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explored by our group await further exploration to open new possibilities in organic electronics. This
personal account discusses the above attributes including the structure dependent p-channel and
ambipolar charge transport in tetrathia/oxal22]porphyrin(2.1.2.1)s and their donor—acceptor dyads with
tetracyanoethylene and Ceo/Cyo fullerenes, respectively. Also we discuss the reverse saturation absorp-

DOI: 10.1039/d2ma00736¢c

rsc.li/materials-advances tion, two-photon absorption and third-order nonlinear polarizability of tetrathia[22]porphyrin(2.1.2.1)s.

and m-conjugation.” Such compounds display interesting bio-
logical, optical, photophysical, electronic and magnetic proper-

1. Introduction

2a,b

Porphyrinoids have attained undisputed status in supramole-
cular chemistry, biology and materials science owing to their
outstanding structural diversity and properties attributed to
their inbuilt physicochemical features, well-defined structures
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ties and find applications in the areas of non-linear optics,
two-photon absorption materials,'* organic light emitting
diodes,* dye sensitized solar cells,>® organic semiconductors,?
and artificial photosynthesis, as materials for imaging and
photodynamic therapy,” etc. Aromaticity of such porphyrinoids
in terms of cyclic delocalization of the mobile electrons is a
distinctive feature, which allows switching to antiaromatic
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structures upon suitable alteration of the macrocyclic conjuga-
tion pathway. Synthesis of porphyrinoids through modification
of the macrocyclic core, and/or the size and topology of the
macrocyclic framework, and substitution pattern has led to the
understanding of the structure-property relationship of these
important classes of macrocycles.? Altering the macrocyclic core
by replacing one or more pyrrole rings with other heterocyclic or
carbocyclic rings constitutes a promising approach to tune the
aromaticity, binding ability, and electronic and photochemical
properties of porphyrins. Consequently, understanding of the
effect of structure modification on aromaticity-antiaromaticity
(Huckel and Mobius)* relationships, and photophysical and
functional properties of new classes of porphyrins is of tremen-
dous significance.

Among a variety of structurally diverse classes of porphyrins,
tetrathia[22]porphyrin(2.1.2.1)s (TTPs hereinafter) and their
oxygen analogues, tetraoxa[22]porphyrin(2.1.2.1)s (TOPs here-
inafter) have presented themselves as efficient materials owing
to flexibility in synthesis and interesting structural features
compared to the tetrapyrrolic counterparts. The aromaticity of
these systems is not lost even upon ring puckering under the
influence of substituents at the meso-positions. Owing to the
favourable energies of the frontier molecular orbitals, these
porphyrinoids exhibit efficient p-channel charge transport
in thin film and/or single crystal based organic field-effect tran-
sistor (OFET) devices. Further, being efficient donors, TTPs in
combination with strong acceptors produce stable charge transfer
type complexes. Overall, these porphyrinoids are purported to be
candidates for the next generation organic electronics owing to
tailorability of the structure dependent functional properties.

Porphyrins are also endowed with large optical nonlinearities,
fast response time, broad-band spectral response and other
superior optoelectronic attributes. However, finding new
porphyrinoids capable of strong nonlinear optical behaviour
for applications in fluorescence microscopy, photodynamic
therapy, two-photon excitation, 3D microfabrication, sensor
protection, optical data storage and optical limiting has been
a very sought after objective. Particularly, there have been
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intense efforts for improvement of the nonlinear optical prop-
erties such as molecular second hyperpolarizability, y, excited
state absorption cross-section, g, etc. For this purpose, due to
extended m-electron conjugation, TTPs/TOPs were expected to
show large excited state absorption cross-sections leading
to reverse saturation absorption (RSA), high nonlinear refrac-
tive index coefficient and nonlinear absorption coefficient
values and fast response times.

In this personal account, we intend to discuss various
aspects related to the design, synthesis, structure, linear optical
properties, aromaticity/antiaromaticity, and redox behaviour of
TTPs/TOPs. In addition, we also explore the semiconducting
and nonlinear optical (NLO) behaviour of these scantily studied
porphyrinoids. For the sake of brevity and objectivity, this
account excludes general discussion of the porphyrin chemis-
try, detailed synthesis and properties of all other classes of
porphyrins, for which excellent review articles have already
been published.™®

2. Meso-substituted TTPs/TOPs: charge
transport in thin film and single crystal
organic field-effect transistor devices

2.1. Synthesis

The first synthesis of the neutral aromatic TTP 5 [also named
sulphur bridged[22]annulene(2.1.2.1) in the annulene nomencla-
ture] was reported by Cava® and is outlined in Scheme 1. The
intermediate 5,16-dihydro TTP 4 (Scheme 1) was obtained through
a McMurry coupling reaction of 5,5’-methylenebis(thiophene-2-
carbaldehyde) 3 using titanium tetrachloride/zinc. Compound 3
in turn was obtained from 2-bromothiophene via intermediate 2.
Compound 4 was dehydrogenated® by 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ)/hydrazine to furnish 5. The aromaticity of 5
was evidenced by its '"H NMR and UV-visible absorption spectra.
The appearance of two singlets at § 11.36 and 12.34 ppm
corresponding to ethene carbons and an AB splitting pattern of
the thiophene protons (6 10.84 and 10.86 ppm) in the 'H NMR

n-BuLi/THF
. ﬂ CHy(OMe), M -70 °C/DMF M
s " s s s s
Br Br OHC CHO
1 2 3
2 428 8
TiCly/Zn .
Pyridine/THF 10
Reflux _bbQ
NHzNHZ 1
12
15 13
16 14
4 5

Scheme 1 Synthesis of aromatic tetrathial22]porphyrin(2.1.2.1) 5.
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spectrum of 5 suggested the presence of strong aromatic ring
currents. The considerably redshifted UV-visible absorption
spectrum showed sharp Soret and Q type bands at 417, 503,
540, 579, and 771 nm. This contrasted the broad peaks observed
in the absorption spectra of the antiaromatic counterparts.’
Further, 5 is comparatively less crowded, enabling it to have a
planar or near-planar structure with the conjugated n-electrons
around the periphery.

In the solid state, the molecules of 5 packed into a sandwich-
herringbone arrangement. Further, good thermal stability was
observed by thermogravimetric analysis.

The revelation of the structural features of 5 stimulated us to
design a more practicable, general synthetic route to procure
structurally decorated 5 (and its oxygen analogues) and to inves-
tigate their structure, optical properties, and electrochemical
behaviour in order to develop potential applications as organic
semiconductors and NLO materials. We also planned to investi-
gate the charge transport behaviour of these porphyrinoids in
organic field-effect transistor (OFET) devices. The reason for this
was the fact that OFETs attracted considerable interest due to their
potential applications in low-cost, large area and flexible electro-
nics, such as radiofrequency identification (RFID) tags, flexible
displays, etc.® Since the performance of OFETs is influenced by
such factors as the molecular structure, solid-state packing, film
morphology and material stability, we investigated the molecular
structure and its relationship with aromaticity, the influence of
geometry of the macrocyclic core on these properties, effect of
substituents at the methine carbons (meso-positions) of 5 as well as
their corresponding oxygen bridged analogues (vide infra). In this
context, the flexibility of appending electron-withdrawing or
electron-donating groups at the meso-positions was recognized to
be an attractive attribute as it modulated the charge transport
properties, especially the field-effect mobility and/or current on/off
ratios, of the OFET devices fabricated from these compounds.
These properties have been discussed in a later section.

In order to develop a general route to the synthesis
of TTPs/TOPs, we envisaged the synthesis of meso-substituted

+ = R
(i) LICH,SOMe
X @ 0°C/THF ®
\x X (ii) Electrophile S
(RX)
6:X=S 8
7:X=0

X

X

(i) n-BuLi/THF- DMSO
(ii) Electrophile, RX

R

R = PhCH(OH), 4-CI-CgH,CH(OH),
/) 3.4-(CH30);-CgHsCH(OH), 5-C1oH;CH(OH),
Me,C(OH), PhCMe(OH), (2-thienyl)CMe(OH),
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bis(heterocyclyl)methanes so that the key bis-formyl-di(thien/
furan-2-yl)methane precursor is prefunctionalized at the meso-
position without resorting to the synthesis of a number of meso-
elaborated 2 (Scheme 1).

The most general route to the synthesis of di(thien/furan-2-yl)-
methane would involve acid catalysed condensation of thiophene/
furan with a carbonyl compound. However, this route faces
limitations in the case of aliphatic aldehydes owing to the
limitation of showing side reactions such as polymerization, aldol
condensation, and oxidation to carboxylic acids. Additionally the
non-availability of many functionalized aldehydes would preclude
the synthesis of di(thien/furan-2-yl)methane derivatives substi-
tuted with a functionalized chain at the meso-position. To avoid
these limitations and realize our objective, we sought to employ a
lithiation-substitution protocol®™* (Scheme 2). This new route
furnished access to a number of meso-substituted di(thien-2-
yl)methanes 8 and di(furan-2-yl)methanes 10 in a synthetically
useful manner.

This approach allowed incorporation of those groups at the
meso-positions of 8 and 10, which are otherwise difficult to
append through an aldehyde condensation approach. The regios-
electivity of the deprotonation (Scheme 2) of 6 and 7 was proposed
via transition state 9 and the higher acidity of the protons at the
meso- (pK, < 30.2) than the C-5 (pK, = 35) position.

Having successfully obtained the putative intermediates 8
and 10, diformylation expeditiously furnished (Scheme 3) the
corresponding bis-formyl-(dithien-2-yl)methane 11 or bis-formyl-
(difuran-2-yl)methane 12 derivatives. Starting from 11, the synth-
esis of meso-functionalized 5,16-dihydro TTPs 13 (R = Me, Et,
n-Pr, n-Bu, n-pentyl, n-decyl, n-undecyl, benzyl, COOH, or CH,CN)
was achieved by using standard McMurry coupling reaction
conditions. Thus, overall starting from 8, the synthesis of 13
bearing a variety of long aliphatic chains at the 5,16-positions
(meso-positions) constituted a useful synthetic sequence.
However, we realized that the McMurry coupling reaction was
extremely sensitive to moisture and demanded starting materials
of very highly purity. Notwithstanding these precautions, the yield

R = Me, Et, n-Pr, n-Bu, n-pentyl,
n-decyl, n-undecyl, benzyl,

S COOH, CH,CN, (CH5),C(OH),

3,4-(CH30),-CgH3CH(OH)

10 Et, n-Pr, n-Bu, benzyl, CONHPh, -CSNHPh

Scheme 2 Highly regioselective synthesis of di-(thien-2-yl)methanes and di-(furan-2-yl)methanes employing a lithiation—substitution protocol.
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Scheme 3 A generalized synthesis of meso-substituted 5,16-dihydro TTPs/TOPs 13/14.

of 13/14 was invariably low. Thus, using this synthetic strategy,
while the limitations of the aldehydes were obviated, obtaining
differently meso-substituted 13/14, following this route was cum-
bersome. Further, the need to run all the preceding synthetic
steps including diformylation of appropriate 8/10 as well as
McMurry coupling reactions for each compound rendered the
strategy less efficient.

As an alternative approach, we developed a metalation
protocol for regioselective generation of carbanion at the meso-
position of 5,16-dihydro TTP 4 (Scheme 4)'> and obtained the
dianionic analogue 15. Subsequent reaction with an appropriate
electrophile paved the way for a number of meso-substituted
5,16-dihydro TTPs 13. This protocol avoided repetitive bis-
formylation reactions of 8 as well as the need to perform
low-yielding McMurry coupling reaction for each 11.

However, our attempts to oxidize the nonaromatic meso-
elaborated 13 (Scheme 4) with DDQ/hydrazine and a number of
other reagents met with failure. This is due to the sp® hybridi-
zation at the 5- and 16-positions of 13, and the consequent ring
puckering. Presumably, the more flexible alkyl substituents at
the meso-positions could not enforce planarity to rein in
aromaticity in the macrocycle upon oxidation.

Appending aromatic substituents on the meso-positions of
13 or 14 appeared particularly attractive as it would have

@
Lj
Q
LiCH,SOMe
Q°C/THE
O
2
4 15

furnished derivatives required to understand the influence of
meso-substituents on aromaticity. Also it would have allowed
access to the hitherto elusive meso-aryl substituted analogues of
22 and 23 upon oxidation of the intermediate 5,16-dihydro
analogues. In this context, the synthesis of meso-aryl substituted
building blocks 16 and 17 was conveniently achieved through the
known aldehyde-thiophene/furan condensation routes as described
above. Facile transformation of 16 (and 17) to the corresponding
diformyl derivatives 18 (and 19) was achieved by employing a
lithiation—formylation sequence of reactions in the former and
Vilsmeier Haack reaction conditions in the latter (Scheme 5)."**
McMurry type coupling of these intermediates using low valent
titanium furnished the 5,16-diaryldihydro- TTP 20 or TOP 21 in
good yields. Subsequent two-electron oxidation using DDQ/hydra-
zine resulted in smooth transformation to the corresponding
5,16-diaryl TTPs 22 and TOPs 23 in a synthetically useful manner.
As is evident from Scheme 5, a number of meso-aryl substituents
with varying steric bulk could be incorporated in 22 and 23.

2.2. Structure, aromaticity and redox behaviour

As a representative example,'® in the "H NMR spectrum of 22a, the
methine carbons appeared as a singlet at § 11.08 ppm. Additionally,
the thiophene protons appeared at ¢ 10.38 and 10.01 ppm as an AB
quartet. The coupling constant (/. = 4.5-5.0 Hz) of the thiophene

R
Electrophile
—_—
(RX)
R
13

(R = Me, Et, n-Pr, n-Bu, n-pentyl, n-decyl, n-undecyl)

Scheme 4 Regioselective lithiation—substitution protocol for the direct synthesis of 5,16-dihydro TTPs.
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\ X X % For 17
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17: X=0
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DDQ/
NH,NH,
Ar
20: X=S
21: X=0

Scheme 5 Synthesis of neutral, aromatic 5,16-diaryl TTPs/TOPs.

protons in 22a was partially equalized, indicating delocaliza-
tion of electrons. The protons of the meso-aryl group appeared
at 0 8.46 and 8.00 ppm. Overall the chemical shifts of the
protons of 22a were significantly downfield in analogy to
aromatic porphyrinoids. Further, unlike the 5,16-dihydro deri-
vative 20a, none of the protons of 22a appeared upfield to ¢
7.39 ppm.

On the other hand, the "H NMR spectrum of oxygen analogue
23a'* was very characteristic as it differed from that of its
sulphur analogue 22a. As expected, in the "H NMR spectrum
of 5,16-dihydro TOP 21a, the furan p-protons appeared as a pair
of doublets and the singlet for the signal of methine protons
was relatively upfield. The magnitude of the vicinal coupling
constants was very similar to pristine furan, indicating the
thermodynamically more stable double-bond character of the
furan units. In contrast, in the "H NMR spectrum of the (4n+2)r
analogue 23a, not only did the AB system of the furan appear
significantly downfield compared to 21a, the coupling constant
was also partially equalized indicating delocalization and none
of the proton signals of the porphyrin framework appeared
upfield to 6 9.01 ppm. Interestingly, as a characteristic feature
of 23a, one of the methine proton pairs resonated significantly
upfield to appear at 6 —5.42 ppm, indicating the influence of
aromatic ring currents and difference in the topology of the
macrocyclic framework.

As a quantitative probe of aromaticity, Nucleus-Independent
Chemical Shift, NICS(1), analysis using ab initio quantum
mechanical density functional theory (DFT) calculations at
the B3LYP/6-31G(d) level, using the Gauge Independent Atomic
Orbital (GIAO) method, revealed large negative NICS values.
As a representative case, NICS(1)" values for 23a (5 —13.17) and
22d (6 —13.30; ppm) are shown in Fig. 1. The values at the
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(e) p-F-CgHa, (f) p-Et-CeHa,
(9) p-Pr-CeHa, (n) p-BuCeH,
Ar (i) p-Br-CeHs
22: X=8S
23: X=0

centre of the macrocyclic ring as well as individual heterocyclic
and meso aromatic rings indicated a greater degree of aroma-
ticity owing to the enhanced ring current effects of a planar
geometry. The shapes of the plots of the chemical shifts vs.
distance of the NICS probe, a ghost atom (termed “bq” after the
ghost Banquo in Shakespeare’s Macheth) from the molecular
plane furnished a proof of diamagnetic ring currents.

The FAB mass spectra of 22a and 23a and other members of
the series indicated the exceptional stability of these porphyr-
inoids as these showed only a strong molecular ion peak
(100%) without fragmentation. The good thermal stability of
22a, 23a and other analogues was also indicated by the onset
thermal decomposition temperature in the thermogravimetric
analyses, which was more than 370 °C. Further, these porphyr-
inoids showed air stability and did not require an inert atmo-
sphere for handling/storage.

The characteristic feature of the UV-visible absorption spectrum
of 22a (Fig. 2) was the presence of a sharp and strong absorption
band at 429 nm (ema = 222860 dm’® mol ™' cm™'), which was
absent in the corresponding dihydro derivative 20a. In addition,
several weaker absorptions at longer wavelengths [519, 557, 600
and 777 nm (ga, = 2900, 9200, 57 380 and 1700 dm® mol " ecm )]
were also present. The absorption band at 429 nm in 22a is similar
to the Soret band of porphyrins and porphycenes. The absorptions
at longer wavelengths are akin to Q-bands, but with a bathochro-
mic shift compared to porphycenes.

On the other hand, compound 23a showed a split Soret band
at 415 and 433 nm, suggesting lower symmetry (C,), compared
to the analogous unsplit Soret band of the high (D,;,) symmetry
22a, while the Q-type bands appeared slightly redshifted than
those of porphyrins and porphycenes. Interestingly, both 22a
and 23a dissolved in acids (H,SO, and 70% HCIO,) to give a

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 NICS analysis of 23a (A) and 22d (B). Variation of NICS ppm in 23a (C) and 22d (D) with distance (A) from the centre of the macrocyclic plane.
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Fig. 2 (A) UV-visible absorption spectra (20a/22a in DCM and H,SO4; 21a/23a in DCM) and (B) cyclic voltammograms of 22a and 23a (DCM, electrolyte:
TBAPF; working electrode: Pt; reference electrode: Ag/AgCl; 80 mV s™%). Reproduced with permission from ref. 13 and 14. Copyright 2011 and 2012,
respectively, The Royal Society of Chemistry.

reddish-violet solution, indicative of the formation of a 20n of the peaks (Fig. 1), suggesting the formation of antiaromatic
dicationic species 24/25a (Scheme 6).">'* The UV-visible spec-  species having significantly positive NICS values [§ 11.29 (24a);
tra of 24/25a in acid solutions showed considerable broadening J 19.59 (25a)].
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Being 227 electron macrocycles, 22a and 22b"* are expected
to lose two electrons to form the corresponding 20n dications.
The cyclic voltammograms (Fig. 2) of 22a and 23a show two
reversible oxidation peaks at 552.6 and 968.2 mV (22a) and
418.1 and 970.0 mV (23a) (vs. SCE), indicating the formation of
207 dicationic species 24a and 25a (Scheme 6). Further, the
HOMO-LUMO gaps obtained from density functional theory
(DFT) calculations in 22a (2.32 eV) and 23a (2.06 eV) were quite
narrow. Visualization of the charge density isosurfaces of HOMOs
and LUMOs revealed m-delocalization over the heteroannulene
rings supporting the aromatic character with a greater contribu-
tion of heteroatoms to HOMOs compared to LUMOs (Scheme 6).

The single crystal X-ray structures of these porphyrinoids
revealed interesting structural features. The four sulphur
(or oxygen) atoms of the macrocycle 22a (or 23a) lie in one
plane (Fig. 3), as were also the four thiophene/furan rings. One
of the two sets of sulphur atoms, the ones intercepted by four
carbon atoms, are 3.110 A apart, while the distance between
the neighbouring atoms separated by three-carbon atoms is
3.018 A. Both of these distances were marginally shorter than
twice the van der Waals radius of sulphur (3.60 A). The distance
between the two sulphur atoms with a diagonal relationship
between each other is 4.333 A. The planarity of these porphyr-
inoids is additionally indicated by the torsional angles (0° and
3.97°) between the sulphur (or oxygen) atoms and the mean
plane of the respective macrocycles. However, in 23a, the
interatomic distance between the two oxygen atoms intercepted
by four carbon atoms was 4.590 A, while the other set inter-
cepted by a two carbon bridge was 2.485 A apart.

In contrast to the cis geometrical arrangement of the two carbon
bridge linking two thiophene rings and square arrangement
of the four sulphur atoms in 22a, the oxygen bridged analogue
23a represented a trans geometry of the two carbon bridge con-
necting the two neighbouring furan rings as well as a rectangular
arrangement of the four oxygen atoms.

Consistent with the electron delocalization in the planar
aromatic porphyrinoids, bond alteration was not evident in

e ‘ -1e

22a: X =S
23a: X=0

24a: X=S
25a: X=0
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(A) (B)

Fig. 3 Single crystal X-ray structures: side views, top views and stacking
patterns of 22a (A) and 23a (B). Reproduced with permission from ref. 13
and 14. Copyright 2011 and 2012, respectively, The Royal Society of
Chemistry.

either of 22a and 23a. The carbon-carbon distances in the
thiophene or furan rings of 22a and 23a, respectively, showed
the bond length relation C,~Cg > Cp-Cp, reflecting delocaliza-
tion in the porphyrin ring. It is worth mentioning that the
aromatic tetrathiaporphyrin dication also showed'” the above
bond length relation, in spite of the fact that the four thiophene
rings were tilted up and down from the mean molecular
plane by 22.8° and 3.7°, respectively. The aromaticity was
further verified from the NICS(1) values, which, in contrast to
the isolated furan (6 —10.35 ppm) in 21a, were significantly
negative (0 —20.01, —18.65, —15.15 and —16.61 ppm) for the
four furan rings of the fully conjugated 23a.

The molecules of 22a stacked in a face-to-face pattern along
the c-axis into columns. The intermolecular n-7 interactions
could be observed as the interplanar distance between the
adjacent molecules in one column is 3.526 A. Likewise, 23a
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Scheme 6 Electrochemical oxidation of 22a/23a to 24a/25a and charge density isosurfaces of the HOMOs and LUMOs of 22a (A: HOMO; B: LUMO)

and 23a (C: HOMO; D: LUMO).
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stacked in a standard layer-by-layer herringbone fashion along
the bc-plane with a tilt angle of 52.79° between the macrocyclic
core and the bc-plane. Interestingly, the meso-phenyl substituents
of 22a and 23a did not induce puckering of the macrocyclic ring,
nor do these affected the aromaticity of the porphyrinoids.
However, with the increasing bulk at the meso-position, slight
macrocyclic ring puckering was observed in other analogues 22c,
d, f, and g (Fig. 4) compared to 22a and b (Fig. 3 and 4)."*"°
However, the aromaticity of these porphyrinoids was intact.

Likewise, the sulphur atoms of 22g were not coplanar and so
are the thiophene rings. In the former, sulphur atoms linked
through a meso-bridge lied below the twisted macrocyclic plane,
compared to the other set. Although the S-S distances of the
thiophene rings intercepted by the meso or the two carbon
bridges were unequal, these were marginally shorter than twice
the van der Waals radius of S (3.60 A).*°

Comparison of the crystal structures of a number of meso-
substituted porphyrinoids revealed that hosting bulkier meso-
substituents resulted in ring puckering, but aromaticity was
maintained. Face-to-face crystal packing as in 22g provides an
efficient n-orbital overlap and interplanar distances that facilitate

(A)

22b

22c

22d

22f

229
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charge transport. Even molecular twisting/curving did not hamper
the transistor behaviour of these porphyrinoids.

2.3. Semiconducting behaviour of TTPs and TOPs

Among organic semiconductors, n-conjugated macrocyclic archi-
tectures, such as porphyrins and phthalocyanines, have attracted
considerable attention due to their promising electronic, optical,
and photophysical properties and self-assembling behavior."
In recent years, ambipolar (simultaneous p- as well as n-channel
charge transport) OFETs have seen unprecedented research
activity. This is attributed to their applications in organic circuits
and organic light emitting transistors. However, in most cases,
ambipolar charge transport was realized by the construction of
heterostructures comprising p-type and n-type semiconductors,
e.g. bilayer, lateral and bulk heterojunctions. Only in a very few
cases, an efficient single component transistor based on an
ambipolar charge transport material was reported. An additional
advantage of a single component ambipolar charge transport
material would be simplification of the fabrication process when
two unipolar materials would be replaced with a single ambipo-
lar material.

Fig. 4 Single crystal X-ray structures (A) and stacking patterns (B) of porphyrins 22b—d, 22f and 22g bearing bulkier substituents on the meso-phenyl

group. Reproduced with permission from ref. 16, 18 and 19. Copyright 2013,

© 2022 The Author(s). Published by the Royal Society of Chemistry

2012 and 2014, respectively, The Royal Society of Chemistry.
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TTPs and TOPs were expected to show charge transport
owing to the enhanced n-n interactions of the 22n porphyrins
compared to the smaller 18n counterparts. In order to demon-
strate their application potential in organic electronics, we
investigated the semiconducting behaviour of a number of
derivatives of 22 and 23 in thin films and single crystal OFET
devices. We also explored the possibility of creating a self-
assembled “molecular level heterojunction” obtained through
co-crystallization of the electron rich 22 with a strong electron
acceptor such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) or
tetracyanoethylene (TCNE).

As discussed below, 22 and 23 showed substantial p-channel
(hole) transport and functioned as p-type semiconductors in thin
film OFET devices. The devices displayed good reproducibility
under ambient conditions. A good relationship between the
molecular structure and transport properties of these aromatic
porphyrinoids has been deduced.?® The charge mobility of differ-
ent devices was explained in terms of the calculated molecular
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reorganization energies and the intermolecular transfer integrals.
Further, appending substituents at the meso-positions of
these porphyrin derivatives provided an understanding of the
relationship between the structure and charge transport and the
related attributes, such as the device on/off ratio, threshold
voltage, etc. Before discussing the semiconducting behaviour of
these porphyrinoids, a brief introduction to OFET devices and
measurement of charge transport behaviour is presented.

2.3.1. OFET devices and charge transport. Several review
articles that explain the configurations as well as operation of
OFET devices are available.>! Therefore, for the convenience and
understanding of the reader, only a brief introduction of these
aspects of OFETs is presented herein. A typical OFET comprises a
gate electrode, a gate dielectric layer, an organic semiconductor
(OSC) layer and a source-drain electrode. Based upon their
construction design, OFETs are classified into four categories:
bottom-gate/top-contact (BGTC), bottom-gate/bottom-contact
(BGBC), top-gate/top-contact (TGTC) and top-gate/bottom-contact
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Fig. 5 Schematics of OFET configurations. (A): BGTC; (B): BGBC; (C): TGBC; (D): TCTC (S: source; D: drain; OSC: organic semiconductor; G: gate; Sub:
substrate; W: width and L: length of the conducting channel). Typical current—voltage (/-V) characteristics using arbitrary Vs values. (E): output curves
(Lr: linear and Sat: saturation regimes); (F): transfer curves (Vi threshold voltage).
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(TGBC) configurations (Fig. 5). The organic semiconductor
(0SC) is fixed between the metallic source (S) and drain (D)
electrodes. During operation, current is injected into the OSC
by S and collected by the D electrode. The gate electrode (G) is
separated from the OSC or S/D electrodes by the gate dielectric
layer, which, through capacitive coupling, modulates (on/off
stages) the conductance of the OSC in the channel region. Fig. 4
also depicts the typical current-voltage (I-V) curves (E: output
and F: transfer curves), from which the field-effect mobility (g,
em?® V' s7Y), threshold voltage (Vy,), and current on/off ratio
(Ion/Iogr) etc. are calculated. The I,,/I ratio represents the ratio
of the highest and lowest current values in the sweep of Vgsata
certain Vpg.
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2.3.2. OFET device fabrication, characteristics of TTPs and
TOPs and structure-property relationships. The thin films of
the TTPs and TOPs, purified by vacuum sublimation, were
prepared by vacuum deposition on octadecyltrichlorosilane
(OTS) modified or bare SiO,. Atomic force microscopy (AFM)
and powder X-ray diffraction (PXRD) (Fig. 6) were used for
characterization and study of the surface morphology of the
thin films. Variation of the substrate temperature showed a
significant influence on the morphology, crystallinity and the
corresponding transport properties of the thin film transistors.

Thin films of 22a and 22b were highly crystalline and the
first intense reflection was observed at 20 = 5.43, 5.09 and 5.111
(Fig. 6) for 22a, 22b and 22c, respectively, corresponding to
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(A) Schematic of the BGTC thin film OFET devices of 22a—c; (B) X-ray diffraction patterns of the thin films of 22a deposited on SiO,/Si (BARE) and

OTS/SiO,/Si substrates at different temperatures; (C) AFM images (2 x 2 pm) of 50 nm thick films of 22a (a: BARE T, = 25 °C; b: OTS T = 25 °C; ¢: OTS T = 60 °C);
22b (d: BARE T, = 25 °C; e: OTS T4 = 25 °C; f: OTS T = 60 °C); 22¢ (g: BARE T = 25 °C; h: OTS T = 25 °C; i: OTS T = 60 °C); (D) normalized UV-vis absorption
spectra of thin films of 22a—c at room temperature; (E) transfer and (F) output characteristics of the thin film OFET devices (deposited on an OTS treated SiO,/Si
substrate (T = 25 °C) based on 22a. Reproduced with permission from ref. 13. Copyright 2011, The Royal Society of Chemistry.
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d-spacings of 1.62, 1.73 and 1.73, which corresponded to the
molecular lengths along the longer axis (1.86 A, 2.02 A and
2.00 A nm for 22a-¢, respectively). We deduced that the
porphyrins were aligned on the substrate with their long axes
inclined at angles of 60.6, 59.0 and 59.0 degrees, respectively.
This was in stark contrast to the meso-unsubstituted 5, which
aligned nearly perpendicular to the substrate.”>** Furthermore,
the UV-visible absorption spectra of the thin films were iden-
tical to the solution spectrum (Fig. 6).

The thin film OFET devices of 22a-c revealed them to be
p-type semiconductors (Fig. 6). The highest performance (field-
effect mobility) was shown by 22b in thin film devices deposited
on OTS-modified SiO, at a substrate temperature of 25 °C. It
recorded field-effect mobility as high as 0.65 cm® V™' s* and
the value was among the highest of thin film OFETs.

Compared to the meso-unsubstituted derivative 5, the meso-
phenyl substituents (electron-withdrawing as well as electron-
donating, vide infra) significantly improved the transport prop-
erties of these materials. This could presumably be attributed
to the change of the molecular stacking pattern of 22a-c in the
thin films. The substituents at the meso-aryl groups modulated
the charge transport properties, especially the current on/off
ratios, of the thin film devices. The superior charge transport
was attributed to the extended m-conjugation of these cyclic
conjugated molecules, which lowers the reorganization energy
and leads to enhanced intermolecular n-n overlap. Compared
with 5, which showed herringbone (edge-to-face) stacking in
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the solid state, the meso-substituents in 22 (and 23, vide infra)
altered the molecular stacking pattern to face-to-face or shifted
face-to-face and significantly improved the charge transport as
well as switching properties of the materials based on thin
films. Interestingly, the charge (hole current) transport values
of these porphyrin derivatives were considerably superior to
those of the corresponding o-oligofurans (mobility: 0.05-
0.066 cm® V' s7) and o-oligothiophenes (0.09 cm> V' s 1).**

Thin-film OFETs of 23a and 23b were fabricated on OTS or
polymethylmethacrylate (PMMA)/SiO,/Si substrates in a BGTC
configuration using Au source and drain electrodes. The UV-visible
absorption spectrum of the thin films (Fig. 7A) corresponded to the
solution spectra. The morphology of the thin films changed with
temperature. Upon increasing the temperature from 20 °C to 60 °C,
the grain size increased and the films turned more ordered;
however, at 100 °C, cracks appeared in the films (Fig. 7B). The
best charge transport (Fig. 7C and D) with a mobility as high as
0.40 cm* V' s was observed on thin films of 23a deposited on
OTS modified SiO, at a substrate temperature of 60 °C. The more
positive value of the thresh