In situ analysis of gas dependent redistribution kinetics in bimetallic Au-Pd nanoparticles

Abstract

The catalytic and plasmonic properties of bimetallic gold–palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced in situ characterization strategies. In this work, we achieve the in situ analysis of the gas dependent alloying kinetics in bimetallic Au-Pd nanoparticles at elevated temperatures through a combination of CO-DRIFTS and gas-phase in situ transmission electron microscopy (TEM), providing direct insight in both the surface- and nanoparticle bulk redistribution dynamics. Specifically, we employ a well-defined model system consisting of colloidal Au-core Pd-shell NPs, monodisperse in size and uniform in composition, and quantify the alloying dynamics of these NPs in H2 and O2 under isothermal conditions. By extracting the alloying kinetics from in situ TEM measurements, we show that the alloying behavior in Au-Pd NPs can be described by a numerical diffusion model based on Fick's second law. Overall, our results indicate that exposure to reactive gasses strongly affects the surface composition and surface alloying kinetics, but has a smaller effect on the alloying dynamics of the nanoparticle bulk. Both our in situ methodology as well as the quantitative insights on restructuring phenomena can be extended to a wider range of bimetallic nanoparticle systems and are relevant in understanding the behavior of nanoparticle catalysts under operating conditions.

Graphical abstract: In situ analysis of gas dependent redistribution kinetics in bimetallic Au-Pd nanoparticles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Mee 2024
Accepted
26 Jun 2024
First published
27 Jun 2024
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2024, Advance Article

In situ analysis of gas dependent redistribution kinetics in bimetallic Au-Pd nanoparticles

M. Perxés Perich, C. R. O'Connor, K. M. Draijer, N. L. Visser, N. Artrith, C. Reece, P. E. de Jongh and J. E. S. van der Hoeven, J. Mater. Chem. A, 2024, Advance Article , DOI: 10.1039/D4TA03030C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements