Wearable biosensors for disease diagnostics and health monitoring: recent progress and emerging technologies
Abstract
Wearable biosensors leverage microfluidic technology for precise biofluid sampling and directional transport, and utilize electrical or optical sensing mechanisms for reliable detection of target physiological parameters. By synergizing microfluidics and sensing technologies, these devices provide innovative solutions for biomarker monitoring, demonstrating broad potential in health tracking and chronic disease management. With ongoing advances in smart materials, multiplex detection capabilities, and artificial intelligence-driven technologies, wearable biosensors are evolving into cornerstone tools for telemedicine and precision diagnostics. This work reviews recent progress in microfluidic-integrated wearable biosensors for disease diagnostics and health monitoring. We systematically examine sensing approaches for different analytes based on their biological characteristics, covering three key categories: (1) metabolite sensing, including microneedle-based detection, noninvasive optical/electrical methods, multimodal platforms, and closed-loop diabetes management systems; (2) protein sensing, encompassing both label-free and labeled electrical/optical techniques; and (3) nucleic acid sensing, which involves sampling protocols, amplification strategies, and label-free detection approaches. The review highlights the interaction between biomarker biological characteristics, sensing strategies, and microfluidic approaches in the development of wearable biosensing platforms, and is expected to guide the development of next-generation intelligent disease diagnostics and health monitoring devices.
- This article is part of the themed collection: Microfluidics for Wearable and Implantable Technologies

Please wait while we load your content...