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Quantitative multiplexing of uric acid and creatinine using polydisperse plasmonic 
nanoparticles enabled by electrochemical-SERS and machine learning

Tabitha Jonesa,b, Deyue Zhoua,b, Jia Liua,b, Ivan P. Parkina, Tung-Chun Leea,b

a Department of Chemistry, University College London, London, WC1H 0AJ
b Institute of Materials Discovery, University College London, London, WC1H 0AJ

Abstract 

Surface-enhanced Raman spectroscopy (SERS) is a promising technique for the detection of 
biomarkers, but it can struggle to quantify multiple analytes in complex fluids. This study 
combines electrochemical SERS (E-SERS) and machine learning for the quantitative 
multiplexed detection of uric acid (UA) and creatinine (CRN). Using classical polydisperse Ag 
nanoparticles (NPs) made by scalable synthesis, we achieved quantitative multiplexing with 
low limits of detection (LoDs) and high prediction accuracy, comparable to those made by 
sophisticated approaches. The E-SERS LoDs at the optimal applied potentials were 0.127 M 
and 0.354 M for UA and CRN respectively, compared to 0.504 M and 1.02 M for 
conventional SERS (recorded at 0 V). By collecting a multi-dimensional E-SERS dataset and 
applying a two-step partial least squares regression – multilayer perceptron (PLSR-MLP) 
machine learning algorithm, we were able to identify the analyte concentrations in unseen 
spectra with a prediction accuracy of 0.94. This research demonstrates the potential of E-SERS 
and machine learning for multiplexed detection in clinical settings. 

Introduction 

The detection of biomarkers has emerged as an essential part of disease diagnosis, 
monitoring and treatment.1 Bodily fluids, such as urine, blood, and saliva, contain a plethora 
of different biomarkers, which can be used to give a holistic understanding of a patient’s 
health.2 Therefore, the simultaneous measurement of different biomarkers, known as 
multiplexed detection, is extremely desirable. Multiplexed detection of biomarkers is possible 
with advanced analytical methods, such as mass spectrometry and high-performance liquid 
chromatography, but these techniques are time-consuming and require expensive lab-based 
equipment.3,4 Simpler, cheaper detection methods, for example, colourimetric assays or 
lateral flow tests, typically struggle to detect more than one analyte at the same time, 
especially for small molecules.5,6 As such, there is a need for rapid, cost-effective sensors 
which can quantitatively detect multiple biomarkers.  

Surface-enhanced Raman spectroscopy (SERS) is an analytical technique which can selectively 
detect low concentrations of biomarkers.7 In SERS, the Raman signal of a molecule is 
significantly enhanced when it is adsorbed onto a nanostructured noble-metal surface, 
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allowing analyte molecules to be identified by their vibrational fingerprints.8 It is a promising 
technique due to its sensitivity, selectivity, and ease-of-use. However, multiplexed 
quantification can be difficult in complex media due to the competitive adsorption of analytes 
on the SERS substrate and the overlapping of characteristic peaks. 

In electrochemical SERS (E-SERS), the SERS substrate acts as the working electrode in a three-
electrode electrochemical cell, allowing SERS spectra to be recorded under an applied 
potential.9 The applied potential enhances the SERS signal and boosts multiplexed detection 
in three ways.10 Firstly, certain molecules will be selectively adsorbed onto an electrode 
surface at different applied potentials depending on their charge distribution. Consequently, 
the coverage, adsorption orientation and interaction strength of a target molecule on an 
electrode can be modulated using the potential.9,11,12 As SERS is a surface-selective effect, this 
means particular peaks in the SERS spectra can be selectively enhanced by adjusting the 
applied potential. Secondly, SERS signals can be amplified by charge transfer between the 
metal and the adsorbed molecule. The likelihood of charge transfer is determined by the 
Fermi level of the metal.9 Changing the potential of an electrode alters the Fermi level, which 
can increase the probability of charge transfer and enhance the SERS signal.12,13  Lastly, the 
primary reason for conventional SERS enhancement is localized surface plasmon resonance 
(LSPR) in the metal nanoparticles which generates large localized electric fields around the 
nanostructure.14 When a negative potential is applied to an electrode, the electron density in 
the nanostructure will rise, increasing the magnitude of the LSPR, and boosting the SERS 
signal.9,10 

The relative importance of these three phenomena depends on the system and is still being 
fully understood. Nevertheless, E-SERS shows significant promise for addressing critical 
challenges in SERS sensing. Its capability to control the adsorption of molecules on the 
substrate reduces competitive adsorption and enables the resolution of complex spectra. E-
SERS has already demonstrated improved detection of a variety of analytes, including 
therapeutic drugs15,16, biomarkers17,18 and food contaminants19–22. However, very few of 
these studies demonstrate quantitative detection. Reliable quantitative measurements rely 
on robust, repeatable nanostructured electrodes which can be difficult to fabricate. Issues 
also arise due to the complex nature of the E-SERS system, in particular, the important part 
surface adsorption plays. Nonetheless, there are examples of successful quantitative 
detection of a single analyte.  

To our knowledge, quantitative detection of multiple analytes using E-SERS has not been 
reported and is likely to be difficult without additional functionalities within the system. 
Machine learning (ML) for SERS analysis is growing rapidly, with techniques such as partial 
least squares regression (PLSR), and artificial neural networks (ANNs) being employed to 
recognise subtle patterns in SERS datasets and identify the presence or concentration of 
analytes in unseen spectra. ML approaches have been used to classify or quantify 
biomarkers15,18,20,23–25, bacteria26,27, and food products28,29. In addition to improving 
interpretation, it reduces the need for time-consuming visual inspection of SERS spectra by 
trained operators, increasing the practicality of SERS as an analytical technique. Machine 
learning has recently been used for E-SERS classification of fentanyl-related compounds30, but 
it is yet to be applied to quantitative E-SERS. However, the additional complexity within the 
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datasets, which comes from the applied potential, makes it an ideal application for these 
techniques. 

Uric acid (UA) is the end product of purine metabolism and is an important biomarker for 
preeclampsia in pregnant women31,32, gout and cardiovascular disease.33,34 Creatinine (CRN) 
is a vital indicator of kidney filtration function in renal clearance tests.35,36 Herein, we report 
the quantitative multiplexed detection of UA and CRN using E-SERS and machine learning. 
The biomarkers are detected using drop-cast polydisperse Ag NPs SERS electrodes which are 
quick to make and require no specialist nanofabrication equipment. We achieve quantitative 
multiplexing with low limits of detection (LoDs) and high prediction accuracy, comparable to 
those made by sophisticated approaches (Tables S1 and S2). Applying a potential to the SERS 
electrodes resulted in significant enhancement of the Raman signal of these analytes and 
enabled lower concentrations to be detected compared to conventional SERS. The E-SERS 
LoDs at the optimal applied potentials were 0.127 M and 0.354 M for UA and CRN 
respectively, compared to 0.504 M and 1.02 M for conventional SERS (recorded at 0V). 
Notably, the SERS intensities of UA and CRN exhibit different potential dependence, which 
allows us to construct a meaningful multi-dimensional E-SERS dataset. Subsequently, a two-
step PLSR-MLP machine learning algorithm was applied to interpret the complex E-SERS 
dataset. Using this approach, we were able to identify the analyte concentrations in unseen 
spectra with a prediction accuracy of 0.94. Finally, proof-of-concept experiments were 
performed to demonstrate the detection of clinically relevant concentrations of UA and CRN 
in dilute synthetic urine. 

Experimental Section

Fabrication of Ag NP electrodes 

To fabricate solid SERS electrodes, colloidal Ag NP solution was concentrated and then drop-
cast onto APTES-coated FTO-coated glass electrodes (refer to ESI for additional details). 1 mL 
aliquots of the Ag NP solution were added to 1.5 mL Eppendorf tubes and each tube was 
centrifuged at 3600 rpm for 15 minutes. The supernatant was removed and discarded, and 
another aliquot of the colloidal solution was added. This was repeated 10 times. After the 
solution was centrifuged for the 10th time, almost all the supernatant was removed, leaving 
~0.03 mL of concentrated Ag NP solution. The concentrated Ag NP solution was drop-cast 
onto the APTES-coated FTO-coated glass electrodes in three successive 10-L aliquots, 
resulting in a Ag NP film which was approximately 0.5 cm in diameter. The substrate was then 
left to dry overnight before use. 

Instrumentation

The Raman spectra were recorded using an Ocean Optics QE Pro-Raman system with a 633 
nm He-Ne laser (power ca. 22 mW). The detector was a 1044 x 64-element TE-cooled CCD 
array, and the spectrometer had a 50 m slit and a 1200 lines/mm grating.  An InPhotonics 
RPB Raman fibre optic probe, with a numerical aperture of 0.22 and a working distance of 7.5 
mm, was used. The laser spot size was approximately 4 m. The spectra were obtained from 
10 scans with an acquisition time of 7 s. Asymmetric least squares (ALS) baseline correction 
was used to remove the fluorescence background in the SERS spectra.37 
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To perform E-SERS, an electrochemical potential was applied to the SERS substrate using a 
Gamry Potentiostat Interface 1010E and a three-electrode electrochemical cell which 
consisted of a leakless Ag/AgCl reference electrode, a platinum plate counter electrode, and 
the SERS substrate as the working electrode. 0.1 M NaF(aq) was used as the supporting 
electrolyte for all experiments. 

All the E-SERS experiments were performed inside a custom-built cell. The cell was 3D printed 
from polylactic acid and contains a window made of quartz glass, which allows SERS 
measurements to be performed whilst applying an electrochemical potential to the substrate 
enabling the acquisition of E-SERS spectra. 

During the E-SERS scans, the Gamry Framework Sequence Wizard was used to control the 
potential applied to the SERS substrate. The sequence wizard was programmed to perform 
successive chronoamperometry experiments, where the potential of the working electrode is 
stepped to a specific value (relative to the reference electrode) and the resulting current is 
recorded as a function of time. The potential was held for six minutes to allow multiple SERS 
spectra to be recorded before the next potential was applied. The spectra recorded in the 
first 75 seconds are discarded to allow the current to reach a stable value. When a Ag NP 
electrode was first placed in the electrolyte, a full potential scan (from 0 V to +0.4 V to -0.8 V) 
was performed to allow the electrode to equilibrate and remove adsorbed citrate ions from 
the electrode surface. 

For some E-SERS experiments, spectra for multiple different analyte concentrations were 
recorded using the same electrode. To do this, a full E-SERS scan was performed at the lowest 
analyte concentration. Then, stock solution of the analyte was added to the electrolyte to 
increase the overall concentration, whilst keeping the concentration of the supporting 
electrolyte and other molecules the same. The electrolyte was mixed well, and the electrode 
was left in the solution to equilibrate before performing the next E-SERS scan. 

Synthetic urine (SU) which did not contain UA or CRN was prepared according to the literature 
with modifications.38,39 For 200 mL of SU, 2 g of urea, 1.04 g of NaCl, 0.9 g of KCl, 0.96 g of 
NaH2PO4, 0.08 g of citric acid, and 10 mg of albumin were dissolved in 200 mL of deionized 
water. 

Machine learning 

The E-SERS dataset consisted of 2348 spectra of solutions containing UA (0 – 100 M) and 
CRN (0 – 1000 M) recorded at applied potentials between -0.8 V and 0.4 V, which were 
randomly split into training (80%) and test (20%) datasets. Three machine learning 
approaches were investigated: partial least squares regression (PLSR), a multilayer 
perceptron (MLP) and a two-step PLSR-MLP algorithm which combined the two approaches. 

PLSR is a well-established multivariate regression technique related to principal component 
analysis (PCA).40,41 It is a supervised machine learning approach which is particularly suited to 
noisy data that contains many collinear predictor variables and one or more response 
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variables. In PLSR, the dimensionality of the predictor (X) variables is reduced by finding new 
latent variables which best describe the variation in the response (Y) variables.41 The new 
variables are linear functions of those in the original dataset, with each variable successively 
increasing the total variance explained by the latent variables. 

MLPs are a simple class of feed-forward artificial neural networks. They consist of connected 
nodes called artificial neurons, which take in multiple inputs and compute a single output 
value. MLPs contain at least three layers of neurons: an input layer, one or more hidden layers 
and an output layer.42 Each neuron in one layer is connected to every neuron in the following 
layer.42 Initially, the connections between neurons are assigned random weights.43 When the 
network is presented with a training dataset, back-propagation is used to iteratively adjust 
the weights to reduce the difference between the output results and the actual results.42,43 
This process is repeated until the error is below an acceptable level. The resulting trained 
network can then be used to determine the output for a new unseen input dataset.

In the two-step PLSR-MLP algorithm, PLSR is used to reduce the dimensionality of the SERS 
spectra, and then the new latent variables are combined with the applied potential to create 
the input layer for the MLP. For the PLSR, the dataset (excluding the applied potentials) is split 
into a m x n X matrix and a p x n Y matrix where n is the number of spectra, m is the number 
of wavenumber shifts in the SERS spectra after pre-processing (360, from 500 - 1800 cm-1, 
equally spaced) and p is the number of analytes, which is 2.41 The dimensionality of the X 
matrix is then reduced to a specified number of latent variables (k) which best describes the 
variance in the Y matrix. The result is a k x n T matrix. The T matrix is then combined with the 
applied potential to create a (k+1) x n T+P matrix. The T+P matrix is the input layer for the 
MLP which is used to make the concentration predictions. Further details of the data 
processing and machine learning can be found in the SI. 

Results and discussion 

Ag NPs were synthesised in a scalable fashion (here, c. 20mg per batch) via a facile citrate 
reduction based on the Lee and Meisel method. The UV-Visible (UV-Vis) spectrum of the as-
synthesised Ag NPs showed a LSPR peak at ca. 434 nm (Fig. 1b).

Transmission electron microscopy (TEM) confirmed the formation of polydisperse Ag NPs (Fig. 
1c). The NPs were quasi-spherical with some rods and trapeziums also present, which is 
typical for Ag NPs synthesised using the Lee and Meisel method (Fig. S1).44 ImageJ was used 
to manually measure the area of 1026 particles from TEM images and the diameter of each 
particle was calculated by assuming the particles were spherical. The mean diameter 
calculated in this way was 79  25 nm.

The Ag NP electrodes were fabricated by drop-casting a concentrated colloidal solution of Ag 
NPs (ca. 230 mg/mL) onto conductive APTES-coated FTO-coated glass (Fig. 1a). The APTES 
coating improves the adhesion of the Ag NPs to the glass. The APTES molecules bond to the 
surface of the glass via their hydrolysable alkoxy groups and the exposed amino groups 
interact electrostatically with the surface of the Ag NPs.45 The coating also increases the 
hydrophobicity of the glass, resulting in more controlled drop-casting, yielding smaller, more 
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uniform compact-layer NP films (Fig. 1e). Scanning electron microscope (SEM) images of the 
substrate showed a densely packed compact layer of NPs (Fig. 1d). 

Fig. 1: (a) Schematic diagram showing the fabrication process of the SERS-active electrodes. 
Colloidal Ag NPs are synthesised and then concentrated using centrifugation. The 
concentrated Ag NP solution is drop-cast onto APTES-coated FTO-coated electrodes. E-SERS 
measurements are performed inside a 3-electrode electrochemical cell with the Ag NP 
electrode acting as the working electrode and SERS substrate. (b) UV-vis spectra of Ag NPs 
plotted with normalised extinction. (Inset) Photograph of colloidal Ag NP solution. (c) TEM 
image of a Ag NP. (d)  SEM image of Ag NP film on APTES-coated FTO-coated glass. (e) 
Photograph of Ag NP electrode. (f). Representative E-SERS spectra of a solution containing 
0.05 mM UA and 0.1 mM CRN in 0.1 M NaF. The characteristic UA and CRN peaks are indicated 
with a * and x respectively. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: platinum plate; supporting 
electrolyte: 0.1 M NaF).

The Ag NP electrodes were used to record E-SERS spectra of an aqueous solution containing 
0.5 mM UA and 0.1 M NaF. The SERS spectra were recorded using a 633 nm, 22 mW laser 
with an integration time of 7s. The applied potential was stepped from 0 to 0.5 V and from 0 
to -0.8 V in 100 mV increments. When the applied potential is more negative than -0.8V, the 
Ag NP film becomes detached from the FTO-coated glass. The characteristic UA peaks at 636 
cm-1 and 1138 cm-1, which are attributed to skeletal ring deformation and C-N deformation 
respectively, were identified in the initial spectra recorded at 0 V (Fig. 2a).17,46,47 As the applied 
potential becomes more negative, the magnitude of the SERS peaks increase, reaching a 
maximum at -0.8 V (Fig. 2a). In contrast, the magnitude of the SERS peaks decrease as the 
applied potential becomes more positive. Although the peak intensities change with 
potential, the position of the peaks remains constant, and no significant new peaks are 
observed (Fig. S4). 

The height of the characteristic UA peak at 1138 cm-1 is plotted against applied potential in 
Fig. 2b. The dramatic increase in the magnitude of the SERS peak with negative applied 
potential is clearly shown.  The magnitude of the 1138 cm-1 peak increases by over 7 times 
from 3.7 to 26.7 counts s-1 mW-1 demonstrating the advantage offered by E-SERS over 
conventional SERS. The prominent peaks observed at -0.8 V likely result from a combination 
of factors, including increased surface adsorption of the UA molecules, increased electron 
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density within the nanoparticles, and the desorption of citrate ions from the Ag NP surface 
facilitating additional UA adsorption.18,48

  
E-SERS spectra of a 0.5 mM CRN solution were recorded in the same way as the UA spectra 
(Fig. 2c). At 0 V, the characteristic CRN peak, attributed to N-H bending, is observed at 684 
cm-1.49,50 As the applied potential becomes more positive, the magnitude of this SERS peak 
starts to increase, reaching a maximum at 0.4 V and then decreasing. During cathodic 
stepping, the magnitude of the 684 cm-1 peak, increases up until -0.3 V and then starts to 
decrease. At negative potentials, new peaks are recorded at 608 cm-1 and 863 cm-1 and the 
characteristic peak at 1421 cm-1 starts to move to higher Raman shifts (Fig. S5).

The two maxima in Fig. 2d and additional peaks observed at the negative potentials illustrate 
the complex interaction between the different types of enhancement in the E-SERS system. 
At 0.4 V, the adsorption of the CRN molecules on the Ag NPs may be at its peak, which would 
account for the large SERS peaks. Conversely, the negative applied potentials increase the 
electron density, resulting in larger LSPR and potentially explaining the second maximum at -
0.3 V. The additional peaks and peak shifts observed at the negative potentials could be due 
to changes in surface adsorption or tautomerism. CRN has two pKa values at 4.8 
(imidazolidinone ring nitrogen) and 12.7 (amino group),51 and multiple tautomeric forms. The 
complex enhancement trend may result from changes in the orientation of the adsorbed CRN 
molecules due to the presence of functional groups with different dipole moments,11 and/or 
a shift in tautomeric position52. 

Fig. 2: (a) E-SERS spectra of a 0.5 mM UA solution at 0 V and -0.8 V. The characteristic UA 
peaks are indicated with a *. (b) The height of the characteristic UA peak at 1138 cm-1 plotted 
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against applied potential. (c) E-SERS spectra of a 0.5 mM CRN solution at 0 V and 0.4 V. The 
characteristic CRN peaks are indicated with an x. (d) The height of the characteristic CRN peak 
at 684 cm-1 plotted against applied potential. (RE: Ag/AgCl; WE: Ag NPs on FTO; CE: Platinum 
plate; supporting electrolyte: 0.1 M NaF).

To achieve our aim of quantitative multiplexed detection, the Ag NP electrodes must exhibit 
reliable SERS enhancements across and between electrodes. The drop-cast fabrication 
method is simple, quick, and cost-effective. However, the electrodes do exhibit some 
variability (Fig. S6) due to the uncontrolled NP spacing, the polydispersity of the colloidal Ag 
NPs and the oxidation of the silver (Fig. S7). To mitigate the issue of variability without 
increasing the complexity of the electrode fabrication method, an internal standard can be 
used. In this approach, a known concentration of a molecule is added to every sample that is 
analysed and the height of the characteristic peak of that molecule is used to normalise the 
spectra.7,53,54 The key requirements for SERS internal standards are that they are strong 
Raman scatterers, their SERS peaks do not overlap with the characteristic peaks of the target 
analytes and their adsorption does not interfere with the adsorption of the target analytes. 
For these reasons, Rhodamine 6G (R6G) was chosen which has been used successfully as an 
internal standard for SERS previously55 and has been studied extensively.54,56

The E-SERS spectra for a 10 M R6G and 0.1 M NaF solution recorded using a Ag NP electrode 
are shown in Fig. S8. The R6G exhibits strong E-SERS peaks. The largest peak at 1362 cm-1 
(assigned to C-C stretching in the xanthene ring15) was used as the reference peak for 
normalisation. The magnitude of the R6G peaks varies with applied potential (Fig. S9), with 
the largest peaks being observed at 0 V and smaller peaks present at the greater applied 
potentials. This is likely due to the adsorption of the R6G molecules onto the charged surface. 
Since this behaviour is consistently observed, R6G can still serve as an effective internal 
standard for comparing spectra recorded at the same potentials in different solutions. For 
solutions containing UA, CRN and R6G, the analyte characteristic peaks are small relative to 
the R6G peaks but still clearly visible (Fig. S10). 

To assess whether the R6G has helped reduce the variability in the E-SERS measurements, the 
spectra from three electrodes were normalised using the 1362 cm-1 peak. The height of the 
characteristic UA peak at 636 cm-1 was extracted from each normalised spectra and the mean 
and standard deviation were calculated for the three electrodes. The standard deviation as a 
percentage of the mean peak height is significantly lower for the R6G normalised spectra than 
the original spectra at all potentials (Fig. S6). This shows that using R6G as an internal standard 
can help reduce the variability of the E-SERS measurements without increasing the cost or 
complexity of the electrodes. 

The R6G normalised characteristic peak heights are plotted against applied potential for a 
range of analyte concentrations, 1 – 100 M for UA (Fig. 3a) and 1 - 1000 M for CRN (Fig. 
3b). It is significantly easier to detect and distinguish between the different concentrations at 
the optimal applied potentials, -0.8 V for UA and 0.4 V for CRN, than 0 V. Although in some 
cases, CRN exhibits larger peaks at -0.4 V than at 0.4 V, 0.4 V was chosen as the optimal 
potential as it is further from the UA optimal potential. The R6G normalised characteristic 
peak heights are plotted against analyte concentrations at the optimal applied potentials in 
Fig. S11. A linear relationship is fitted between the UA concentration and the 1138 cm-1 peak 
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height for concentrations from 1 M to 100 M (R2 = 0.988) and the log(CRN concentration) 
and the 684 cm-1 peak height for concentrations from 1 M to 1000 M (R2 = 0.902). For both 
of these plots, the LoD was calculated as 3.3 times the standard error of the slope of the 
calibration line divided by the slope (i.e. 3.3 /S).57 This resulted in a LoD of 0.13 M for UA 
and 0.35 M for CRN. These results are compared to literature reported values in Tables S1 
and S2. The LoDs are significantly lower than those reported for drop-cast colloidal Ag NPs 
previously and are comparable to many of the results achieved by more complex 
nanofabricated electrodes.

Fig. 3: The R6G normalised peak height of the characteristic (a) UA peak at 1138 cm-1 and (b) 
CRN peak at 684 cm-1 plotted against applied potential. The colour of the markers represents 
the analyte concentration in log-scale. (c) E-SERS spectra of a solution containing 0.05 mM 
UA, 0.1 mM CRN and 0.1 M NaF plotted between 550 and 800 cm-1. The characteristic UA and 
CRN peaks are indicated by a * and a x respectively. The applied potential was stepped in the 
anodic direction from 0 V to 0.4 V and then in the cathodic direction from -0.1 V to -0.8 V in 
0.1 V increments. (d) The R6G normalised peak height at 1138 cm-1 plotted against UA 
concentration for the spectra recorded at -0.8 V for a solution containing 20 M CRN and 10 
M R6G. A linear relationship is fitted between UA concentration and the peak height for 
concentrations from 1 M to 100 M (R2 = 0.987) and plotted on a log x-axis for readability. 
Corresponding plots on a linear axis can be found in Fig. S12. (e) The R6G normalised peak 
height at 684 cm-1 plotted against CRN concentration for the spectra recorded at 0.4 V for a 
solution containing 20 M UA and 10 M R6G. A linear relationship is fitted between log(CRN 
concentration) and the peak height for concentrations from 1 M to 1000 M (R2 = 0.883) and 
plotted on a log x-axis for readability.(RE: Ag/AgCl; WE: Ag NPs on FTO; CE: Platinum plate; 
supporting electrolyte: 0.1 M NaF).

To demonstrate multiplex detection using E-SERS, spectra were recorded for a 50 M UA, 100 
M and 0.1 M NaF solution at applied potentials between 0.4 V and -0.8 V (Fig. 1f). In Fig. 3c, 
the spectra are plotted between 550 and 800 cm-1. This section of the spectra contains 
characteristic peaks for UA and CRN at 636 cm-1 and 684 cm-1, indicated by a * and a x 
respectively. The relative magnitudes of the peaks vary with the applied potential, with the 
CRN peak being dominant at positive and slightly negative potentials and the UA peak 
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overtaking it at more negative potentials. This behaviour can be partly attributed to changes 
in the analyte adsorption at different applied potentials. In the presence of positive applied 
potential, the electron-rich basic amino group on CRN will be preferentially adsorbed onto 
the surface of the Ag NP electrode. In contrast, in the presence of negative applied potential, 
a UA molecule will preferentially bind onto the Ag NP electrode surface with its ionisable 
proton acting as a bridge. This showcases how particular analytes can be selectively enhanced 
through the application of potential, and illustrating the advantage E-SERS has over 
conventional SERS for multiplexed detection.

E-SERS scans were performed in a solution containing 20 M CRN, 10 M R6G and 0.1 M NaF. 
The UA concentration was increased from 0 M to 100 M. All the spectra recorded were 
normalised using the characteristic R6G peak at 1362 cm-1 and the peak height at 1138 cm-1 
at -0.8 V is plotted against UA concentration in Fig. 3d. A linear relationship is fitted between 
UA concentration and the peak height for concentrations from 1 M to 100 M (R2 = 0.987). 
It is difficult to distinguish between concentrations up to 5 M but concentrations above 10 
M can be clearly differentiated.

The same approach was used for a solution with 20 M UA and CRN concentrations from 0 
M to 1000 M. The peak height at 684 cm-1 at 0.4 V is plotted against CRN concentration in 
Fig. 3e. A linear relationship is fitted between log(CRN concentration) and the peak height for 
concentrations from 1 M to 1000 M (R2 = 0.883). The CRN peak is clearly identified for all 
solution concentrations down to 1 M. However, these results were measured by varying the 
concentration of only one of the analytes. A much larger dataset is needed to evaluate the 
multiplex detection capability of the system. 

To create the multiplexed E-SERS dataset, spectra were recorded for solutions containing 
between 0 – 100 M UA and 0 – 1000 M CRN. All solutions also contained 10 M R6G and 
0.1 M NaF and were recorded using the Ag NP electrodes. The applied potential was scanned 
from 0 V to 0.4 V to -0.8 V in increments of 0.2 V and the potential was held for 6 minutes to 
allow multiple SERS spectra to be recorded before the next potential was applied. Spectra 
were recorded using 20 different electrodes from 86 unique concentration combinations. In 
total, the dataset contained 2348 spectra. 

Despite some encouraging results for the multiplexed detection, significant variation was 
observed when comparing the spectra recorded with different electrodes and concentration 
combinations. Conventional quantitative detection focuses on a single characteristic peak, 
disregarding valuable information present in the rest of the SERS spectra that can aid in 
identifying the analyte concentration. Machine learning algorithms, on the other hand, 
leverage the entire spectra to identify subtle patterns and make more accurate predictions. 
This is a particularly effective approach in complex, multi-analyte solutions. Using a simple 
linear regression model based on the normalised characteristic peaks at the optimal 
potentials, the prediction accuracies were 0.257 and 0.018 for UA and CRN respectively. 
Clearly, this is unacceptably low, and a different approach is needed to improve the prediction 
accuracy. 

First, PLSR was investigated. When employing a PLSR model, it is important to choose the 
number of components carefully to avoid over or under-fitting. The optimal number of 
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components was found by performing PLSR on the training dataset with 1 to 31 components, 
and the R2 was calculated using 5-fold cross-validation. The cross-validated R2 starts to plateau 
above 14 components, so to avoid overfitting, 14 components were used for the PLSR model. 
The overall R2 value for the predictions made by the 14-component PLSR model with the test 
dataset was 0.72. This is a significant improvement on the simple linear regression model and 
clearly shows the benefit of utilising the entire SERS spectra. 

Next, an MLP algorithm was tested. A Bayesian optimiser using Gaussian processes was 
employed to determine the hidden layer architecture for the MLP (ESI section S1.3). This was 
found to be 2 hidden layers with 16 and 32 nodes, respectively. This hidden layer architecture 
was used to build an MLP which was trained on the training set and then used to predict the 
analyte concentrations from the unseen spectra in the test dataset. The overall prediction 
accuracy (R2) for the two analytes was 0.75.

In an attempt to combine the merits of the PLSR and MLPs, a two-step algorithm was devised. 
In this approach, PLSR is used to reduce the dimensionality of the SERS spectra, and then the 
new latent variables are combined with the applied potential to create the input layer for the 
MLP. For the PLSR, the dataset (excluding the applied potentials) is split into a m x n X matrix 
and a p x n Y matrix where n is the number of spectra, m is the number of wavenumber shifts 
in the SERS spectra after pre-processing (360, from 500 - 1800 cm-1, equally spaced) and p is 
the number of analytes, which is 2.41,58 The dimensionality of the X matrix is then reduced to 
a specified number of latent variables (k) which best describes the variance in the Y matrix. 
The result is a k x n T matrix. The T matrix is then combined with the applied potential to 
create a (k+1) x n T+P matrix. The T+P matrix is the input layer for the MLP which is used to 
make the concentration predictions. The two-step PLSR-MLP algorithm is illustrated in Fig. 4a. 
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Fig. 4: (a) Schematic diagram illustrating the two-step PLSR-MLP algorithm which was used to 
predict the UA and CRN concentrations from unseen E-SERS spectra. (b) A comparison of the 
actual concentrations and the concentrations predicted by the two-step PLSR-ANN model for 
the test dataset for (b) UA and (c) CRN. The dotted y = x line represents perfect agreement 
between the actual and predicted concentrations.

As with the MLP, a Bayesian optimiser using Gaussian processes was employed to determine 
the number of latent variables for the PLSR and the hidden layer architecture for the MLP 
(ESI). When selecting the hyperparameters for ML, it is important to avoid overfitting. The 
test dataset was selected and removed at the beginning, and then 5-fold cross-validation was 
used to find the optimal parameters using the remaining data. The optimal parameters 
identified by the Bayesian optimiser (44 PLSR components and an MLP hidden layer 
architecture of (32, 32, 32)) were used to construct the two-step PLSR-MLP algorithm. The 
prediction accuracy (R2) was 0.94. The predicted concentrations are plotted against the actual 
concentrations in Figs. 5b and 5c and the points are very close to the y = x line, indicating 
excellent prediction accuracy. The R2s for UA and CRN were 0.96 and 0.91, respectively (Figs. 
4b and 4c). The prediction accuracies for the three ML algorithms tested are compared in 
Table S3. 

To evaluate the effect of the applied potential, the same process was used to build a two-step 
PLSR-MLP algorithm using only the spectra recorded at 0V. The prediction accuracy for this 
dataset was 0.50, which is significantly lower than the 0.94 achieved when all spectra 
recorded at different potentials are included (Fig. S13). Indeed, the fact that the dataset has 
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been shrunk significantly (482 vs. 2,348 spectra) will influence the performance of the model, 
however, the same test was performed using only the spectra recorded at -0.8 V and 0.4 V 
and they achieved prediction accuracies of 0.92 and 0.86, respectively. This highlights that 
the benefits offered by E-SERS over SERS in standard spectral analysis also apply when 
machine learning is used. 

The root mean square error of prediction (RMSEP) was also calculated for the two-step PLSR-
MLP algorithm. This can be taken as an indication of the limit of detection of the system. The 
RMSEP was 5.93 M for UA and 84.7 M for CRN. These results are comparable to those 
reported in the literature for single analyte detection of UA and CRN using Ag NP SERS (Tables 
S1 and S2). It is encouraging to see that by combining E-SERS with machine learning, it is 
possible to achieve similar levels of quantitative detection for multiple analytes. The 
concentration ranges studied in this work are well within the clinically relevant range for uric 
acid59,60 and creatinine60,61. This is beneficial as it means samples could be diluted significantly 
before testing, minimising any disruption to the Raman signal caused by other analytes in the 
complex matrix.35

To assess the potential of E-SERS for the detection of UA and CRN in clinical settings, spectra 
were recorded in synthetic urine (SU). In addition to UA and CRN, the SU contained urea, 
NaCl, KCl, NaH2PO4, citric acid and albumin. The previous tests had established that the Ag NP 
electrode/E-SERS system could detect low concentrations of UA and CRN (LoDs of 0.13 M 
and 0.35 M respectively). Therefore, it was possible to dilute the synthetic urine and still 
record spectra for clinically relevant concentrations of UA and CRN, which reduces the 
potential for interference from the other molecules in the SU.59–62 

In Fig. S14, E-SERS spectra for a 10% SU solution containing 20 M UA, 1000 M CRN, 10 M 
R6G, and 0.1 M NaF are plotted. This corresponds to urinary UA and CRN concentrations of 
0.2 mM and 10 mM, which are within the normal healthy ranges for adults. The characteristic 
UA and CRN peaks can be clearly identified in the diluted SU E-SERS spectra. There is no major 
interference from other molecules, although it is possible to identify a peak at 1013 cm-1 
which can be attributed to urea. These results show that it is possible to detect clinically 
relevant concentrations of UA and CRN in dilute synthetic urine using the Ag NP electrode/E-
SERS system. This implies that, if a sufficiently large dataset of E-SERS spectra was recorded, 
it could be possible to train the two-step PLSR-ANN algorithm to quantitively detect clinically 
relevant concentrations of UA and CRN in urine. However, it is important to note that real 
urine is significantly more complex than synthetic urine and contains a broader array of 
components. As a result, interpreting the E-SERS spectra will likely be more challenging, and 
substrate fouling may become a greater issue. This issue can be partly addressed by 
pretreatments of clinical samples. For instance, filtration using a common syringe filter (pore 
size < 0.2 μm) is known to significantly reduce the microbial load.  Additionally, to account for 
the diversity within the general population, an extensive training dataset would be required 
to effectively train the algorithm.

Conclusion

To summarise, we have demonstrated the quantitative multiplexed detection of uric acid and 
creatinine through E-SERS and machine learning using Ag NP electrodes fabricated via a 
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simple, scalable process. Applying a potential to the SERS electrodes resulted in significant 
enhancement of the Raman signal of these analytes and enabled lower concentrations to be 
detected compared to conventional SERS. The optimal applied potentials, which maximise 
the adsorption of the biomarkers on the electrode surface, were identified as -0.8 V and 0.4 
V for UA and CRN, respectively. At these applied potentials, LoDs of 0.127 M (UA) and 0.354 
M (CRN) were achieved, compared to 0.504 M and 1.02 M for conventional SERS 
(recorded at 0V). These LoD are well within the clinically relevant ranges for these biomarkers 
and match or surpass the performance of more sophisticated SERS substrates that rely on 
complex nanofabrication techniques (Tables S1 and S2). The peaks of both analytes were 
successfully identified in multiplexed solutions, with the applied potential effectively 
modulating the spectra and boosting the selectivity of the sensing system. To our knowledge, 
this is the first demonstration of quantitative, multiplexed detection using E-SERS. 

A two-step PLSR-MLP machine learning algorithm was developed to interpret the complex E-
SERS dataset. This algorithm was able to predict the analyte concentrations of unseen spectra 
with a prediction accuracy of 0.94. The RMSEP, which can be taken as an indication of the LoD 
of the system, was 5.93 M for UA and 84.7 M for CRN. Finally, proof-of-concept 
experiments were performed in dilute synthetic urine to demonstrate the detection of 
clinically relevant concentrations of UA and CRN. 

The approaches employed in this work could be used to generate similar E-SERS datasets for 
an array of biomarkers in urine (or other bodily fluids). These datasets could then be utilised 
to train two-step PLSR-MLP machine learning algorithms, enabling the precise prediction of 
analyte concentration in complex solutions. More broadly, this work demonstrates the 
potential that E-SERS and ML have in trace analyte detection and highlights the benefits they 
offer over conventional SERS analysis. Combining these advances with portable Raman 
spectrometers could bring SERS closer to a clinical reality as a fast, cost-effective tool for 
biomarker detection. 
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