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Programmable topotaxis of magnetic rollers in time-varying fields†

Yong Dou,a Peter M. Tzeliosa, Dimitri Livitza and Kyle J. M. Bishop∗a

We describe how spatially uniform, time-periodic magnetic fields can be designed to power and
direct the migration of ferromagnetic spheres up (or down) local gradients in the topography of
a solid substrate. Our results are based on a dynamical model that considers the time-varying
magnetic torques on the particle and its motion through the fluid at low Reynolds number. We
use both analytical theory and numerical simulation to design magnetic fields that maximize the
migration velocity up (or down) an inclined plane. We show how “topotaxis” of spherical particles
relies on differences in the hydrodynamic resistance to rotation about axes parallel and perpendicular
to the plane. Importantly, the designed fields can drive multiple independent particles to move
simultaneously in different directions as determined by gradients in their respective environments.
Experiments on ferromagnetic spheres provide evidence for topotactic motions up inclined substrates.
The ability to program the autonomous navigation of driven particles within anisotropic environments
is relevant to the design of colloidal robots.

1 Introduction
The autonomous navigation of active or driven particles within
anisotropic environments is an essential capability in creating
colloidal robots1,2 that operate without external supervision and
control. Inspired by chemotactic bacteria that swim up (or down)
gradients in the concentration of a chemoattractant (or repel-
lant), active colloids can now direct their self-propelled motions
in response to gradients in chemical concentrations,3 magnetic
potential,4 light intensity,5,6 fluid velocity,7,8 fluid viscosity,9 and
gravitational potential.10,11 Typically, these navigation strategies
rely on gradient-driven torques to rotate anisotropic particles in
a preferred orientation, thereby directing their motion—often
by a different mechanism. For example, Janus spheres orient
their denser hemisphere downward in a gravitational field to
direct their self-phoretic propulsion upward against the grav-
ity direction.10 Owing to their dependence on gradient-driven
torques, these strategies are less effective in weak gradients
where other torques—for example, due to Brownian motion or
self-propulsion—have a stronger influence on particle orienta-
tion.

Recently, we proposed a strategy to navigate weak gradients
by using stimuli-responsive colloids12 as high-gain sensors to in-
form the shape-directed motions of shape-shifting particles.13 By
carefully selecting the shape of the particle and its stimulus re-
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sponse, one can program autonomous motions in different direc-
tions relative to the gradient. More generally, particle shape14,15

and composition16 provide a rich design space with which to en-
code the desired behaviors of active colloids. However, the re-
alization of these designs can present challenges in synthesizing
complex anisotropic particles.

Alternatively, time-varying magnetic fields in three-dimensions
(3D) provide an experimentally accessible design space, with
which to direct complex motions of even simple particles. Ro-
tating fields induce torques on magnetic particles,17 which drive
their rotation and translation near solid substrates due to hy-
drodynamic interactions.18 In this way, ferromagnetic spheres
with residual magnetic moments19 as well as superparamagnetic
particles with anisotropic susceptibilities20 are driven to “roll”
on planar substrates as directed by the external field. Recent
work on these colloidal rollers has focused on their collective be-
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Fig. 1 Topotaxis of ferromagnetic rollers. Spherical particles with perma-
nent magnetic moments m are immersed in a viscous liquid above a solid
substrate with long-wave topographies. Spatially uniform, time-periodic
magnetic fields B(t) are designed to drive particle migration up the local
topographic gradients.
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haviors within dynamic assemblies such as crystals,21 flocks,22

swarms,23,24 worms,25 wheels,26 and critters.19 At the level of
individual particles, there remain interesting questions on the in-
fluence of particle shape27 and surface topography28 on propul-
sion dynamics in simple time-periodic fields (e.g., oscillating, ro-
tating, precessing).

Here, we investigate the use of more complex time-varying
fields to inform the dynamics of ferromagnetic spheres moving
in a viscous fluid above an inclined plane (Fig. 1). We show how
designed fields can be used to encode steady particle motions up
(or down) the inclined surface without knowledge of its orienta-
tion or the particle’s location. Importantly, the applied field does
not instruct the particle on which direction to move but rather on
how to respond to local variations in the particle environment.
As a result, the same field can drive multiple independent parti-
cles to move simultaneously in different directions as determined
by local gradients in the surface topography. We refer to these
gradient-driven motions as topotaxis by analogy to the biological
phenomenon of the same name.29

Our results are based on a dynamical model that considers the
time-varying magnetic torques on the particle and its resulting
motion through the fluid at low Reynolds number. Using a two-
timing perturbation scheme, we develop analytical approxima-
tions for the drift velocity accurate to first order in the incline
angle and to second order in the driving frequency. This analysis
reveals that topotactic motions rely on differences in the hydro-
dynamic resistance to rotation about axes parallel and perpen-
dicular to the plane. Using numerical simulations, we identify
complex driving fields that maximize the speed of gradient-driven
motion up (or down) the inclined surface. Experiments on ferro-
magnetic spheres subject to these time varying fields provide evi-
dence for particle topotaxis up inclined substrates. Together, our
results demonstrate how complex time-varying fields can be used
to both power and instruct the autonomous behavior of colloidal
particles in anisotropic environments.

2 Ferromagnetic Rollers

We consider a magnetic sphere with radius a and permanent mag-
netic moment m moving through a viscous fluid at a fixed height
above a solid plane under the influence of a time-varying mag-
netic field B(t). In a uniform field, the particle experiences a
magnetic torque, L = m×B(t), but no magnetic force, F = 0. In
the absence of inertial effects (i.e., at low Reynolds number), the
magnetic force and torque on the particle are balanced by the hy-
drodynamic force and torque, which are related to the particle’s
linear velocity U and angular velocity ΩΩΩ as[

F
L

]
=

[
A B̃
B C

][
U
ΩΩΩ

]
(1)

where A, B, B̃, and C are components of the hydrodynamic resis-
tance matrix.

For a solid sphere above a solid plane normal to the z-direction,

the components of the resistance tensor have the form

A = 6πηa

YA · ·
· YA ·
· · XA

 (2)

B =−B̃ = 6πηa2

 · YB ·
−YB · ·
· · ·

 (3)

C = 6πηa3

YC · ·
· YC ·
· · XC

 (4)

where η is the fluid viscosity. The coefficients YA and YB describe,
respectively, the dimensionless force and torque on a sphere trans-
lating parallel to a solid planar surface.30 The coefficient YC de-
scribes the torque on a sphere rotating about an axis parallel to
the surface.31 The coefficient XA describes the force on a sphere
translating perpendicular to the surface.32 Finally, XC describes
the torque on a sphere rotating about an axis perpendicular to
the surface.33 These coefficients depend only on the surface sep-
aration, δ = zp−a, scaled by the particle radius a.

Substituting the above expressions for the resistance tensor, the
linear and angular velocity can be expressed explicitly in terms of
the magnetic torque as

6πηa2U =
YA

YAYC−Y 2
B

 · κ ·
−κ · ·
· · ·

L (5)

6πηa3
ΩΩΩ =

YA

YAYC−Y 2
B

1 · ·
· 1 ·
· · λ

L (6)

where κ = YB/YA and λ = (YAYC −Y 2
B )/(YAXC). These dynamics

imply that the particle velocity normal to the planar substrate
is identically zero (i.e., Uz = 0). We therefore assume that the
surface separation δ and the resistance coefficients are constant
throughout the particle’s dynamics. For a surface separation of
δ = 0.01a, the dimensionless parameters are κ = 0.108 and λ =

1.87 (see Supporting Figure S1 for plots of κ and λ vs. δ/a).

Our present analysis neglects the effects of gravity and of Brow-
nian motion. A gravitational force normal to the surface is implicit
in our assumption of a constant surface separation δ . Gravity-
driven motions tangent to the surface are assumed to be negligi-
ble compared to those induced by the magnetic field. As detailed
below, this assumption is valid when Fga/mB0 � 0.01, where Fg

is the gravitational force on the particle. Similarly, we assume
that magnetic torques are sufficiently large as to neglect Brown-
ian motion, which is appropriate when kBT/mB0 � 1 where kBT
is the thermal energy.

2.1 Non-dimensionalization

To facilitate both numerical solution and analytical analysis of
the particle dynamics, it is convenient to introduce dimensionless
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variables using the following scales

field: B0

torque: mB0

length: a

time: ω
−1
0 ≡

6πηa3(YAYC−Y 2
B )

mB0YA

(7)

Here, B0 is the characteristic magnitude of the applied field, and
ω0 is the particle relaxation rate. In dimensionless form, the dy-
namical equations (5) and (6) depend on the two constant pa-
rameters κ and λ along with the time-varying magnetic field B(t).
Below, we use the same notation to refer to dimensionless quanti-
ties, which corresponds to setting the characteristic scales to unity
in the dynamical equations (5) and (6) (e.g., a→ 1).

2.2 Euler Angle Dynamics

The dynamics of equations (5) and (6) are solved numerically to
determine the particle position xp(t) and its orientation parame-
terized by the Euler angles u = [φ ,θ ,ψ]T . At each point in time,
the magnetic torque L expressed in the surface coordinate system
(Fig. 2) is given by

L = (RT
313(u) m′′)×B(t) (8)

where m′′ = [0,0,1]T is the constant magnetic moment expressed
in the particle coordinate system, and R313(u) = R3(φ)R1(θ)R3(ψ)

is the rotation matrix for the (3,1,3) sequence of Euler angles.34

Given the torque L, the linear velocity U and angular velocity ΩΩΩ

are given by equations (5) and (6), respectively. Starting from ini-
tial conditions xp(0) and u(0), the position and orientation evolve

Fig. 2 Three coordinate systems used to describe particle motion.34 A
point x in the surface coordinates is related to the same point x′ in the
world coordinates as x = R1(α)(x′−x′s). Here, the matrix R1(α) denotes
rotation about the x-axis by an angle α; the vector x′s is the origin of the
surface coordinates expressed in the world coordinates. Similarly, a point
x′′ in the particle coordinates is related to the same point x in the surface
coordinates as x′′ = R313(u)(x− xp) where R313(u) = R3(φ)R1(θ)R3(ψ) is
the rotation matrix for the (3,1,3) sequence of Euler angles u = [φ ,θ ,ψ]T .

as

ẋp = U (9)

u̇ =
1
sθ

 sψ −cψ 0
sθ cψ sθ sψ 0
−sψ cθ cψ cθ sθ

 ·ΩΩΩ (10)

with cx = cos(x) and sx = sin(x).34 The resulting dynamical equa-
tions for the particle orientation can be simplified as

φ̇ =−cotθ(Bx cosψ +By sinψ) (11)

θ̇ =−cosθ(By cosψ−Bx sinψ)−Bz sinθ (12)

ψ̇ = 1
2 ((1+λ )+(1−λ )cos2θ)cscθ(Bx cosψ +By sinψ) (13)

Note that the dynamics of the angles θ and ψ can be solved in-
dependently of φ . This simplification follows from the fact that
there is no torque on the particle about the axis of its magnetic
moment. Similarly, the particle velocity in the plane of the sub-
strate can be expressed as

Ux = κ(Bx cosθ −Bz sinψ sinθ) (14)

Uy = κ(By cosθ +Bz cosψ sinθ) (15)

Equations (12)–(15) can be integrated numerically to determine
the motion of the particle in the prescribed magnetic field B(t).

2.3 Two-Timing Perturbation Solution

For time-periodic magnetic fields of frequency ω, the particle
dynamics can be approximated using a perturbation expansion
based on two-timing,35 where the dimensionless frequency is
treated as the small parameter. Physically, this parameter repre-
sents the ratio between the driving frequency of the applied field
and the relaxation rate of the magnetic particle. The assumption
that ω � 1 implies that relaxation is fast, such that the parti-
cle’s magnetic moment aligns closely with the field. Under these
conditions, we can introduce two time variables: a slow time,
T = ωt, corresponding to the driving field and a fast time, τ = t,
corresponding to particle relaxation. The solution to equations
(12)–(15) can then be expanded as

θ(t,ω) = θ0(τ,T )+ωθ1(τ,T )+ω
2
θ2(τ,T )+O(ω3) (16)

ψ(t,ω) = ψ0(τ,T )+ωψ1(τ,T )+ω
2
ψ2(τ,T )+O(ω3) (17)

U(t,ω) = ωU1(τ,T )+ω
2U2(τ,T )+O(ω3) (18)

where τ and T and treated as independent variables. Substituting
these expansions into the governing equations and collecting like
powers in ω, we obtain a hierarchy of perturbation equations that
can be solved sequentially. We are primarily interested in the slow
time dynamics of the particle over one cycle of the oscillation
period; we therefore focus on the limit as τ→∞ in which the fast
processes have fully relaxed.

At the periodic steady-state (τ → ∞), the average velocity 〈U〉
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of the particle is given by the following integral of the slow time
over one oscillation cycle

〈U〉= 1
2π

∫ 2π

0
U(∞,T )dT (19)

where the components of the velocity are given by equations (14)
and (15). Substituting the perturbation expansion (18), the aver-
age velocity can be expanded as

〈U〉= ω〈U1〉+ω
2〈U2〉+O(ω3) (20)

Note that the zeroth order contributions are identically zero as
there is no motion in the limit of zero frequency. In Appendix A,
we derive expressions for the the average velocity as a function of
the applied field B(T ).

2.4 Topotaxis on an Inclined Surface

We now consider the dynamics of a ferromagnetic roller on an in-
clined surface subject to a time-periodic magnetic field. To apply
the results of the previous section, we make use of three coor-
dinate systems: (1) the surface coordinate, (2) the world coordi-
nate, and (3) the particle coordinate (Fig. 2). The solid plane is
located at z = 0 in the surface coordinate; the gravity vector is
g′ = [0,0,−g]T in the world coordinate. The magnetic field vector
B′(T ) in the world coordinate is related to the same vector B(T )
in the surface coordinate as B(T ) = R1(α)B′(T ), where the matrix
R1(α) describes a coordinate rotation about the x-direction by an
angle α (Fig. 2). For small angles (α � 1), equation (20) for the
average velocity can be expanded in powers of α as

〈U〉= ω(〈U10〉+α〈U11〉+O(α2))

+ω
2(〈U20〉+α〈U21〉+O(α2))+O(ω3)

(21)

where the components of the velocity are determined by the ap-
plied field B′(T ). By carefully selecting the field, one can drive
particle motions in a particular direction relative to that of the
inclined surface.

3 Results & Discussion

We turn now to the following design problem: what time-periodic
magnetic field B′(T ) will drive steady particle motion up (or
down) an inclined surface? Importantly, the direction of the in-
cline is not known a priori; the same field should drive uphill
motions regardless of which direction is up. For multiple par-
ticles moving independently in a common field B′(T ), the mo-
tion of each particle should be directed by the local incline of
the surface; the same field should drive different particles in dif-
ferent directions depending on the local surface topography. We
address this design problem by two complementary approaches—
one model-driven, another data-driven—and discuss their respec-
tive merits in light of this and other design challenges posed by
colloidal robotics. Common to both approaches is the use of sym-
metry arguments to prevent undesired motions and constrain the
design space of possible fields B′(T ).

3.1 Rotational Symmetry
In the absence of an incline (α = 0), there should be zero time-
averaged motion. We can enforce this condition by selecting ex-
ternal fields B′(T ) with m-fold rotational symmetry about the z′

axis. Specifically, we require that the applied field satisfy the con-
dition

R3(ϕm)B′(T ) = B′(T −ϕm) (22)

where R3(ϕm) describes a coordinate rotation about the z′-axis by
an angle ϕm = 2π/m for a specified integer m≥ 3. This condition
implies that the rotation of the field by an angle ϕm is equal to a
shift in phase of ϕm.

As a result of this symmetry, contributions to the average veloc-
ity at zeroth order in the angle α are zero (Appendix B)

〈U10〉= 〈U20〉= 0 (23)

Although intuitive, this result is not guaranteed to apply at higher
orders in the frequency ω. It is possible that certain fields with
rotational symmetry could drive steady particle motions on level
surfaces (α = 0) at high frequencies; however, we did not observe
such symmetry-breaking motions here.

At first order in α, fields with rotational symmetry can drive
motions perpendicular to the gradient direction at first order in
the frequency ω; however, motions parallel to the gradient direc-
tion do not appear until second order in ω. For the scenario in
Figure 2, the leading order contribution to particle motion is

〈U11〉= 〈U
(11)
x 〉ex (24)

which is perpendicular to the gradient direction (Appendix B).
This result is potentially problematic: we would prefer the lead-
ing order contribution to describe desired motions up (or down)
the gradient. Recognizing this issue, we can use the model to
design fields that eliminate such undesired motions.

3.2 Model-driven Design
For the present problem, it is possible to identify time-periodic
magnetic fields that (1) prohibit undesired motions perpendicu-
lar to the gradient direction, and (2) offer control over the di-
rection and speed of desired motions parallel to the gradient di-
rection. One such field—notable for its simplicity and analytical
tractability—is given by

B′(T ) =

cos χ(T )sin(mT )
sin χ(T )sin(mT )

cos(mT )

 (25)

where m ≥ 3 is an integer that specifies the order of rotational
symmetry, and the angle χ(T ) is given by

χ(T ) = T − b
m

cos(mT )+
1

4m

(
1+
√

λ

)2
sin(2mT ) (26)

where b is a free parameter. This field has a constant magnitude
but time-varying orientation. It satisfies the rotational symmetry
constraint of equation (22). Moreover, it is designed to eliminate
undesired motions perpendicular to the gradient at first and sec-
ond order in the frequency—that is, 〈U (11)

x 〉 = 〈U (21)
x 〉 = 0. While
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there are many such fields that satisfy these criteria; equation
(25) was the simplest we could find that allows for close-form
expressions of the particle migration velocity.

For this field, the leading order contribution to the average ve-
locity is parallel to the gradient and given by the analytical ex-
pression

U (21)
y = κ

(
C0(λ )+Cb(λ )b

2−Cm(λ )m2
)

(27)

where C0(λ ), Cb(λ ), and Cm(λ ) are positive order one constants
than depend on λ as

C0(λ ) = (λ −1)
2λ 5/2 +5λ 2 +2λ 3/2 +2λ −4λ 1/2 +1

32λ 3/2

Cb(λ ) = (λ 1/2−1)
2λ 2 +6λ 3/2 +8λ +3λ 1/2 +1

8λ 3/2(λ 1/2 +1)2

Cm(λ ) = (λ −1)
3λ +1
8λ 3/2

(28)

For our default estimate of λ = 1.87, these constants are C0 =

0.334, Cb = 0.136, and Cm = 0.281. Importantly, there is no motion
when λ = 1: differences in the resistance to rotation about axes
parallel and perpendicular to the surface are essential to drive
steady particle motions on inclined surfaces.

According to equation (27) for the migration velocity, we can
select large values of b to drive particle motion uphill or large
values of m to drive particle motion downhill. Figure 3 illustrates
these two scenarios for dimensionless frequency ω = 0.005 and
incline angle α = 0.2 radians. During steady migration up the
inclined surface, the particle zigzags back and forth in the x direc-
tion (m times per cycle) as it wiggles its way along the y direction
(Fig. 3b,c). Steady migration down the inclined surface is accom-
plished using a qualitatively different motion whereby the parti-
cle rolls along nearly circular orbits (Fig. 3b). In both examples,
the approximate migration velocity of equation (27) agrees well
with the steady motions computed numerically (Fig. 3c). More
generally, the validity of the perturbation expansion requires that
|Ḃ| � 1 such that the field varies slowly relative to the parti-
cle relaxation rate. For large m or b, this condition implies that
ω � (m2 +b2)−1/2� 1.

In dimensionless units, the uphill migration velocity for b� m
can be approximated as

〈U〉 ≈Cb(λ )καb2
ω

2ey (29)

To maximize the migration velocity, one should increase the prod-
uct bω as much as possible while maintaining the requirement
that bω � 1. Assuming that bω ≈ 0.3, the characteristic migra-
tion velocity in dimensional units is

〈U〉 ≈ (0.3)2
κaCbω0αey ≈ (4.48×10−4)

mB0α

6πηa2 ey (30)

where the second expression assumes a surface separation of δ =

0.01a. For magnetic Janus spheres (a = 2 µm, m = 2.9× 10−14 A
m2)36 in water, application of a 10 mT field is predicted to drive
propulsion speeds of 2 µm/s per radian of incline.

a

b

c

Bx

By
Bz

Bx

By
Bz

0

2π

ωt

uphill downhill

uphill

downhill

uphill

Fig. 3 (a) Two periodic fields B′(ωt) from equation (25) designed to
drive particle motion uphill (left) and downhill (right). The uphill field has
parameters m= 4 and b= 40; the downhill field has parameters m= 28 and
b = 0. (b) Numerically computed particle trajectories in the xy plane over
three oscillation cycles using the fields in (a). The uphill field causes the
particle to “wiggle” erratically with an average velocity of 〈Uy〉= 0.022ω.
The downhill field drives the particle around large circular orbits with a net
velocity 〈Uy〉=−0.023ω. Here, the dimensionless frequency is ω = 0.005;
the incline angle is α = 0.2 rad; the hydrodynamic parameters are λ =

1.87 and κ = 0.108. (c) Particle dynamics computed numerically (solid
curves) compared favorably with the time-averaged dynamics (dashed
lines) predicted by equation (27). Data correspond to the uphill trajectory
in (b).

Given the result of equation (30), we can now evaluate the
validity of our assumption that particle motions due to gravity
are negligible. Particle sedimentation down an inclined substrate
proceeds with a speed Ug = αFgYC/[6πηa(YAYC−Y 2

B )], where Fg is
the force of gravity. Comparing with the migration speed in equa-
tion (30), this contribution to particle motion is negligible when
Fg � 0.014 mB0/a assuming a surface separation of δ = 0.01a.
Use the above estimates for the moment, radius, and field, this
condition implies that the density contrast between the particle
and the fluid must be less than ∆ρ � 6000 kg/m3, which is eas-
ily achieved in practice for all but the densest particle materials.
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In addition to sedimentation, gravitational forces also influence
the orientational dynamics of the particle; however, these effects
are also negligible when Fg � 0.014 mB0/a (see Supplementary
Information).

3.3 Data-driven Design

The model-driven solution outlined in the previous section rep-
resents only one of many possible designs for encoding the au-
tonomous navigation of smooth topographic gradients. By ex-
panding the space of possible designs, it may be possible to dis-
cover more effective strategies for topotaxis. Moreover, by using
numerical simulations or—in principle—automated experiments,
one can explore a wider range of conditions (e.g., higher frequen-
cies) than those allowed by analytical approximations. Most im-
portantly, data-driven design strategies based on the outcomes of
simulations or experiments can be used to address design prob-
lems for which accurate models are unavailable. In this section,
we demonstrate a data-driven approach to design driving fields
that encode the rapid migration of ferromagnetic rollers up or
down an inclined substrate.

We consider periodic fields B(t) with a fundamental frequency
ω and N harmonics

B′(t) =
N

∑
n=0

b′neinωt (31)

where b′n are constant vectors. Only the real part of the Fourier
series is physically meaningful; the prime symbols remind us that
the field is specified in the world coordinates. This 6N + 3 di-
mensional design space is constrained by equation (22), which
ensures that the field has m-fold rotational symmetry about the
z′-axis. For n = 0, this constraint implies that b′0 = c0e′z where c0 is
a real constant. The first harmonic has Fourier coefficients of the
form

b′1 = c1

 1
−i
0

+d1

 i
1
0

 (32)

where c1 and d1 are real constants that specify the magnitude
and phase of a rotating field in the x′y′ plane. More generally,
there exist rotationally symmetric contributions to the field for
n = 0,1,km−1,km,km+1 where k is a positive integer. For higher
harmonics equal to a integer multiple of the symmetry order m,
the Fourier coefficients have the form

b′n = cn

0
0
1

+dn

0
0
i

 for n = km (33)

Neighboring harmonics with n = km± 1 have Fourier coefficients
of the form

b′n = cn

 1
∓i
0

+dn

±i
1
0

 for n = km±1 (34)

To limit the size of our design space, we fix the number of higher
harmonics to N = m+ 1. In this way, the full 6N + 3 dimensional

Fig. 4 (a) Convergence plot showing the decrease in the objective func-
tion L(d) with increasing function evaluations during optimization via
CMA-ES. Different colors correspond to design spaces with different num-
bers of dimensions. For each design space, optimization is initialized from
50 randomly selected designs (light curves); bold curves show the average
performance. (b) Two periodic fields B′(ωt) identified by the data-driven
process to drive particle motion uphill (left) and downhill (right). The
uphill field is characterized by design parameters c1 = 0.135, c5 =−0.865,
d5 =−0.003 c6 =−0.222, d6 =−0.161, c7 =−0.210, and d7 =−0.771; the
downhill by c1 = 0.044, c5 =−0.119, d5 =−0.023 c6 =−0.988, d6 = 0.608,
c7 = 0.007 and d7 =−0.089. (c) Numerically computed particle trajecto-
ries in the xy plane over three oscillation cycles using the fields in (b).
The drift velocities are 〈Uy〉= 0.0252ω and 〈Uy〉=−0.0357ω for uphill and
downhill motion, respectively. In all plots, the symmetry order is m = 6;
the dimensionless frequency is ω = 0.025; the incline angle is α = 0.2 rad;
the hydrodynamic parameters are λ = 1.87 and κ = 0.108.

design space is reduced to nine dimensions (namely, c0, c1, d1

cm−1, dm−1 cm, dm, cm+1, and dm+1). As the phase of the driving
field is not important, we set d1 = 0 without loss of generality.
Moreover, we found that the static field contribution c0 does not
contribute significantly to topotatic motions (see Supplementary
Information); we therefore set c0 = 0. Each of the seven remain-
ing parameters is bounded on the range [−1,1] to constrain the
magnitude of the field.
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Within this design space, we seek fields that minimize the fol-
lowing objective function

L(d) =−
∆y

1+(10∆x/∆y)2 (35)

where d is the design vector containing the value of the seven field
parameters, and ∆∆∆ is the particle displacement during one oscil-
lation cycle at the periodic steady-state. Minimizing this function
favors rapid particle motion up the inclined surface in the positive
y direction (Fig. 2); the factor of 10 sets the relative importance
between the magnitude and direction of the displacement ∆∆∆. We
want the particle to move parallel to the gradient direction (i.e.,
minimimize ∆x/∆y) and to do so as quickly as possible (i.e., max-
imize ∆y); the function (35) provides a quantitative formulation
of these subjective performance goals. Here, the displacement ∆∆∆

is computed numerically by integrating equations (12)–(15) in
time for a specified field. In principle, this information could be
obtained from an automated experiment without reference to a
physical model. We refer to the resulting designs as data-driven
as they are guided by observable outcomes of experiments and/or
simulations. Here, we specify the rotational order m = 6 and
the frequency ω = 0.025; however, these quantities could also be
treated as additional design variables.

We use the covariance matrix adaptation evolution strategy
(CMA-ES)13,37 to identify designs d that minimize the objec-
tive function L(d) of equation (35). Figure 4a shows the con-
vergence of L(d) towards a minimum value over the course of
1000 function evaluations with 50 independent replicates. Inter-
estingly, the fields identified by this numerical optimization pro-
cess are qualitatively different from those of the model-driven de-
signs (cf. Fig. 4b and Fig. 3a). Fields optimized to drive particle
motion in the uphill direction oscillate in magnitude with only
small contributions in the z-direction (Fig. 4b, left). The result-
ing drift velocity, however, is similar to that of the model-driven
design, suggesting that further enhancements in the speed of par-
ticle migration are limited. Fields optimized to drive particle mo-
tion in the downhill direction use rolling motions with a rotating
orientation—not unlike the model-driven design (cf. Fig. 4b, right
and Fig. 3a, right).

One potential advantage of the data-driven approach is its abil-
ity to design driving fields in the absence of a guiding model. This
approach, however, would require ca. 1000 experiments to opti-
mize performance within a known environment—for example, a
slope of known orientation. To accelerate this process, we use
principal component analysis (PCA) to reduce the dimensional-
ity of the design space and thereby facilitate the search for driv-
ing fields with high performance. Briefly, we sample the full 7-
dimensional design space at random to identify more than 1000
“good” designs with L < −0.01 (see Supplementary Figure S2).
These points are then used to identify linear combinations of
design variables that describe most of the variance among the
points. Using the first n = 2,3,4 or 5 of these principle com-
ponents, we repeat the optimization procedure described above
for the full 7-dimensional space. As illustrated in Figure 4a, the
use of low-dimensional design spaces enables the identification

of high performing fields (L < −0.1) more than twice as quickly
as in the original space. These results suggest that only ca. 200
function evaluations—or automated experiments—are required
to identify suitable driving fields. This data driven methodology
may prove useful in design problems for which accurate models
are unavailable—for example, the autonomous navigation of par-
ticles on asymmetric, ratchet-like topographies.

3.4 Experimental Validation

To test the performance of the designed fields, we quantified the
motion of 34 µm ferromagnetic spheres (Spherotech CFM-300-
5) in water above a planar glass substrate (Fig. 5a). The parti-
cles have a estimated magnetic moment of m ≈ 2× 10−11 A m2

as determined by analysis of their frequency-dependent rolling
speed in a rotating field19,36 (see Supplementary Information).
Gravitational effects are only negligible for these larger parti-
cles when the density difference with the liquid is ∆ρ � 220
kg/m3, which is not satisfied in water. To eliminate these ef-
fects, we conduct our experiments on a level substrate and in-
stead tilt the magnetic field by an angle α about the x-axis of
the surface coordinate. Field-induced particle motions on this
simulated incline are captured by optical video microscopy and
quantified by particle tracking algorithms (TrackPy). We focus
our proof-of-concept experiments on the model-driven design for
uphill topotaxis (Fig. 3), for which the migration velocity 〈U〉 is
well approximated by equation (29).

Figure 5b shows the field induced motions of a single particle
subject to time-varying fields with and without a simulated incline
of α = 20◦. In the presence of the incline, the particle migrates
along the “up hill” direction at a constant speed of about 2 µm/s.
Control experiments at zero incline show particle migration veloc-
ities that are one order of magnitude smaller. To further validate
the model predictions, we varied the frequency ω of the applied
field and measured the average migration velocity in the x and y
directions with and without the simulated incline (Fig. 5c). Along
the y-direction parallel to the simulated incline, the migration ve-
locity increased quadratically with the frequency ω as predicted
by equation (29). By contrast, in the absence of the simulated
incline, there was little motion in the either the x or y directions
as expected due to the rotational symmetry of the applied field.

The experiments reveal several factors that can potentially
complicate the realization of programmable topotaxis. First, het-
erogeneity in the magnetic particles—namely, their magnetic mo-
ments m and their surface separation δ—can lead to different mo-
tions in the same driving field. Magnetic rolling experiments at
low frequencies (ω � ωo) show a broad distribution of rolling
speeds, which reflect variations in the surface separation δ among
the different particles from δ ≈ 0.1a to δ → 0 (see Supplementary
Information). Particles with smaller separations exhibit stronger
rotation-translation coupling (i.e., larger κ) and thereby faster
field-driven motions like that of Figure 5c. Additionally, the pres-
ence of magnetic field gradients can lead to particle migration to-
wards regions of high field strength at speeds that compete with
topotaxis. In our experiments, these effects were mitigated by
positioning the particle near the center of the three electromag-
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Fig. 5 (a) Schematic illustration of the experimental setup. (b) Re-
constructed trajectories for a single particle subject to a time-varying
magnetic field with and without a simulated incline of α = 20◦. The
applied field B(t) corresponds to the model-driven design of equations
(25) and (26) with parameters m = 4, b = 40, and λ = 1.3 selected for
uphill topotaxis (Fig. 3). The field was applied for a duration of five min-
utes with frequency ω = 1.14 rad/s and field strength B0 = 3.0 mT. (c)
Drift velocity 〈U〉 parallel (y-direction, violet squares) and perpendicular
(x-direction, burgundy circles) to the gradient direction as a function of
frequency ω for a simulated incline of α = 20◦ (filled markers) and α = 0
(open markers). The curves correspond to best fits of the predicted
forms: 〈Uy〉 = C1ω2α +C2 and 〈Ux〉 = C3 with C1 = 4.63 µm s rad−3,
C2 = 0.058 µm/s, C3 =−0.091 µm/s.

nets. One should also consider the frequency-dependent response
of the electromagnetic coils to ensure that the applied field is
representative of the intended field. Here, the electromagnets
have a characteristic response time of ∼100 s−1, above which
the field is attenuated and shifted in phase. Our experiments use
frequency components as fast as bω = 46 rad/s, at which such
effects are present but small. Finally, we emphasize that the cur-
rent results apply only to individual particles; magnetic and/or
hydrodynamic interactions among nearby particles are expected
to influence their motion in the driving field. The ability to design
fields to direct such collective motions is an interesting target for
future work.

4 Conclusions

Programming the autonomous behavior of active or driven col-
loids requires one to navigate large design spaces in search of
those designs with desired performance. In this context, the
time-domain of external fields—particularly magnetic fields in 3-
dimensions—provide a useful medium for encoding particle be-
haviors as well as an energy supply for powering them. Here, we
applied this general strategy to encode the autonomous naviga-
tion of magnetic microspheres on smoothly varying topographic
gradients. The simple geometry of the problem allowed us to
investigate and compare two strategies for designing the driving
field.

Model-driven designs require a detailed understanding of the
relationship between the driving field and the resulting particle
motions. When available, this understanding can be leveraged to
create robust designs under appropriate conditions (e.g., at low
frequencies ω � ωo). Though idealized, these models provide
useful insights that guide the design process. For example, one
should increase the driving frequency ω as large as possible to
maximize desired particle motions that scale as ω2 relative to un-
desired motions that scale as ω. At the same time, the driving
field must vary slowly enough for the particle’s magnetic moment
to follow the field without “slipping”.

Guided by these and other heuristics, data-driven designs use
simulations or automated experiments to probe the quantitative
relationship between design and performance that idealized mod-
els may fail to capture. In the present context, we found that
high performing designs could be identified using ca. 200 simu-
lation outcomes. A series of automated experiments that rely on
computer-controlled fields, imaging, and data analysis could con-
ceivably collect as much data within ca. 10 hr assuming 3 min
for each experiment. Importantly, such brute-force, evolution-
ary strategies are capable of discovering useful designs without a
model—or any understanding for that matter. We are currently
working to extend our experimental platform to further test the
theoretical predictions of the present work and to demonstrate
data-driven designs for navigating complex structured environ-
ments. As in other domains, evolutionary design processes38,39

are expected to play an important role in programming the au-
tonomous behaviors of colloidal robots.
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Appendix A: Perturbation Solution

We write the governing equations (12) and (13) for the Euler
angles θ(t) and ψ(t) as

dtθ = ∂τ θ +ω∂T = f (θ ,ψ) (36)

dtψ = ∂τ ψ +ω∂T ψ = g(θ ,ψ) (37)

Substituting the expansions (16) and (17), we collect like powers
in ω and solve the hierarchy of perturbation equations to derive
the components of the particle velocity (20) presented in the main
text.

Zeroth Order, O(ω0)

The zeroth order equations are

∂τ θ0 = f (θ0,ψ0) (38)

∂τ ψ0 = g(θ0,ψ0) (39)

On time scales of order unity, the time derivatives relax to zero,
and the orientation of the particle is specified by the applied field.
The resulting solution is

θ0(∞,T ) = atan2((B2
x +B2

y)
1/2,Bz) (40)

ψ0(∞,T ) = atan2(Bx,−By) (41)

where atan2(y,x) is the 2-argument arctangent function. Note that
the components of the applied field depend on the slow time—for
example, Bx = Bx(T ).

First Order, O(ω1)

The first order equations are

∂T θ0 +∂τ θ1 = θ1∂θ f (θ0,ψ0)+ψ1∂ψ f (θ0,ψ0) (42)

∂T ψ0 +∂τ ψ1 = θ1∂θ g(θ0,ψ0)+ψ1∂ψ g(θ0,ψ0) (43)

Substituting the zeroth order solution (40) and (41), we find the
following solution for the first order quantities as τ → ∞

θ1(∞,T ) =
BxyḂz− (BxḂx +ByḂy)Bz

BxyB3 (44)

ψ1(∞,T ) =
B(ByḂx−BxḂy)

B2
xy(λB2

xy +B2
z )

(45)

where B = (B2
x +B2

y +B2
z )

1/2 is the field magnitude, Bxy = (B2
x +

B2
y)

1/2 is the magnitude of the field projected onto the xy plane,
and the dots denote derivatives with respect to the slow time.
Using these expressions, the first order contribution to the particle
velocity in the x direction is

U (1)
x (T ) = κ

(
(BzḂx−BxḂz)

B2 +(λ −1)
ByBz(BxḂy−ByḂx)

B2(λB2
xy +B2

z )

)
(46)

The velocity in the y direction can be obtained by permuting the
x and y indices.

Second Order, O(ω2)

The second order equations are

∂T θ1 +∂τ θ2 =−Bθ2−
BzBxy

2B
ψ

2
1 (47)

∂T ψ1 +∂τ ψ2 =−
λB2

xy +B2
z

B
ψ2−

Bz(B2− (λ −1)B2
xy)

BxyB
θ1ψ1 (48)

In the limit as τ→∞, the second order solutions can be expressed
in terms of the first order solutions (44) and (45) as

θ2(∞,T ) =− 1
B

∂T θ1−
BzBxy

2B2 ψ
2
1 (49)

ψ2(∞,T ) =− B
λB2

xy +B2
z

∂T ψ1−
Bz(B2− (λ −1)B2

xy)

Bxy(λB2
xy +B2

z )
θ1ψ1 (50)

The second order contribution to the particle velocity in the x
direction is

U (2)
x (T ) = κ

(
ByBz

B
ψ2−

BBx

Bxy
θ2 +

BxBz

2B
ψ

2
1 +

ByB2
z

BBxy
θ1ψ1

)
(51)

where θ2 and ψ2 are given by equations (49) and (50), θ1 and ψ1

by equations (44) and (45). The velocity in the y direction can be
obtained by permuting the x and y indices.

Appendix B: Rotational Symmetry

Zeroth Order, O(α0)

For fields B′(T ) with rotational symmetry satisfying equation
(22), the average velocity 〈U10〉 is identically zero as stated in
equation (23). To show this, we first note that an integral over
one period of a periodic function is invariant to a shift in phase

〈U10〉=
1

2π

∫ 2π

0
U10(B′(T −ϕm))dT (52)

where ϕm = 2π/m. Using equation (22) for rotational symmetry,
we can write the average velocity as

〈U10〉=
1

2π

∫ 2π

0
U10(R3(ϕm)B′(T ))dT (53)

Similar equations hold for other integer multiples of the angle ϕm.
By averaging over the first m multiples, we can write

〈U10〉=
1

2π

∫ 2π

0

[
1
m

m−1

∑
n=0

U10(Rz(nϕm)B′(T ))

]
dT = 0 (54)

where the integrand is identically zero. Note that the instanta-
neous velocity U10 is given by equation (46) since B′(T ) = B(T )
at zeroth order in α. Using the same arguments, it can be show
that the average velocity 〈U20〉 is also zero as stated in equation
(23).

First Order, O(α1)

For fields B′(T ) with rotational symmetry satisfying equation
(22), the average velocity 〈U (11)

y 〉 parallel to the gradient direc-
tion is identically zero as implied by equation (24). To show this,
we use the rotational symmetry of the field to simplify the inte-
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grand as in equation (54) above

〈U (11)
y 〉= 1

2π

∫ 2π

0

[
1
m

m−1

∑
n=0

U (10)
y (Rz(nϕm)B′(T ))

]
dT (55)

The resulting integral can then be simplified as

〈U (11)
y 〉= κ

8π

∫ 2π

0

d
dT

ln

(
2(λ −1)B′xy

2

B′2
+2

)
dT = 0 (56)

where the second equality follows from the periodicity of the
field. By contrast, the average velocity in the x-direction (per-
pendicular to the gradient) is non-zero

〈U (11)
x 〉= κ

∫ 2π

0

(λ (λ +1)B′xy
2 +(3λ −1)B′z

2)(B′xḂ′y−B′yḂ′x)

4π(λB′xy
2 +B′z

2)2
dT

(57)
where the integrand has been simplified using the rotational sym-
metry of the field.
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