. Even though increasing viscosity
results in a reduction of spheroid motion while imaging, we
identify that modulating viscosity is not the sole requirement
to induce spheroid formation, indicating the need to consider
other molecular characteristics when selecting additives to
promote spheroid morphology.

Results and discussion
Effects of spheroid geometry and physical characteristics on
diffusion gradient

Diffusion kinetics is a major factor that influences cellular
responses in 3-D spheroids. Nutrients and waste byproducts
face diffusion resistance as they enter or leave a spheroid,
respectively. Additional compounds in the surrounding
medium will similarly develop gradients as they penetrate the
spheroid. The rate of diffusion and steepness of the diffusion
gradient are primarily influenced by the circularity and com-
pactness of a spheroid. Circularity refers to the symmetry of a
spheroid, with an ideal equidistant symmetry from the center
of the spheroid to any point on the surface. This ideal sym-
metry would result in a concentric diffusion gradient field;
facilitating robust modeling of molecular diffusion into the
spheroid. In contrast, elliptical 3-D cellular masses would
result in an increase of surface area and a reduction of average
distance from the long axis to the spheroid’s center of mass.
As expected this was confirmed using a finite element model
to compare oxygen diffusion into an ideal spheroid versus an
ellipsoid of the same volume. Using oxygen diffusion coeffi-
cients20 and consumption rates21,22 from the literature, the
model predicted the presence of a hypoxic region in an ideal
spheroid, whereas this region is absent in an ellipsoid of the
same volume with a 2 : 1 deformed aspect ratio (Fig. 1A). This
simulation shows that spheroid geometry has a direct effect on
the physical characteristics of transport gradients.

Using the same approach we also estimated the effect of
compactness on spheroid transport properties. Compactness
refers to the degree of remodeling and density of a spheroid.
As cells come into contact with each other, from the initial
step of aggregation through spheroid formation, they can
manipulate and secrete ECM proteins leading to reorganization
and compaction. Here we simulate the effect of compaction by
modeling the steady-state concentration of oxygen in two
spheroids with an identical number of cells, and hence identi-
cal overall oxygen consumption rate. The first is a reference
spheroid with uniform oxygen consumption rate, compared to
a compact spheroid half the diameter (1/8 the volume). In
other words, the compact spheroid would have a specific volu-
metric oxygen consumption rate that is eight times higher
than the reference spheroid to account for the loss of volume.
Assuming similar oxygen diffusion kinetics for both spheroids,
the model predicted a steep hypoxic gradient from the surface
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to the core of the compact spheroid compared to the reference
spheroid (Fig. 1B). These simulations indicate that the uni-
formity, strength and steepness of a solute gradient within a
spheroid are directly proportional to the circularity and com-
pactness, or morphology, of a spheroid. The simulations
support the notion that spheroid responses to small molecules
can be impacted significantly by spheroid morphology. There-
fore any meaningful comparisons between pharmacokinetics
of different drugs must be conducted using spheroid models
with similar, reproducible physical characteristics.

Effect of additives on spheroid morphology in hanging drop
cultures

Additives in hanging drops can affect the speed, quality, longe-
vity and robustness of spheroid formation. Many of the advan-
tages of spheroid culture, including transport limitation and
establishment of a nutrient gradient, are based on the assump-
tion that cells form a compact and symmetrical spheroid
mass. Here, we assessed MethoCel, an additive that does not
adhere to cells, in its ability to enhance spheroid formation.
Unlike ECM proteins additives, such as collagen or fibronec-
tin, MethoCel does not bias toward cell aggregation by acting
as a scaffolding protein that binds multiple cells through
surface receptors. However, given the widespread use of col-

lagen as an aggregating/crosslinking agent in 3-D culture, we
included it to serve as a comparison to MethoCell as well as
assess the combined effects of collagen and MethoCel on
spheroid formation using several cell lines.

One challenge in assessing spheroid morphology is to
determine a standardized metric that correlates with spheroid
function. As demonstrated with finite element models, circu-
larity and compactness have a significant impact on transport
gradients within spheroids. To this end, we developed a visual
comparison-based, 5-point scale to assess circularity and com-
pactness of spheroids. The uneven brightness of a spheroid
and the background caused by the curvature of the hanging
drop complicates the determination of the spheroid border
necessary for computer image analysis. Circularity and com-
pactness of each spheroid were scored by comparing phase-
contrasted micrographs to the 5-stages of development for
each metrics (Fig. S1†). The scores were generated blinded and
independently by two researchers and the averages are pres-
ented as a gradient map (Fig. 2). For circularity measures, an
automated image analysis system was also used where possible
(Fig. S3†).

We tested several tumor cell lines since these would be of
most interest to drug screening applications. In agreement
with previously observed results, spheroids generally become
more circular and compact when supplemented with low con-
centration of collagen compared to unsupplemented control
conditions.12 Whereas high collagen concentrations had
varied responses, primarily a negative impact on spheroid
circularity and compactness and in some cell types (A549 and
HeLa) completely abrogating single spheroid formation,
similar to previously reported formation of small multi-
spheroids within cultures containing higher concentrations of
Matrigel17). In contrast, cells behave in a much more uniform
fashion in the presence of MethoCel. For most cells tested
(DU145, A549, HeLa, MDA-MB-231, MCF-7), the presence of
MethoCel improved circularity and compactness of spheroids
in a dose dependent manner with varying degrees of effective-
ness. The exceptions were HEK293 cells, where circularity and
compactness scores were high and favorable regardless of
MethoCel addition, and PC3 cells, where MethoCel conferred
almost no improvement. In MethoCel only culture, further
addition of MethoCel combined with low concentration of col-
lagen did not enhance spheroid morphology in a dose depen-
dent manner, but instead caused no change or negatively
impacted spheroid morphology. Finally, high collagen concen-
tration combined with MethoCel lead to mixed results with no
discernible trends.

Like in most tissue constructs, cells remodel and reshape
the spheroid over time. MethoCel demonstrated its ability in
enhancing spheroid morphology in the acute phase of spher-
oid culture (2 days), but it was unclear whether such enhance-
ment would be sustained over a long culture period. To test
this we chose three tumor cell lines (MDA-MB-231, DU145 and
PC3) to further examine the effects of MethoCel on monocul-
ture spheroid formation over a period of 4 days. Spheroids con-
sisting of either MDA-MB-231 or DU145 became more circular

Fig. 1 Computational models of oxygen gradients formed in a spheroid
containing a constant number of cells with different circularity and com-
pactness. (A) The model predicts that as the spheroid elongates and
becomes less circular, the average core-to-surface distance decreases
and the oxygen gradient decreases with the spheroid becoming more
evenly saturated with oxygen. (B) Similarly, modeling of a loose, non-
compact spheroid demonstrates shallower hypoxic gradient compared
to a compact spheroid with the same number of cells due to the lower
volumetric oxygen consumption rate.
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and compact from day 1 to 4 post seeding (Fig. 3). The
addition of 0.24 mg mL−1 of MethoCel led to further enhance-
ment over time when compared to cultures with no additives.
Interestingly, PC3 spheroid morphology was minimally
affected by culture time and presence of MethoCel. This
finding suggests that the effectiveness of MethoCel may be
cell-type dependent.

Spheroid formation generally improved using collagen con-
centrations within the range previously described in the litera-
ture.12,15,23 At higher concentrations, collagen led to formation
of multiple spheroids instead of a single one as expected,
reflecting previously reported results in increased Matrigel
concentrations17 and in some cases, we observed significant
adhesion to the hanging drop plate and formation of an

Fig. 2 Circularity and compactness of spheroids after two days in culture. Several common tumor cell lines were tested. Circularity and compact-
ness were rated on a 5-point scale by blinded observers (n = 2). Final score represent the average of 5 spheroids cultured in identical conditions.
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elongated cell mass. The latter may be caused by non-specific
absorption of protein, including collagen, onto the hanging
drop plate that leads to subsequent cell adhesion and nuclea-
tion around the rim of the plate.

The final spheroid size in a hanging drop platform can be
controlled by varying the initial cell seeding number in each
droplet. The assumption is that higher initial cell numbers in
a droplet will result in a larger spheroid, and this generally
seems to hold true for different cell types10 and additive con-
centrations we have tested (data not shown). However, at high
collagen concentration, cells may form clusters to create mul-
tiple nucleation sites as they are settling, which in turn
increases the likelihood of multi-spheroid formation.17

Another aspect to consider is that some cell types have a
natural tendency to form clusters of certain size irrespective of
seeding density, especially in high ECM concentrations. This
is seen in mammary epithelial cells, which form hollow acini
with uniform size when seeded in Matrigel irrespective to cell
quantity.24 These factors should be considered if the goal is to
generate single spheroid within each hanging drop.

Viscosity mediated spheroid stability for improved imaging
and analysis in hanging drop culture

Among the many techniques to assess anti-tumor drug
efficacy, microscopic imaging remains a commonly used
modality due to its simplicity and compatibility with online,
automated high throughput screening. However, the motion

blur associated with the vibration of the microscope or sample
movement within the hanging drop can limit the quality of
images, especially for long exposures necessary in fluorescence
imaging. The free-floating nature of spheroids within the
hanging drop culture results in the lack of steadfastness or
spheroid stability, resulting in motion blur artifacts which can
limit the ability to automate imaging of these high throughput
spheroid arrays. We went on to confirm that MethoCel
additionally reduces motion artifacts during microscopy of
spheroids in hanging drops. By tracking spheroid movement
and analyzing the center-of-mass path length we observed that
as little as 0.024 mg mL−1 of MethoCel in medium is sufficient
to reduce motion artifact in small or larger (25 and 500 cells,
respectively) spheroids. In larger spheroids (500 cells), motion
artifacts appeared to be slightly reduced as compared to
smaller spheroids in the absence of MethoCel; however the sta-
bilizing effect of MethoCel markedly reduced motion artifact
in spheroids of both sizes tested (Fig. 4A). This secondary
effect of MethoCel is particularly beneficial as it will improve
the robustness to observe and image spheroids within the
hanging drop culture. This is a significant finding as many of
the clinically relevant hanging drop spheroid applications
involve long-term culture of small (10 to 50 cells), patient-
derived cell population in spheroid formats, which could
benefit from a method to both improve spheroid formation
and facilitate imaging of samples while not disrupting the
longevity of culturing. Addition of MethoCel also did not
change droplet contact angle (Fig. 4B) or evaporation rate
(Fig. 4D) as compared to the control culture media, indicating
that the motion dampening and subsequent spheroid stability
was most likely conferred by viscosity as opposed to changes
in Marangoni or thermo-convective flow profiles.

It is not surprising that the increase in viscosity imparted
by the presence of MethoCel would dampen external vibration
and reduce the amount of forces transmitted to the spheroid
for improved stability. Due to MethoCel’s viscosity mediated
stabilization, and multiple descriptions eluding that its semi-
solid, inert viscosity modulating properties maybe responsible
for spheroid formation, we assessed other long chain macro-
molecules in their ability to achieve similar levels of spheroid
stabilization, as well as their ability to promote spheroid for-
mation. In fact we found other long chain macromolecules,
including dextran (DEX), Ficoll and polyethylene glycol (PEG),
supplemented to match 0.024% MethoCel viscosity (Fig. 4E)
achieved similar level of motion artifact reduction for spheroid
imaging (Fig. 4C) and slightly reduced evaporation rates
(Fig. 4D).

Regardless of comparable viscosity, we identified that of the
additives tested, MethoCel resulted in the most improved
spheroid circularity and compactness in poor-spheroid
forming cells, such as MDA-MB-231. Conversely, these macro-
molecule additives may interfere with spheroid formation, in a
cell-type dependent manner, as noted when they are present in
HEK293 spheroid culture. Specifically, even though all
HEK293 cultures resulted in the formation of spheroids
regardless of additives, each hanging drop culture with either

Fig. 3 Changes in tumor spheroid morphologies over 3 days were
monitored. The presence of MethoCel improved both acute and sus-
tained spheroid circularity and compactness. Scale bar = 200 μm.
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Fig. 4 Physical characterization of spheroids in hanging drop culture. (A) Presence of MethoCel improved the stability of hanging drop culture (25
and 500 cells spheroids), evident by the reduction of cumulative path length compared to no additive controls (*P < 0.01). (B) The presence of
MethoCel did not change the contact angle and evaporation rate of medium, suggesting minimal difference in thermo-convective flow within
hanging drop culture. (C) Media containing DEX, PEG or Ficoll at comparable viscosity to medium with MethoCel led to similar level of motion arti-
fact reduction compared to no additive control (25 cells spheroids, *P < 0.05). (D) The presence of DEX, Ficoll and PEG led to slight reduction in
evaporation rates compared to MethoCel supplemented medium (*P < 0.05). (E) Comparison of viscosity and osmolarity between media with
different additives and control (10% FBS in DMEM).
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PEG or DEX supplements resulted in the formation of multiple
spheroids (Fig. 5). As previously discussed, multi-spheroids in
a single droplet are non-ideal for screening applications,
further indicating that regardless of viscosity modification
there are secondary macromolecule effects necessary for
robust promotion of spheroids in hanging drop cultures. Such
factors may be crowding or “swelling” effects which could
produce localization of ECM proteins25,26 or the aggregation of
cells27 within the hanging drop cultures. These phenomena
have been demonstrated to result in mechanisms that should

induce particle and cellular aggregation when using certain
macromolecules as additives,27 one such macromolecule being
MethoCel.

Experimental procedures
Cell culture

Cells were cultured at 37 °C at 5% CO2 using a culture medium
composed of Dulbecco’s Modified Eagle’s Medium (DMEM)
(Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS)
and 1% antibiotic-antimycotic. Cells were cultured in 100 mm
culture dishes until reaching ∼80% confluence and were then
passaged using 0.25% Trypsin/EDTA (Gibco) to detach cells
from plates prior to diluting and transferring them to the
hanging drop plates. All cell lines were obtained from ATCC.
Cell lines cultured for spheroid formation were human
embryonic kidney HEK 293 (ATCC CRL-1573), breast cancer
MDA-MB 231 (ATCC CRM-HTB-26) and MCF7 (ATCC HTB-22),
lung cancer A549 (ATCC CCL-185), cervical cancer cells HeLa
(ATCC CCL-2), prostate cancer PC3 (ATCC CRL-1435) and
DU145 (ATCC HTB-81).

Spheroid culturing and assessment for methyl cellulose and
collagen type I

Prior to usage, a hydrophilic coating (0.1%, Pluronic F108,
BASF Co., Ludwigshafen, Germany) is applied onto the entire
hanging drop plate surface. The plate is subsequently UV steri-
lized before cell seeding. To form hanging drops, cell suspen-
sion solution is pipetted from the top side through the access
holes with the end of each pipette tip inserted into the access
hole to guide the sample liquid to the bottom surface. Spher-
oid formation was tested for the different cell types across mul-
tiple concentrations of A4M MethoCel (Dow Chemical, MI)
and bovine type I collagen (Corning, NY). The following con-
centrations for collagen 0, 0.3%, 1.5% were paired with the fol-
lowing concentrations of MethoCel 0, 2, 10, 20% of stock
MethoCel (1.2% w/v). These different conditions were assessed
to determine spheroid formation as a result of the additives in
the media. These combinations were assessed and used to
generate a gradient map of increased spheroid formation.
Samples were assessed and compared to the spheroid for-
mation scale seen in ESI (Fig. S1†).

Spheroid morphology scoring

Brightfield images of spheroids were collected at 10× magnifi-
cation and assigned scores based on circularity and compact-
ness. These images were randomized and scored by blinded
observers. Observers were given a series of images describing
the criteria for each metrics and were asked to score each
image out of a 5-point scale. These scores were averaged and
tabulated with gradient scale to allow visual comparison of the
effects of medium additives across different cell lines.

Fig. 5 Effects of polymer additive in spheroid formation. Media con-
taining polymer additives (formulation in Fig. 4E) were used to culture
MDA-MB-231 and HEK293 cells. The presence of MethoCel (E) improved
spheroid morphology in non-spheroid forming MDA-MB-231 cells.
Other polymers (B, C and D) produced spheroids similar to control (A).
In normally spheroid forming HEK293 cells (F), the presence of DEX (G)
and PEG (I) led to the appearance of satellite bodies. MethoCel (J) and
Ficoll (H) led to spheroids with normal morphologies. Scale bar =
200 μm.

Paper Biomaterials Science

342 | Biomater. Sci., 2015, 3, 336–344 This journal is © The Royal Society of Chemistry 2015

Pu
bl

is
he

d 
on

 1
3 

N
ov

em
be

r 
20

14
. D

ow
nl

oa
de

d 
on

 1
4.

07
.2

4 
18

:4
8:

39
. 

View Article Online

https://doi.org/10.1039/c4bm00319e


Viscosity measurement of medium with additives

Solutions were prepared for viscosity testing using culture
media composed of DMEM (LifeTechnologies, Carlsbad, CA)
with 10% FBS and 1% antibiotic-antimycotic (Life Techno-
logies, Carlsbad, CA) with the addition of the different addi-
tives. Viscosity testing was done on a total of five solution
types, culture media as well as the four solutions with addi-
tives. Additives were placed into the culture media to match
the viscosity of MethoCel 0.024% w/v in culture media. The fol-
lowing additives were used: Dextran 500 K (Pharmacosmo),
PEG 35 K (Sigma), and Ficoll 40 (Sigma) to generate similar vis-
cosity with the different additives. Viscosity testing was done
using a 52501/0b ubbelohde viscometer, testing each sample 5
times to determine average viscosity. The viscosity was deter-
mined prior to using the solutions as a spheroid culturing
solution. Upon using the different solutions, spheroid for-
mation was assessed against each culture condition.

Spheroid stability measurement

The stabilizing effects of polymer additives in hanging drop
spheroid culture were assessed by video analysis. Spheroids
with initial cell seeding numbers of 25 or 500 cells were cul-
tured in medium with or without polymer additives (MethoCel,
PEG, DEX, or Ficoll) for 2 days. Polymer-supplemented media
were formulated to have comparable viscosities and osmolari-
ties (Fig. 4E). Spheroids in hanging drop plates were imaged on
a Nikon Eclipse Ti inverted microscope at 10× magnification
for 10 seconds at a frame rate of 100 frame s−1. Using an open
source cell tracking software,28 the recorded images were ana-
lyzed to determine the center of mass of each spheroid. The
stability of spheroid was defined as the cumulative path length
using a template-matching based tracking method. Cumulative
path length was calculated by summing the total distance
covered by the center of mass over 10 seconds (1000 frames
total). In cases where cells formed more than one spheroid,
the largest one out of the group was measured.

Oxygen depletion simulations

Finite element simulations were conducted in a commercially
available finite element package (Comsol v. 4.2; Burlington,
MA). To study the effect of spheroid shape on oxygen distri-
butions, cells were assumed to consume oxygen equally
throughout the cell aggregate. Equivalent-volume (33.5 µL)
spherical and ellipsoidal geometries were generated using a
2D axisymmetric model, and the ‘transport of diluted species’
module was used to model oxygen consumption and transport
within the spheroid. Appropriate parameters were selected
based on values previously reported in the literature (diffusion
coefficient D = 2 × 10−10 m2 s−1,20 oxygen consumption rate k =
3.09 × 10−4 mol m−3 s−1.21,22) To adjust for oxygen consump-
tion differences in loose spheroids, the volumetric oxygen con-
sumption rate was reduced by a factor equivalent to the
expanded volume of the spheroid.

Conclusions

The multicellular spheroid model has found applications in
many fields of biomedical research and will play a major role
in next-generation drug-screening platforms. Using compu-
tational modeling we have demonstrated that the morphology
of a spheroid expressed as circularity and compactness, are
both important parameters that determine its transport
characteristics. We found that the morphology of a spheroid
is a function of cell type but can also be affected by the pres-
ence of additives in culture medium. We investigated the effect
of collagen, an adhesive ECM protein, and MethoCel, a cell
repelling polysaccharide, on spheroid morphologies. For all
cell types tested, use of moderate amounts of an appropriate
additive improved spheroid morphology. MethoCel was bene-
ficial for all cells except PC3 cells. Collagen, at low concen-
tration, was beneficial for all cells except HeLa cells.
Combinations of MethoCel and collagen in medium yielded
mixed results depending on the cell type, highlighting the
importance of tailoring additive formulations for specific
spheroid models. The additive formulation that was always
better than no additive was a combination of a low concen-
tration of Methocel (0.24 mg mL−1) and collagen (28.2 µg
mL−1). To obtain the highest degree of morphology improve-
ment, however, each cell type would have to be tested for a
broader range of additive formulations. In addition, we tested
other macromolecule – supplemented medium formulations
with similar viscosity and osmolarity as MethoCel and saw no
improvement in spheroid morphology. This finding implies
that the spheroid enhancement property of MethoCel cannot
be entirely attributed to medium thickening alone. Overall,
our results are in agreement with others in the literature and
suggest that additives may affect spheroid morphologies by
other biophysical factors unrelated to medium viscosity, such
as altering ECM availability in the peri-cellular space.
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