A mixed ionic and electronic conducting dual-phase oxygen permeable membrane with high CO2- tolerance

Abstract

A dual-phase membrane has been successfully developed using x wt.% Ce0.9La0.1O2-δ and (100-x) wt.% La2CuO4+δ (x CLO-(100-x) LCO) with no alkaline earth metals contained in the system. The 60CLO-40LCO dual-phase membrane exhibites the highest oxygen permeation rate of 0.25 mL min-1 cm-2 under the He sweeping gas condition at 950 °C. Additionally, excellent CO2- tolerance was obtained using this sample. The stable oxygen permeability and the outstanding CO2- tolerance performance ensure the 60CLO-40LCO dual-phase membranes highly promising in the oxyfuel technologies for the CO2 capture and sequestration application.

Article information

Article type
Paper
Submitted
02 Sext 2024
Accepted
03 Sept 2024
First published
04 Sept 2024

React. Chem. Eng., 2024, Accepted Manuscript

A mixed ionic and electronic conducting dual-phase oxygen permeable membrane with high CO2- tolerance

Y. Xu, H. Zhu, S. Lei, Z. Wang and J. Xue, React. Chem. Eng., 2024, Accepted Manuscript , DOI: 10.1039/D4RE00381K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements