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High concentration electrolytes are of growing interest in energy storage technologies, such as redox flow

batteries, where multimolar active species concentrations are believed to be necessary for economic

viability. However, conventional approaches for materials and electrochemical characterization of

multicomponent solutions often assume dilute conditions and, consequently, are challenged by the

molar-scale concentrations of redoxmers (e.g., organics, coordination complexes) and supporting salt.

Further, emergent behaviors (e.g., solution structuring, molecular aggregation, phase changes) can be

present at elevated concentrations, which confound traditional interpretations. Accordingly, different

methods and techniques are required to determine electrochemical and transport descriptors and to link

these macroscopic properties to microscopic phenomena. In this perspective, we describe the need for

and difficulties inherent to experimental measurements of concentrated electrolytes; we highlight recent

progress in terms of scientific insight and method development; and we suggest new directions for the

research community with a particular focus on nonaqueous redox flow batteries.
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1. Introduction

Growing global concern regarding environmental damage
caused by the combustion of fossil fuels has prompted a shi
toward a more sustainable energy infrastructure.1 Indeed, the
rapid advancement and decreasing cost of renewable energy
technologies (e.g., solar photovoltaic, wind) has led to signi-
cant increases in their deployment within the energy sector.2
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However, the intermittent nature of these resources necessi-
tates the implementation of cost-effective energy management
solutions, including large-scale storage systems that are capable
of facilitating the reliable delivery of renewable electricity and
fortifying the existing grid infrastructure.

While a range of electrochemical technologies are under
consideration for stationary energy storage applications, redox
ow batteries (RFBs) are particularly attractive, as their system
architecture enables independent scaling of power and energy
components, long service lifetimes, simplied manufacturing,
and improved safety.3,4 A key limitation of current state-of-the-
art aqueous RFB chemistries is their upfront cost, which is
driven by low energy densities as compared to enclosed
rechargeable battery technologies (e.g., lithium-ion batteries)
and by the use of relatively expensive charge-storage materials
(e.g., vanadium).4 Transitioning from aqueous electrolytes to
nonaqueous electrolytes enables access to a wider window of
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electrochemical stability and a diverse array of supporting salts
and solvents.5 Further, replacing transition metal salts with
redoxmers—loosely dened as metal-centered coordination
complexes, redox-active organic monomers, oligomers, poly-
mers, and colloids6—enables tuning of performance-relevant
properties, including solubility, stability, and redox potential,
throughmolecular functionalization. Moreover, if appropriately
selected, these compounds have the potential to be produced at-
scale for comparatively low cost, making them attractive for use
in nonaqueous RFBs.7,8

Despite these promises, nonaqueous RFBs are a nascent
storage concept, and there is considerable uncertainty about the
materials and performance requirements for technological
feasibility. Techno-economic modeling efforts have suggested
that high redoxmer concentrations (ca. 3–5 M) are needed to
offset the expense of nonaqueous electrolytes, though
improvements to other areas of the battery system (e.g., higher
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cell voltages, lower resistance reactors, reduced balance-of-
plant costs) may enable lower active species concentrations.6,9

Further, while increased redoxmer concentrations augment the
battery energy density, they can also signicantly impact elec-
trochemical and physiochemical properties of the electrolytes,
which, in turn, adversely impact battery operation and effi-
ciency.10 Understanding the behavior of concentrated solutions
also requires more complex mathematical treatments, as dilute
solution theories do not capture solute–solute interactions.11

The critical concentrations at which electrochemical and
transport properties change is a function of—among other
factors—electrolyte chemistry (e.g., solvent and solute identi-
ties), operating conditions (e.g., temperature), and electro-
chemical state (e.g., electrolyte state-of-charge (SOC) and state-
of-health (SOH)).10,12,13

Accurate quantitative analyses of concentrated solutions are
necessary yet challenging to perform, as electrolyte behavior
oen changes in unique and non-intuitive ways with increasing
redoxmer concentration (e.g., formation of aggregates12).
Further, activity coefficients—oen assumed to be unity for
simplicity—may assume a range of values at higher solute
concentrations, necessitating additional analyses to accurately
model concentrated electrolyte behavior. As such, there is
a need to develop systematic approaches to understand, char-
acterize, and ultimately engineer high concentration electro-
lytes suitable for high-performance RFBs. This perspective
highlights ongoing work that assesses RFB electrolytes with
high redoxmer concentrations to contextualize opportunities
for improved methods and workows, as illustrated in Fig. 1.
Fig. 1 Pictorial overview of the topics addressed within this perspective
electrochemical phenomena—alongwith solution structure—in concentr
judicious engineering of energy-dense RFBs. The electron paramagne
Attanayake, J. A. Kowalski, K. V. Greco, M. D. Cassleman, J. D. Milshtein,
Electron-Donating Phenothiazines To Enable High-Concentration Red
Mater., 31(12), 4353–4363. Copyright 2019 American Chemical Society.1

with permission from J. Maes, N. Castro, K. De Nolf, W. Walravens, B. A
Nanocrystals by Small-Angle X-ray Scattering, Chem. Mater., 30(12), 395

17990 | J. Mater. Chem. A, 2022, 10, 17988–17999
More specically, we aim to describe the foundational
approaches needed to robustly evaluate concentrated electro-
lytes by: (1) discussing the impact of high redoxmer concen-
trations on electrolyte rheology and species transport, alongside
methods to measure these properties in the context of RFBs; (2)
describing electrochemical methods for studying RFB redoxm-
ers and considering their efficacy toward evaluating concen-
trated solutions; and (3) highlighting the strengths and
drawbacks of existing and proposed spectroscopic analyses of
concentrated electrolytes. This work is not an exhaustive treat-
ment of the subject matter; rather, it seeks to underscore key
features and analyses of concentrated redoxmer electrolyte
performance while providing references to more detailed
studies. While we focus on nonaqueous RFBs—as increasing
redoxmer concentrations are critical to the success of this
storage concept—many approaches discussed are also appli-
cable to aqueous RFBs; where appropriate, we also highlight
advances within this subeld.

2. Rheological and transport
phenomena considerations for
concentrated electrolytes
2.1. Current methods

Concentrated electrolytes present complex design tradeoffs
which must be considered in electrolyte formulation, device
operation, and reactor modeling. Understanding their associ-
ated rheological and transport phenomena can provide
preliminary insight into possible ow cell behavior, and
. A concerted set of techniques can be used to evaluate transport and
ated electrolytes, enabling the foundational understandings needed for
tic resonance (EPR) spectrum is adapted with permission from N. H.
S. J. Chapman, S. R. Parkin, F. R. Brushett, S. A. Odom, Tailoring Two-
ox Electrolytes for Use in Nonaqueous Redox Flow Batteries, Chem.
4 The small-angle X-ray scattering (SAXS) spectrum, in turn, is adapted
bécassis, Z. Hens, Size and Concentration Determination of Colloidal
2–3962. Copyright 2018 American Chemical Society.15

This journal is © The Royal Society of Chemistry 2022
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techniques that probe these processes should be integrated into
the suite of RFB electrolyte diagnostics. To this end, we discuss
implications of density, conductivity, redox species mobility,
and rheology alongside current and future characterization
methods.

Electrolyte density (mass per volume) plays a key role in
computing mass and momentum transport through the elec-
trochemical cell, electrolyte reservoirs, pumps, and manifold-
ing.16 The density also relates the molarity of a compound to its
molality, informing colligative properties as well as the gravi-
metric and volumetric charge capacities for a given electrolyte.
Despite the simplicity of the concept, solution density is
important to quantify in concentrated electrolyte formulations,
as it is connected to key properties as well as other processes
(e.g., solvent self-diffusion).10

Ionic conductivity considers the combined mobilities of all
dissolved charged species and impacts the rates of charge
transport through the electrolyte phase. At low solute concen-
trations (i.e., dilute solutions), the Einstein relation equates
ionic mobility with diffusivity, which in turn relates to
viscosity.17 At higher solute concentrations, where the dilute
solution assumption is invalid, the tradeoff between conduc-
tivity and viscosity persists, but the governing equations may
vary based on solute–solute interactions and relative ion
mobilities (i.e., transference). Quantifying relationships
between ion mobility and concentration with commercial
conductivity probes and electroanalytical measurements in
bespoke cells (e.g., electrochemical impedance spectroscopy18)
provides valuable insights into ion transport rates in concen-
trated electrolytes.

Similarly, solute concentration also affects redoxmermobility,
as dissolved species diffuse more slowly through increasingly
viscous solutions; consequently, this elevates concentration
overpotentials (i.e., resistance to reactant transport) in redox ow
cells.19 Redoxmer transport properties are primarily quantied
through fundamental electroanalytical20 and spectroscopic
methods,21 while in ow cells, advective mass transport rates can
be quantied via limiting currents obtained through polarization
experiments (vide infra).22 Advection serves as a tunable handle to
enhance redoxmer mass transport rates in ow cells, enabling
higher limiting currents and accessible capacities. Losses in
species mobility at increasing concentrations may necessitate
higher ow rates to maintain specic performance parameters;
however, increases in viscosity result in higher pressure drops
(increased hydraulic resistance) throughout the uidic loops,
exacerbating tradeoffs between the pumping power required to
generate sufficient electrolyte velocities and the associated
improvements in cell performance.

Species interactions at increased concentrations can also
lead to higher order—nanoscale and mesoscale—structural
changes in the electrolyte, which impact rheological responses
including increases in viscosity.13 Quantication of rheological
properties extends frommeasuring Newtonian viscosity to more
completely characterizing the uid response to variable shear
rates. In general, RFB electrolytes containing small molecule
redox species are largely Newtonian and weakly shear-
dependent, oen making simpler tools sufficient for most
This journal is © The Royal Society of Chemistry 2022
rheological characterizations. For example, probe viscometers
have been used to quantify the viscosity in relatively concen-
trated electrolytes (ca. 1 M active species) to understand trade-
offs in transport properties (i.e., viscosity, conductivity,
diffusivity).18,19 Flow viscometers, which offer control over uid
dynamic conditions, have also been applied to provide insight
into the steady shear response in similar electrolytes, conrm-
ing the Newtonian behavior in such systems.13 Conversely,
macromolecular redox species (i.e., polymers, colloids) typically
exhibit higher viscosities and non-Newtonian characteristics in
concentrated electrolytes, such as shear-thinning or shear-
thickening behavior.23–25 Such electrolytes may necessitate
higher pumping power to achieve acceptable mass transport
rates, potentially limiting overall performance. Further, non-
Newtonian electrolytes can induce clogging/gelling in ow
channels as a result of aggregation and rapid velocity changes,
which impose larger local pressure drops and may lead to
system failure (e.g., leaks, over-pressurization).26 In these cases,
rheometers may be needed to reliably characterize uid prop-
erties, as these instruments enable high precision measure-
ments in multiple geometries over a wide range of shear rates
and deformation proles.27,28 These conditions can also be
selected to mimic uid dynamic environments within the
ow cell.

The transport properties discussed throughout this section
also tend to vary with the electrolyte SOC, changing more
dramatically at elevated redoxmer concentrations.29–31 Thus,
quantifying electrolyte properties at different SOCs and sup-
porting salt concentrations presents an additional handle to
tune the electrolyte structure and evince essential chemical and
electrochemical features; for example, these quantitative rela-
tionships have previously been used to monitor operando SOCs
using in-line density and viscosity measurements in vanadium
RFBs.32,33
2.2. Future approaches

Methods for investigating rheological and transport
phenomena are relatively mature, as they are integral to a range
of disciplines (e.g., uid mechanics, so matter physics, elec-
troanalytical chemistry); as such, the tools discussed here are
likely to be sufficient for the characterization of modern elec-
trolyte formulations. Future approaches must continue
leveraging existing workows to evaluate transport properties in
tandem and across varying conditions (e.g., species concentra-
tions, SOC) to elicit design tradeoffs and better understand
structure–property relationships. Additionally, the electro-
chemical and spectroscopic methods discussed in subsequent
sections may further advance these measurements by inform-
ing connections between the chemical environment, transport
properties, and electrochemical performance. Complementary
to experimental tools, simulation-based approaches (e.g.,
molecular dynamics (MD)) have shown promise for interro-
gating structure–property relationships and predicting trans-
port property proles in complex electrochemical
environments.34–36 We anticipate these methods will provide
deeper theoretical insights for emerging electrolytes.
J. Mater. Chem. A, 2022, 10, 17988–17999 | 17991
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3. Electrochemical methods to study
concentrated electrolytes
3.1. Current methods

Electrochemical characterization plays an essential role in
evaluating RFB performance, with approaches ranging from
rst-principles to device-level analyses.14,37,38 Fundamental
studies typically utilize electroanalytical techniques (e.g., cyclic
voltammetry,14,37 rotating disk voltammetry38) to evaluate elec-
trochemical and transport properties of redoxmers at dilute
active species concentrations (ca. 1–10 mM38–43). Different
technique sets, in turn, are required to evaluate the behavior of
redoxmers at higher concentrations due to the presence of
larger ohmic losses, greater electric eld effects, chemistry-
dependent phenomena (e.g., aggregation), and possibly
convection.12,44 Diagnostic ow cell congurations can provide
valuable information about high concentration electrolyte
behavior.37,45–48 In particular, the zero-gap cell architecture used
in a number of studies results in a lower ohmic resistance
through reduced electrode-to-electrode distances and higher
surface area electrodes;37,46 this, in turn, enables sufficiently
high currents able to charge and discharge concentrated
redoxmer systems. Symmetric cell cycling—where only one
redox couple is added to both half-cells, each with its own
distinct reservoir—can simulate the performance of a single
redox couple (e.g., polarization behavior, long-term stability),37

while single electrolyte cells, which utilize a single reservoir for
both half-cells, can study the polarization behavior of individual
electrolytes at a xed SOC.46

Combining these platforms with other techniques (e.g.,
electrochemical impedance spectroscopy) as well as variable
operating conditions (e.g., different uid ow rates) can elicit
multifaceted responses, which, in turn, can provide insight into
kinetic, ohmic, and mass transfer resistances that collectively
result in overpotential losses (i.e., lower device efficiency), as
well as inform the modes/rates of capacity fade.37,46 Beyond
symmetric and single electrolyte cells, full-cell cycling—where
different redox couples are used in each half-cell—introduces
additional complications (e.g., crossover, electrolyte compati-
bility) but is a necessary step in the development and demon-
stration of viable RFB systems.45 While these complicating
features mean that full cell cycling is less suited for under-
standing individual redox couple behavior, such experiments
enable quantication of important performance metrics such
as cycling efficiency and power density.48

In contrast to cell cycling, fundamental electrochemical
techniques are less equipped to interrogate concentrated elec-
trolytes, in part because of potential distortions that arise at
larger currents (e.g., distorted peak-to-peak separation in
CVs).20,49 These effects can be mitigated using ohmic compen-
sation,19,50,51 though in cases where compensation is conducted
post-experiment, some aspects cannot be fully corrected, such
as distorted scan rates and turnaround potentials (aptly illus-
trated in Fig. 7.1 of ref. 52). Further, more complex levels of
theory—potentially accounting for solute–solute interactions,
migration, non-unity activity coefficients, and homogeneous
17992 | J. Mater. Chem. A, 2022, 10, 17988–17999
electron transfer (e.g., the Dahms–Ruff equation)—are neces-
sary to describe concentrated electrolyte behavior.11,20,44 Aggre-
gation of redoxmers (e.g., dimerization, oligomerization,
contact networks) has also been reported with increasing
concentration—sometimes at concentrations as low as tens of
mM—where the manner and extent of these effects can be
chemistry-specic, further complicating analytical work-
ups.12,36 Potentially for these reasons, most current approaches
forego electroanalytical techniques like voltammetry. Rather,
studies primarily rely upon spectroscopic, rheological, and
conductivity measurements to characterize the dynamics of
these concentrated electrolytes,10,53 in turn revealing the need to
advance electrochemical methods.
3.2. Future approaches

Employing voltammetric techniques whose signal is not appre-
ciably distorted under relevant electrolyte conditions is one
strategy to overcome the aforementioned limitations. In this vein,
microelectrode voltammetry (working electrode radius ca. 5–50
mm) holds particular promise for electroanalytical interrogation,
as the smaller current magnitude (ca. nA) negates ohmic distor-
tions. Researchers have already capitalized on these advantages
to probe electrolytes which are challenging to study using mac-
roelectrodes (working electrode radius ca. 1 mm), such as high
resistance electrolytes.49 The method is also largely non-invasive
due to the small electrode size49 and the near-zero conversion
of bulk species.54 Although not a unique advantage to concen-
trated electrolytes, microelectrode voltammetry also exhibits
distinct oxidative and reductive current plateaus, making it
a potentially powerful tool to quantify SOC and SOH.54,55 A visual
example of the ability for microelectrode voltammetry to probe
solutions at higher concentrations, along with its ability to esti-
mate solution SOC and SOH, is depicted in Fig. 2.

Fig. 2a illustrates the ability for microelectrodes to accurately
estimate the SOC of solutions containing 500 mM redoxmers,
though the authors were able to probe concentrations up to
1.3 M.55 While these experiments were conducted in an aqueous
solution—where dilute solution theory arguably breaks down at
higher solute concentrations given the neat concentration of
water (ca. 56 M, compared to, for example, propylene carbonate
(ca. 12 M) and acetonitrile (ca. 19 M))—they nonetheless
demonstrate the potential for microelectrodes to assess more
concentrated analyte solutions. Fig. 2b, in turn, depicts a frame-
work for simultaneously estimating the SOC (not directly shown)
and SOH of a solution containing relatively dilute redox couples
(#25mM) undergoing decay, further demonstrating the promise
microelectrodes hold in probing RFB electrolytes.54

Despite these potential advantages, microelectrodes have
not been widely employed to study RFB-relevant concentrated
electrolytes. This lack of implementation may arise in part from
the limited use of the technique by the greater RFB eld (as
compared to macroelectrode voltammetry), the need for
specialized equipment (e.g., sensitive potentiostats, expensive
or home-made electrodes) that may not be universally acces-
sible, and the greater sensitivity to external interferences (e.g.,
mechanical vibrations). Further, existing microelectrode theory
This journal is © The Royal Society of Chemistry 2022
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Fig. 2 (a) Microelectrode voltammogram of 500 mM ferri-/ferrocyanide at various SOCs in an aqueous solution of 1 M KCl. Adapted with
permission from ref. 55. Copyright 2019 American Chemical Society. (b) Solution SOH as predicted from microelectrode voltammograms of
5 mM of electrochemically oxidized 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) in a solution of 1 M lithium bis(trifluoro-
methane)sulfonamide in propylene carbonate. Republished with permission of IOP Publishing, Ltd, from A Method for Evaluating Soluble Redox
Couple Stability Using Microelectrode Voltammetry, Kowalski et al., 167, 16, 2020; permission conveyed through Copyright Clearance Center,
Inc.54
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has been well-developed for dilute solutions,56 but the theory
behind microelectrode models becomes complicated in the
concentrated solution regime; it requires many parameters to
be accurately estimated (e.g., solute–solute interaction coeffi-
cients),11 it may necessitate the formulation of additional
modes of mass transport (e.g., migration, faradaic convection),57

and it may require knowledge of chemical-specic phenomena
such as aggregation and nano-heterogeneity.12,58

Custom-made cell congurations (e.g., microuidic electro-
chemical devices59) may also nd utility in evaluating concen-
trated electrolytes by further quantifying transport descriptors.
For example, a Hittorf cell can be constructed to estimate the
cation transference number for a concentrated binary electro-
lyte.60,61 Similar congurations and associated theoretical treat-
ment may ultimately be extended—and potentially combined
with microelectrode voltammetry studies—to evaluate the
behavior of ternary or quaternary electrolytes, though a large
number of unknown parameters will be introduced when
considering additional species, likely resulting in more complex
mathematical treatment.11,61 Solution structure (e.g., contact–ion
pairs) must also be considered and evaluated when probing high
concentration electrolytes.58 In sum, once the aforementioned
advances are achieved, microelectrode voltammetry and other
bespoke methods may be able to complement rheological anal-
ysis, cyclingmethods, and spectroscopy tomore deeply probe the
behavior of concentrated electrolytes in nonaqueous RFBs.
4. Spectroscopic methods to
investigate concentrated electrolytes
4.1. Current methods

Spectroscopy has been widely used in the study of electrolytes,
as this family of analytical techniques is more sensitive to
composition than conventional electrochemical methods.
Traditionally, multiple techniques like ultraviolet-visible spec-
trophotometry (UV-vis), nuclear magnetic resonance (NMR),
This journal is © The Royal Society of Chemistry 2022
and electron paramagnetic resonance (EPR) are used for
examining electrolyte structure–property relationships either ex
situ, operando, or post mortem.37,62–64 A combination of these
spectroscopic techniques can provide a more holistic picture of
the chemical and electrochemical environment.14,47 For
example, researchers strategically combined operando NMR,
EPR, and electrochemical studies to probe the performance of
aqueous electrolytes containing 2,6-dihydroxyanthraquinone
(DHAQ) (Fig. 3a and b).63,65,66 Although these studies were con-
ducted with aqueous electrolytes, we anticipate that similar
approaches can be employed in nonaqueous electrolytes, as ex
situ NMR and EPR studies have been successfully conducted for
nonaqueous RFB systems.14,67 Indeed, the more complex
molecular structures of organic solvents and supporting salts
may result in more discernible features—particularly for
NMR—that could aid investigations. However, these additional
signals may also lead to convolutions that challenge analyses. In
addition, some of these powerful analytical methods (e.g., NMR,
EPR) may be more challenging to engage operando because of
the need for longer access times, which may not be feasible in
centralized user facilities, along with the need for specialized
device-spectrometer congurations.

Despite extensive implementation on dilute solutions, some
techniques may lack the ability to probe concentrated electro-
lytes in a simple or accessible fashion. UV-vis serves as an
exemplar technique; for an anthraquinone derivative in an
acidic aqueous electrolyte, concentrations of up to 200 mM can
be probed with a path length of 100 mm.68 This threshold
concentration will likely change depending on species identity
and solution composition, but in this instance, spectrometer
oversaturation ultimately sets the limit on allowable redoxmer
concentration. That said, other spectroscopic techniques are
better-suited to evaluate concentrated electrolytes. NMR is one
such method, as the signal-to-noise ratio is proportional to the
amount of species present, though the linewidth may broaden
for solutions with greater viscosities (via slower diffusion).69
J. Mater. Chem. A, 2022, 10, 17988–17999 | 17993
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Fig. 3 Operando 1H NMR and EPR spectra acquired during electrochemical cycling containing (a) structures of the DHAQ2�, DHAQ3�c, and
DHAQ4� anions—upper-case letters are proton labels—alongwith (b) one complete cycle with a potential hold of 1.6 V during charging and 0.6 V
during discharging, along with the associated 1H NMR and EPR spectra vs. cycling time. The bolded numbers on the voltage profile indicate the
predominant oxidation state of DHAQ, and the color bars indicate the intensity of the resonance in arbitrary units. Adapted with permission from
ref. 63 via https://pubs.acs.org/doi/10.1021/jacs.0c10650; further inquiries related to thematerial excerpted should be directed to the American
Chemical Society. Copyright 2021 American Chemical Society. Also included are (c) SAXS spectra of neutral and charged MEEPT as a function of
molarity and (d) MD simulations of the SAXS spectra. In both (c) and (d), the correlation peaks are accentuated via trend lines. Reprinted from
Journal of Molecular Liquids, Volume 334, Shkrob et al., Crowded electrolytes containing redoxmers in different states of charge: Solution
structure, properties, and fundamental limits on energy density, 116533, Copyright 2021, with permission from Elsevier.10
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Indeed, pulsed-eld gradient (PFG) NMR has been utilized to
quantify solvent self-diffusion, but generally care should be
taken when using PFG NMR to estimate chemical and electro-
chemical properties (e.g., transference numbers).10,70 EPR is
similarly well-suited and provides a strong complement to
NMR; radical species, which are common to organic redoxmers,
obfuscate NMR spectra but are readily observed in EPR spectra.
Despite the utility of these techniques, not all NMR and EPR
analyses probe RFB electrolytes in their native environment. For
example, many NMR studies use deuteration, potentially
necessitating dilution that can disrupt the aggregation of active
material and supporting salt at higher concentrations.12,36

Recently, scattering experiments—such as small-angle
neutron scattering or small-angle X-ray scattering (SAXS)—
have been paired with other techniques (either experimental or
17994 | J. Mater. Chem. A, 2022, 10, 17988–17999
simulation-based) to probe the microscopic solution structure
of concentrated electrolytes to quantify aggregation.36,58,63,65,71,72

For example, Shkrob et al. reported the application of SAXS to
analyze the unique modes of interactions that occur in neutral
and charged nonaqueous electrolytes at higher redoxmer
concentrations (Fig. 3c). Using N-[2-(2-methoxyethoxy)ethyl]
phenothiazine (MEEPT) as a model compound in solutions of
lithium bis(triuoromethane)sulfonamide supporting salt and
acetonitrile, the authors found that a gel-like regime forms
between solute concentrations of ca. 1.5–2 M, decreasing the
uidity (i.e., ease of ow), diffusivity, and ionic conductivity.10

Classical MD simulations, along with other experimental tech-
niques, can also be conducted to gain further insight into the
electrolyte solution structure to validate SAXS studies (Fig. 3d).
As an example, the combination of MD and EPR enabled
This journal is © The Royal Society of Chemistry 2022
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researchers to deduce that contact networks lead to the
increased stability of an oxidized dialkoxybenzene radical
cation via entrapment.36

In sum, the variety of techniques highlighted here demon-
strate the ability to probe the microscopic behavior of concen-
trated solutions using a suite of spectroscopic tools. They also
illustrate how redoxmers may behave in concentrated solutions,
although the effects of these dynamic networks on bulk rheo-
logical and mass transport properties (e.g., viscosity, effective
diffusion coefficient) are not yet fully elucidated. While some
techniques, like NMR and EPR, have been deployed for operando
monitoring,63–66 others (e.g., SAXS) have only been conducted off-
line and ex situ for nonaqueous RFBs at the time of writing,36,71

limiting the diagnostic information that can be generated in real-
time. As such, greater insights into the microscopic environment
of these electrolytes may be possible with further advances in
operando workows and congurations.73
4.2. Future approaches

Although signicant advances have been made towards
understanding the behavior of concentrated electrolytes,
opportunities exist for characterizing electrolytes in operating
systems. For example, present studies have evaluated homoge-
neous solution behavior at high redoxmer concentrations, but
to fully characterize RFB performance, heterogeneous interac-
tions between high concentration electrolytes and the ow eld
or electrode (along with other RFB components) must also be
evaluated. Synchrotron X-ray radiography may potentially
elucidate these dynamics in nonaqueous RFBs, similar to how
researchers have studied electrolyte ow through carbon felt
electrodes for vanadium RFBs.74,75 For example, the congura-
tion described in Eifert et al. may be integrated with other
spectroscopic techniques to evaluate other pertinent
phenomena (e.g., aggregation).74

Overall, the variety of spectroscopic studies conducted thus
far demonstrates the possibility of examining the experimental
behavior of concentrated electrolytes—in some cases oper-
ando.36,71 Integration of real-time SAXS studies for nonaqueous
RFBs may enable a deeper understanding of the solution
structure within an operating cell, which can be used to connect
macroscopic behavior with specic microscopic phenomena at
various SOCs and SOHs.73 The insights developed from such
studies could then be applied to optimize the performance of
high-concentration electrolytes through molecular engineering
and cell design.
5. Conclusions

This perspective highlights the challenges associated with
employing high redoxmer concentrations for RFBs and
discusses current and emerging methodologies for investi-
gating concentrated electrolytes. Though increased redoxmer
concentrations are concomitant with higher energy densities,
other important electrolyte and transport characteristics (e.g.,
viscosity, conductivity, diffusivity) also evolve in nuanced ways
that are sometimes detrimental to battery performance. The
This journal is © The Royal Society of Chemistry 2022
rheological, chemical, and electrochemical properties of
concentrated electrolytes are interrelated and thus, when eval-
uated together, provide necessary insight for understanding
cell-level behavior. Previous studies have partially elucidated
the inuence of redoxmer concentration on electrolyte
behavior, but knowledge gaps remain in understanding the
relationship between microscopic properties and macroscopic
behavior in these concentrated solutions across the wide range
of operating conditions encountered in practical technology
embodiments. These gaps may be systematically narrowed by
implementing suitable electroanalytical methods (e.g., micro-
electrode voltammetry, diagnostic ow cell cycling) and by
advancing additional operando measurements, such as real-
time scattering studies. Overall, greater mechanistic knowl-
edge of concentrated redoxmer-based electrolytes will enable
effective workows; this, in turn, can be used to identify elec-
trolytes that improve RFB performance and further the devel-
opment of cost-effective stationary energy storage systems.
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75 K. Köble, L. Eifert, N. Bevilacqua, K. F. Fahy, A. Bazylak and
R. Zeis, Synchrotron X-Ray Radiography of Vanadium Redox
Flow Batteries – Time and Spatial Resolved Electrolyte Flow
in Porous Carbon Electrodes, J. Power Sources, 2021, 492,
229660, DOI: 10.1016/j.jpowsour.2021.229660.
J. Mater. Chem. A, 2022, 10, 17988–17999 | 17999

https://doi.org/10.1039/C7CP05881K
https://doi.org/10.1021/acs.jpcb.5b04300
https://doi.org/10.1021/acs.jpcb.5b04300
https://doi.org/10.1021/jacs.9b02323
https://doi.org/10.1021/acsenergylett.1c02391
https://doi.org/10.1002/aenm.202002821
https://doi.org/10.1002/aenm.202002821
https://doi.org/10.1002/cssc.202000541
https://doi.org/10.1016/j.jpowsour.2021.229660
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ta00690a

	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries

	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries

	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries

	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries
	On the challenges of materials and electrochemical characterization of concentrated electrolytes for redox flow batteries


