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The treatment of dispersion terms for solution
systems†
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DFT calculations of reaction mechanisms in solution have always

been a hot topic, especially for transition-metal-catalyzed reac-

tions, in which the traditional DFT-D3 method has been extensively

employed. The overestimation of the dispersion from the traditional

DFT-D3 method leads to a quite low activation free-energy barrier,

so it is worth finding a proper way to deal with the dispersion for

solution systems. The solvent–solute dispersion is also important

for solution systems, and thus it should be calculated together with

the solute dispersion. The newly generated solute–solute disper-

sion energy should be shared equally with the newly formed cavity

between two interacting species; therefore, only half of the solute–

solute and solvent–solute dispersion terms belong to the solute

molecule. The detailed treatment of dispersion correction for

solution systems has been fully addressed, and this method has

been confirmed with the examples of ligand exchange reactions

and catalytic reactions.

The molecular Schrödinger equation for the solution systems is
quite complex because the noncovalent interactions between
solute and solvent molecules become evident.1 To simplify the
calculation for the solutional systems, the general approach is
to consider the solutional potential as a perturbation term V̂int

of the solute research system, as shown in eqn (1):

Ĥ = Ĥ0 + V̂int (1)

In general, solvation energy generated from solute–solvent
interaction operator V̂int consists of electrostatic energy opera-
tor V̂es and non-electrostatic energy operator V̂non-es.2–4 The
electrostatic energy is generated from the permanent dipole
conducted by an induction force, and non-electrostatic energy
usually refers to dispersion energy, cavitation energy and
repulsion energy, where the solvent–solute dispersion energy

is originated from the transient dipole between solute and
solvent molecules.

In fact, the total energy for solution systems can be
written as:

E ¼ Ch jĤ0 þ 1

2
V̂ int Cj i (2)

where Ĥ0 is the Hamilton operator in vacuo, |Ci is the wave
function, and V̂int is the solute–solvent interaction operator.

Factor
1

2
is defined as the decrease in the interaction energy due

to solvent polarization work,5–7 in other words, a solute mole-
cule and its cavity should reach a thermal equilibrium. There-
fore, a solute molecule holds only half of the solvent–solute
interaction energy. The solvent–solute electrostatic interaction
operator has been put into Hamilton operator Ĥs, namely:

Ĥs ¼ Ĥ0 þ 1

2
V̂es (3)

and the corresponding energy is calculated as:

Es ¼ E0 þ 1

2
Ees (4)

This is really an equation for the Polarizable continuum model
(PCM)8–11 in modern quantum programs, since the Tomasi
group12 suggested that the dispersion energy and cavitation
energy might cancel each other out.

London dispersion interaction, which is a long-range attrac-
tive force, originates from the temporary dipole moment of
molecules.13–16 This weak interaction is particularly important
in large or condensed systems such as biological systems and
nanomaterials.17 However, the description of London disper-
sion interaction is missing in density functional theory (DFT)
due to its inaccurate electron correlation expression by empiri-
cal parameters.18

The dispersion operator V̂D can be put into Ĥs for solute
molecules, namely,

Ĥ
s

D ¼ Ĥ0 þ V̂D þ
1

2
V̂es (5)
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and the corresponding energy for a solute molecule in solution
can be expressed as:

Es
D ¼ E0 þ ED þ

1

2
Ees (6)

Herein, ED is estimated with dispersion corrected density
functional theory (DFT-D3),19 although the dispersion energy
ED is a constant for a fixed geometry in general. Eqn (5) and (6)
are usually employed by most researchers for DFT-D3 and PCM
calculations.

The solvent–solute dispersion energy ESSD from its operator
V̂SSD should also be considered due to the concurrent solute
dispersion ED and solvent–solute dispersion, the latter of which
is originated from eqn (2). Therefore, the Hamilton operator Ĥs

D

and its energy become:

Ĥ
s

D ¼ Ĥ0 þ V̂D þ
1

2
V̂es þ

1

2
V̂SSD (7)

and

Es
D ¼ E0 þ ED þ

1

2
Ees þ

1

2
ESSD (8)

Herein, the solvation energy DEs
D is calculated as:

DEs
D ¼

1

2
Ees þ

1

2
ESSD (9)

Now we will test eqn (9) by using of data sets from Truhlar’s
group,20 which was developed for a solvation model with state-
specific polarizability (SMSSP) based on SMD. The calculation
of solvent–solute dispersion ESSD is based on the work of
Tomasi and coworkers,21,22 which has been adapted into the
Gaussian program.23 Herein, one should note that modern
quantum programs deal with the Ees term in eqn (9) correctly,
but the Gaussian program calculates the ESSD term without the

factor of
1

2
.24 In fact, only half of the solvent–solute dispersion

energy ESSD belongs to the solute molecule, as indicated in
eqn (9).

The comparison for 621 solvation energy data sets is shown
in Fig. 1, which shows that the Mean-Square-Deviation (RMSD)
value is 1.32 and 90% of the data is within the range of � 2.
This indicates that eqn (9) is good enough for calculating the
solvation energy.

For the process of A + B - A� � �B in solution, there is
solvent–solute dispersion (in black ovals), solute dispersion
(in blue ovals) and solute–solute dispersion (in red oval, DED

(A� � �B)), as indicated in Fig. 2. The solute–solute dispersion
DED (A� � �B) is newly generated when the A molecule
approaches the B molecule, in which the partial cavities of A
and B molecules are destroyed and a new cavity of A� � �B is
formed, as indicated in the interaction region of Fig. 2. There-
fore, only half of the solute–solute dispersion DED (A� � �B)
belongs to the solute molecule, in order to establish a new
thermal equilibrium between the A� � �B solute molecule and the
newly formed cavity (black curves in Fig. 2). In other words, the
total dispersion interaction operator V̂S

D(A� � �B) and the corres-
ponding energy Es

D(A� � �B) can be expressed as:

V̂
s

D A � � �Bð Þ ¼ V̂DðAÞ þ V̂DðBÞ þ
1

2
DV̂D A � � �Bð Þ þ 1

2
V̂SSDðAÞ

þ 1

2
V̂SSDðBÞ þ

1

2
DV̂SSDðA � � �BÞ ð10Þ

and

Es
D A � � �Bð Þ ¼ EDðAÞ þ EDðBÞ þ

1

2
DED A � � �Bð Þ þ 1

2
ESSDðAÞ

þ 1

2
ESSDðBÞ þ

1

2
DESSD A � � �Bð Þ ð11Þ

Therefore, the contribution of dispersion to the relative
energy DEs

D(A� � �B) in solution is counted as:

DEs
D A � � �Bð Þ ¼ 1

2
DED A � � �Bð Þ þ 1

2
DESSD A � � �Bð Þ (12)

Fig. 1 The comparison of the calculated solvation energy data with
experimental solvation data, and the inset is the histogram of DEs

D

(IDSCRF)-DG* (Exp) for 621 datasets.

Fig. 2 The subsystem of solute and cavity that describes the solvent–
solute dispersion (in black ovals), the solute dispersion (in blue ovals), along
with the newly formed solute–solute dispersion (DED(A� � �B), in red ovals)
and solvent–solute dispersion (DESSD in the interaction region between A
and B molecules).
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This is really an equation for calculating the dispersion
contribution to relative energies for A + B - A� � �B reaction.
Afterwards, we will employ DFT calculations on some reaction
processes for testing eqn (12), which includes the ligand
exchange reactions, and the transition metal catalytic reactions.

Jacosen and Cavallo25 said that ‘‘When phosphanes of
different sizes are compared, functionals including dispersion
interactions, at odds with experimental evidence, predict that
larger phosphanes bind more strongly than smaller phos-
phanes, while functionals not including dispersion interaction
reproduce the experimental trends with reasonable accuracy’’.
In fact, this is not the case, since the treatment of the disper-
sion term in solution with eqn (6) is not very appropriate.

The calculated data, along with experimental measure-
ments, are listed in Table 1, from which one can observe that
B3LYP-PCM/TZP-DKH(-dfg) with our IDSCRF radii26

(B3LYP+IDSCRF/TZP-DKH(-dfg)) are predicted to be more posi-
tive than those from the experimental enthalpy change25 for all
reactions (c.f. columns 3 and 2). Jacobsen and Cavallo25 have
employed different DFT methods without dispersion to calcu-
late these data, and have drawn a similar conclusion. This
indicates that the dispersion correction is important for such
ligand exchange reactions. However, B3LYP-D3+IDSCRF/TZP-
DKH(-dfg) (column 4, eqn (6)) provides more negative reaction
enthalpies for all reactions, which are even qualitatively incon-
sistent with experimental measurements for the first 5 reac-
tions (c.f. columns 4 and 2). The data from B3LYP-D3a+IDSCRF/
TZP-DKH(-dfg) (column 5) are calculated with eqn (12), which
are much better than those from the other two methods (cf.
RMSD values of columns 3,4 and 5 in Table 1). The values of
1

2
DED (A� � �B) and

1

2
DESSD (A� � �B) in eqn (12) are also listed in

Table 1, from which one can observe that the solute–solute
dispersion favors larger phosphane binding, but the solvent–
solute dispersion has the reverse effect.

We have chosen eleven experimentally well-investigated
catalytic reactions as our testing subjects, which include four

Ru-catalytic C–H activation/cycloadditions (M1–M4),27–30 two
Ru-catalytic C–H activation/C–C couplings (M5, M6),31,32 two
Rh-catalytic reactions (M7, M8),33,34 and three Pd-catalytic
reactions (M9, M10 and M11).35–37 We have published the
reaction mechanisms for some of the reactions in the same
or similar methods, for example, M1,38 M639 and M7.40 We
have also redone some reactions, e.g., M3,41 M5,42 M1043 and
M1144 with the present method.

In order to test the present method, one needs to calculate
the entropy in solution correctly, for which our solution-phase
translational entropy model, coded in the THERMO program,45

has been employed. The cavity volume (Vcav) and molecule
volume (Vmol) can be estimated by the overlapping spheres46

with our IDSCRF radii26 and Bader’s radii,47,48 respectively, and
the detailed methodology is described in our recent perspective
paper.24

Table 2 lists the estimated activation free-barriers DGest and
the calculated values DGcal, the latter of which are based on the
TOF-determining transition state (TDTS) and intermediate
(TDI) of the energy span model.49–51 It can be observed from
Table 2 that B3LYP-D3+IDSCRF/TZP-DKH(-dfg) (column 5,
eqn (6)) provides quite low activation free-energy barriers
for all reactions (except M7). The largest error reaches
15.6 kcal mol�1 for reaction M3, and the RMSD is ca. 9.1.
B3LYP+IDSCRF/TZP-DKH(-dfg) (column 6, eqn (6)) calculates
quite high activation free-energy barriers for all reactions,
indicating that the dispersion correction is important for
characterizing such reactions. It can be seen that the largest
error is 17.2 kcal mol�1 for reaction M7, and the RMSD is ca. 6.0
(see column 6). Therefore, the best calculation method is
B3LYP-D3a+IDSCRF/TZP-DKH(-dfg) (column 4, eqn (12)), since
RMSD is only 1.9.

In conclusion, DFT investigation has currently been widely
applied to study the reaction mechanisms in solutional sys-
tems, in which the dispersion correction is crucial for most
systems. The traditional treatment of the dispersion is not
proper for the solution systems, since it overestimates the

Table 1 Comparison of experimental DH data with those from various
calculation methods for 12 selected reactions (in kcal mol�1)

Reactiona DHexp
a DHcal

b DHcal
c DHcal

d 1

2
DED

1

2
DESSD

1ab 12.0 14.4 �1.2 9.9 �7.8 3.3
1ac 8.2 13.6 �11.4 8.0 �12.5 6.9
1bc �3.8 �0.8 �10.2 �2.8 �4.7 2.7
2ab 15.5 17.5 �5.5 10.7 �11.5 4.7
3ab 14.1 22.5 �8.9 13.1 �15.7 6.3
1a �38.9 �28.2 �42.6 �33.9 �7.2 1.5
1b �26.9 �13.8 �42.8 �24.0 �14.5 4.3
1c �30.7 �14.6 �54.6 �25.8 �20.0 8.8
2a �38.4 �28.2 �42.6 �33.9 �7.2 1.5
2b �22.9 �11.2 �42.6 �21.3 �15.7 5.6
3a �32.2 �23.2 �32.5 �27.1 �4.6 0.8
3b �18.1 �0.8 �41.5 �14.0 �20.3 7.2
RMSD 10.3 16.7 3.6

a Ref. 25, and see Scheme S1 in ESI for detailed reaction equations.
b B3LYP+IDSCRF/TZP-DKH(-dfg), eqn (4). c B3LYP-D3+IDSCRF/TZP-
DKH(-dfg), eqn (6). d B3LYP-D3a+IDSCRF/TZP-DKH(-dfg), eqn (12).

Table 2 The estimated activation free-energy barriers, along with the
calculated data (kcal mol�1) for the selected catalytic reactions

Reactiona Temp. (K) Time (h) DGzest
b DGzcal

c DGzcal
d DGzcal

e

M1 358 10 28.5 28.5 16.6 32.9
M2 443 24 36.0 34.7 24.7f 39.1f

M3 333 2 25.5 22.2 9.9 26.2
M4 363 12 29.1 29.6 17.1 35.0
M5 333 24 27.0 24.7 16.5 27.8
M6 373 24 30.5 28.2 19.7 35.7
M7 384 0.2 28.0 31.5 31.0f 45.2
M8 343 15 27.5 26.4 22.2 27.4
M9 298 6–72 25.0 25.8 20.0 26.9
M10 298 24 24.2 24.1 21.6 25.3
M11 373 36 30.6 32.0 24.4 31.1
RMSD 1.9 9.1 6.0

a See Scheme S2 in the ESI for the reaction schemes. b Estimated from
experimental temperature and time. c B3LYP-D3a+IDSCRF/TZP-DKH(-
dfg), eqn (12). d B3LYP-D3+IDSCRF/TZP-DKH(-dfg), eqn (6). e B3LY-
P+IDSCRF/TZP-DKH(-dfg), eqn (4). f TDI and/or TDTS at different
structures.
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solute–solute dispersion. The proper way is to consider the
correction of our present eqn (12), in which only half of the
solute–solute dispersion DED (A� � �B) and solvent–solute disper-
sion DESSD (A� � �B) belong to the solute molecule.

Author contributions

De-Cai Fang: designing and writing the whole manuscript, and
calculating the data in Table 1. Si-Cong Liu, Dan-Yang Liu and
Xin-Rui Zhu: calculating the reaction mechanisms and free-
energy data in Table 2.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are thankful for financial support from the
National Nature Science Foundation of China (22173010).

Notes and references

1 E. V. Anslyn and D. A. Dougherty, Mordern Physical Organic
Chemistry, University Science Books, the United States of
America, 2005.

2 A. Ben-Naim, Water and Aqueous Solutions, Springer, New
York, NY, New York, 1st edn, 1974.

3 A. Ben-Naim, Standard thermodynamics of transfer. Uses
and misuses, J. Phys. Chem., 1978, 82, 792–803.

4 A. Ben-Naim, Solvation Thermodynamics, Springer, New
York, NY, New York, 1st edn, 1987.

5 J. Tomasi and M. Persico, Molecular Interactions in
Solution: An Overview of Methods Based on Continuous
Distributions of the Solvent, Chem. Rev., 1994, 94,
2027–2094.

6 A. A. Rashin and B. Honig, Reevaluation of the Born model
of ion hydration, J. Phys. Chem., 1985, 89, 5588–5593.

7 J. M. Herbert, Dielectric continuum methods for quantum
chemistry, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2021,
11, e1519.
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46 J. Buaaa, J. Džurina, E. Hayryan, S. Hayryan, C.-K. Hu, J. Plavka,
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