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A surface-dynamic approach toward supercrystal
engineering of titanium-oxo clustersy}

Ling-Cui Meng,{ Zhi-Ming Feng,f Zhan-Guo Jiang ' * and Cai-Hong Zhan (= *

The controlled synthesis and structure determination of two titanium-oxo (Ti—O) clusters (Ti;oCuy)s, (sp:
hard-sphere-like packing) and (Ti;oCuy)cs (cs: chain stacking) are presented. In contrast to the previously
reported assemblies of Ti—O clusters by organic or inorganic linkers, (TijoCuz)sp and (TiypCusy)cs are
achieved via regulating the surface dynamics of Ti—O clusters and further stabilized by CH---x interactions.
The surface dynamics was regulated via a change of dynamically detached Sal-Cu/OMe-Cu motifs (Sal =
salicylic acid). More importantly, benefiting from the difference in structures, (Ti;oCus)cs exhibits excellent

rsc.li/frontiers-inorganic

In recent decades, the field of crystalline materials has seen
significant expansion through the adoption of inorganic nano-
particles (NPs), which have remarkable size dependent pro-
perties, effectively enhancing the scope of the design and syn-
thesis of materials." Assembling monodisperse NPs into super-
crystals has proved to be an effective way to modulate their
intrinsic optical, electronic, magnetic and catalytic activities
through interparticle coupling and crystal order coherence,
which can be promoted by diverse interparticle interactions,
including electrostatic interactions, depletion force,”> metallo-
philicity,> hydrogen bonding” and biorecognition inter-
actions.’ The entire process, i.e., the assembly of nanocrystals,
atomic alignment, and unification by attachment, is very
complex and intriguing.®

It is interesting to note that recent significant advance-
ments in the synthesis, structural discovery, functionalization,
and theoretical understanding of ligand-stabilized,” atom-
precise metal nanoclusters and semiconductor clusters have
created intriguing possibilities for implementing these pre-
cisely defined, nanometer-size building blocks to design nano-
materials with adjustable properties.® These atomically precise
clusters are powerful model systems for establishing the
precise structure composition-property correlation and under-
standing the physicochemical dynamic behaviors, both of
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conductive properties and different photocatalytic activities.

which are difficult or impossible to achieve in the traditional
NP system.’

Titanium dioxide (TiO,) and related Ti-O nanomaterials
have been widely applied as photocatalysts for light driven
water splitting and the degradation of environmental pollu-
tants." In recent decades, crystalline Ti-O clusters with
precise atomic position information have been increasingly
studied as well-defined models for TiO,."" From the perspec-
tive of structural dimensions, the Ti-O clusters exist across the
full dimensions from 0D nanoclusters to 1D chains,** 2D
layers,'* and 3D diamond frameworks,"* which are bridged
together by intercluster linkers such as organic or inorganic
ligands."> However, there are few examples of the surface
dynamics of Ti-O clusters regulating the structure (for
example, size, shape and packing symmetry). The crystal
packing not only depends on the strong coordination bond
but is also influenced by noncovalent intermolecular inter-
actions such as hydrogen bonds and van der Waals, &---w, and
C-H---m interactions,'® which can lead to the formation of mul-
tiple crystalline forms."”

The design and fabrication of the extended structures are
not only critical for elucidating the fundamental molecular
and thermodynamic principles that regulate the assembly pro-
cesses, but they also provide the opportunity to modify the
microscopic electronic structure, optical response,'® and ulti-
mate macroscopical performances. Herein, we demonstrated
that the surface dynamics of Sal-Cu/OMe-Cu can serve to regu-
late the structure of the packing symmetry of Ti-O clusters. A
new {Ti;oCu,} cluster was isolated and used as a model to
regulate the surface dynamics via a change of dynamically
detached Sal-Cu/OMe-Cu motifs (Fig. 1, central panels). In the
presence of -OMe, {Ti;(Cu,} tends to pack as hard spheres in
hexagonal superlattices, forming a macroscopic block super-
crystal shape (Fig. 1, top panels). However, the loss of a term-
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Fig. 1 Schematic illustration of the crystallization of {Ti;oCu,} into either hexagonal superlattices and block crystals (top) or, in the absence of one
terminal —OMe, rod-like supercrystals (bottom). The OMe-Cu fragments dynamically detached from {Ti;oCu,} clusters and Sal-Cu fragments are

grafted to {Ti;oCu,} clusters to favour 1D alignment of the clusters.

inal -OMe will give rise to polymers connected by Sal-Cu
linkers. The packing of the as-formed polymers leads to micro-
metre-sized rod-like supercrystals (Fig. 1, bottom panels). The
packing symmetry and morphology of {Ti;oCu,} can be tuned
by the surface dynamics of Sal-Cu/OMe-Cu. This work demon-
strates a facile method for engineering the morphology and
symmetry of crystalline nanocluster metamaterials in the
micrometre-size regime and highlights the importance of the
surface dynamics of nanoclusters in determining their assem-
bly behaviour.

The syntheses of [HgTijoCuy(pa-O)e(s-O)s(sal)g(OCH;) 5]
(denoted as  (Ti;pCuy)sp) and  [HyTijoCuy(py-O)e(Hs-
0),(sal)g(OCH3)6) (denoted as (Ti;oCu,)cs) are summarized in
Fig. S1-S3.1 Through the solvothermal reaction of salicylic
acid, Ti(OiPr)4 and CuCl,-2H,0 in CH;0H at 60 °C for 48 h,
yellow block crystals of (Ti;oCu,)s, were obtained. Single-
crystal analysis shows that (Ti;oCu,)s, crystallizes in the P2,/c
space group, and the cluster consists of 10 Ti(v) and 8 Sal*~
ligands. Every four Ti(wv) are connected by two p3-O to generate
a trapezoidal {Ti,} unit, and two parallel {Ti,} trapezoids are
further bridged by four p,-O to form a {Tig} double layer. The
remaining two Ti(iv) and two Cu(u) are connected by Sal®~ to
generate two pairs of {TiCu} dimers, which are attached to the
{Tig} core from the side of the double layer. The Sal*~ ligands
exhibit two different coordination fashions: two ligands, each
of which bridges two Ti(v) in the {Tig} core through the car-
boxylic group, and the remaining six Sal’~ ligands, each of
which connects one Ti(wv) cation and one Cu(u) with its car-
boxylic groups and then continues to bridge one Ti(wv) cation
through its hydroxy group. Both Cu(u) are eight-coordinated,

This journal is © the Partner Organisations 2023

and the coordination sphere is defined by three carboxylic
COO™ and two CH3;O~ anions. Furthermore, another Ti-O
cluster (Ti;oCu,).s Was achieved by increasing the concen-
tration of the starting materials. Unlike (Ti;oCuy)sp, (Ti1oCUz)es
features a 1D chain.

As shown in Fig. 2a, in the hard-sphere-like packing
pattern, -OMe undergoes CH---t interactions with two Sal®~
ligands of the adjacent {Ti;oCu,} clusters (Fig. 2b and c). The
arrangement of {Ti;(Cu,}s, can be formed by close packing in
an ABAB stacking manner (Fig. S4F). The Cu-O bond length
varies from 1.959 to 2.863 A (av. 2.255 A) in (Ti;oCu,)sp and
from 1.954 to 2.842 A (av. 2.379 A) in (Ti;oCu,).s, respectively.
These changes are seemingly subtle; however, they are the
origin of different packing patterns of the crystal. To be
specific, in (Ti;oCu,)sp, the bond lengths of Cu-O (derived
from -OMe) are 2.0694 A and 2.1819 A (Fig. S51). During chain
stacking, {Ti;oCu,} lost a terminal -OMe. Then the adjacent
{Ti,0Cuy} clusters are further extended to 1D chains through
two Sal-Cu motifs (Fig. 2e). As a result, each {Ti;oCu,} cluster
unit in the polymer has two linker hinges attached to it as
shown in Fig. 2d. Compared with (Ti;oCu,)sp, the bond lengths
of Cu-O (derived from -OOC and -OMe) are 2.7080 A and
1.9544 A (Fig. S6t), respectively. The remaining bond lengths
of Cu-O are listed in Table S2.7 In (Ti;oCu,)sp, the angles of
Cu-O-C are 134.655° and 118.907°. Upon transformation to
the polymer, the Cu-O-C angle of the linker is changed. In
(Ti;oCuy)cs, the angles are 142.429° and 121.529° (Table S2+).
Furthermore, the angles between planes composed of Sal’~
ligands coordinated with copper are also different. The angles
between the planes of ligand A and ligand B are 82.603° and
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Fig. 2 In (Ti;oCuyz)sp, the CH--. interactions of inter-clusters between
Sal?>~ ligands and —~OMe (a). (b and c) Enlarged view of the area outlined
in (a). In (TiyeCuy)cs, View of the chain structure (d), “Sal-Cu” units (e) and
space-filling view of the chain (f). Colour code and representation: Ti,
green; Cu, blue; O, red; C, grey; H, white; CH-= interactions, dashed
cyan lines.

82.370°, respectively (Fig. S7 and S8t). In addition, the angles
between the planes of ligand A and ligand C are 1.649° and
14.420°, respectively (Fig. S9 and S10t). There are CH---x inter-
actions of the {Ti;,Cu,} intracluster between the -OMe and the
ligands (Fig. S11%). For (Ti;oCu,)cs, there are also CH---x inter-
actions of intrachains (Fig. S12%). In short, the difference in
steric hindrance and the presence of CH---m interactions
together contribute to the distinguishing assembly of
{Ti;0Cu,} clusters.

The XRD patterns of the two superlattices match well with
the simulated ones, verifying the phase purity. The differences
in intensity may be due to the preferred orientation of the
powder samples (Fig. S13 and S147). The IR spectra reveal the
V,5(COO™) vibration of the carboxylic groups and also the
typical vibrations for Ti-O (Fig. S15 and S16%).'%”
Thermogravimetric analysis (TGA) experiments show continu-
ous weight loss from room temperature to 300 °C, corres-
ponding to the elimination of coordinated solvent molecules,
after which the structures begin to decompose thermally
(Fig. S17 and S18f). The UV-vis spectra of (Ti;oCu,)s, and
(Ti;oCuy)es in CHCl; show the same bands at 310 nm and
365 nm (Fig. 3). It is speculated that breakdown of the polymer
occurs in solution, leading to the formation of the molecular
nanocluster.

In the single crystal, the polymeric chains of (Ti;(Cu,).s are
stacked parallelly in a unit cell, exhibiting a highly anisotropic
crystal shape. The electrical conductivity, measured from the
slope of the linear I-V curve, was found to be 5.9 x 107° S m™
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Fig. 3 UV spectra of (TiyoCuy)cs and (TigoCuy)sp in chloroform.

for the polymeric crystal at room temperature (Fig. 4a).
Comparatively, the conductivity of (Ti;oCu,)sp, crystals is lower,
around 4.1 x 107*° $ m™" (Fig. 4b). Such a notable change in
electrical conductivity may arise from the variant configur-
ations of the CH---n interaction of the surface hooks, which
are composed of Sal>” ligands and -OMe. Blank controls
without crystal samples were also measured, showing only
instrument noise levels (Fig. S2371), which means that the con-
ductivity is contributed by the crystal material itself. These
results demonstrate that the direct linkage of clusters using
Sal-Cu is advantageous for carrier transport.

The electronic band structures of the two superlattices were
investigated using UV-vis DRS and Mott-Schottky measure-
ments. As shown in Fig. $19,7 (Ti;oCus)sp, and (Ti;oCuy)es
display similar adsorption profiles in the wavenumber range of
200-800 nm. The Tauc plot determines the optical band gaps
of (TipCuy)sp and (TijpCu,)es to be 2.27 eV and 2.35 eV,
respectively, indicating that the band gap (E,) values of the two
superlattices are not significantly altered, with a small differ-
ence of only 0.08 eV (Fig. S20t). Mott-Schottky plots were
obtained for three different frequencies (1000 Hz, 1300 Hz,
and 1500 Hz) to verify the lowest unoccupied molecular orbital
(LUMO) energy levels of (Ti;oCu,)sp and (Ti;oCus)cs, resulting

(TigpCu2)cs (TimCuz)sp

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
u/v u/v

Fig. 4 The conductance of (Ti;oCuy)cs (@) and (TiyeCus)s, (b) ranging
from -0.2Vto 0.2 V.
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in values of —0.47 V vs. NHE and —0.67 V vs. NHE, respectively
(Fig. 5a and b). Based on the results of the band gaps and
Mott-Schottky plots, the band structure diagrams of
(Ti;0Cuy)sp and (Ti;oCuy,).s Were obtained.

Although Ti-O clusters with different structures and elec-
tronic properties have been characterized in a report, which
mainly focuses on photocatalytic water splitting and dye degra-
dation, investigations on CO, photoreduction applications
still remain rare.'® The CO, photoreduction experiments of
(Ti;oCuy)es and (TijoCu,)s, were explored to evaluate the
efficiency of CO, reduction catalysis, with all experimental
details documented in the ESL{ The (Ti;(Cu,)cs catalyst was
demonstrated to have a higher efficacy of CO, reduction to
CH, due to its well-matched band structure and reduction
sites. Notably, the reduction product CO was only observed on
the (Ti;oCuy)es catalyst, which can be attributed to its lower
LUMO energy level required for CO, to CO photoreduction,
necessitating more negative reduction potential (Fig. 5c and
d). with the increasing irradiation time, the yields of CO and
CH, increase simultaneously at different reaction rates; the
amounts of CH, and CO for (Ti;oCu,).s reached up to 44.5 and
97.4 ymol g' after 4 h. In contrast, only CH, production of
(Ti;oCuy)sp was achieved after 4 h of irradiation, and the
amount of CH, for (Ti;oCu,)s, reached up to 46.5 pmol gL

(Ti;oCuy)es and (TijoCu,)sp are also comparable to existing
semiconducting materials such as Ti/Cu-based nanomaterials
(Table S3,t entries 1-18) and metal-oxygen clusters (Table S3,}
entries 19-21). Compared with some nano-sized semi-
conductors, (Ti;oCu,)es and (Ti;oCu,)s, exhibit lower photo-
catalytic performance to produce CO, while higher photo-
catalytic performance to produce CH,, and show much better
photocatalytic activity compared with metal-oxygen clusters.
What’s more, this work provides new ideas for the structural
design, synthesis and application of cluster-based functional

=0
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Fig. 5 Mott-Schottky plots of (Ti;oCuy)cs (@) and (TieCuyls, (b). Time
courses of photocatalytic CO, reduction using (Ti;oCuy)cs (c), (TizoCus)sp
(d) and their band structure diagrams.
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materials and also sets up a model for effective electron trans-
fer in catalytic applications. The experimental conditions
confirmed that light and catalysts are mandatory for CO,
reduction, as no gas production was observed in the absence
of light or catalysts. The efficiency of photoinduced electron
transfer was analysed using a transient short-circuit photo-
current response test (Fig. S24f), demonstrating rapid photo-
current generation upon turning on the light with rapid decay
after light cessation,
response for (Ti;oCuy)cs.

In conclusion, two novel superlattices were synthesized
using a new nanocluster {Ti;,Cu,} as a molecular building
block. The single crystal X-ray analysis of the nanocluster
superstructure provides detailed structural information about
the building block, the linker, and the packing patterns. The
hard-sphere-like packing (Ti;oCu,)s, and chain stacking
(Ti;oCuy).s are achieved via regulating dynamically the surface
Sal-Cu/OMe-Cu motifs of {Ti;oCu,}. (Ti;oCuy,)cs exhibits excel-
lent electrical conductivity and photocurrent response and
efficacy of CO, reduction to CO. This study sheds light on the
fundamental structure-property relationships in cluster-based
networks and introduces a new avenue for investigating a
family of semiconductor cluster assemblies.

indicating excellent photocurrent
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