Showcasing research from Prof. Enrique Lima and Prof. Ilich A. Ibarra, Instituto de Investigaciones en Materiales (IIM), from The National Autonomous University of Mexico (UNAM), Ciudad de México, Mexico. High and reversible SO_2 capture by a chemically stable $Cr(\mbox{\scriptsize III})$ -based MOF A partially fluorinated MOF material named MIL-101(Cr)-4f(1%) exhibits high SO_2 capture, high chemical stability towards dry and humid SO_2 and outstanding cycling performance with facile regeneration. # Journal of Materials Chemistry A ## COMMUNICATION View Article Online View Journal | View Issue Cite this: J. Mater. Chem. A, 2020, 8, 11515 Received 10th December 2019 Accepted 9th April 2020 DOI: 10.1039/c9ta13524c rsc.li/materials-a # High and reversible SO₂ capture by a chemically stable Cr(III)-based MOF† Eva Martínez-Ahumada, ‡ Mariana L. Díaz-Ramírez, ‡ Hugo A. Lara-García, Daryl R. Williams, Vladimir Martis, Vojtech Jancik, Enrique Lima* and Ilich A. Ibarra Partially fluorinated MIL-101(Cr) shows high SO_2 capture (up to 18.4 mmol g^{-1} at 298 K and up to 1 bar), chemical stability towards dry and humid SO_2 and an outstanding cycling performance with facile regeneration. *In situ* DRIFT spectroscopy demonstrated the preferential adsorption sites within MIL-101(Cr)-4F(1%). #### Introduction Sulphur dioxide (SO₂) is a toxic gas with a pungent odour. Although it is naturally produced by volcanic activity, its main source is the burning of fossil fuels containing sulphur and metal extraction from ores.¹ This gas has been labelled by the World Health Organization (WHO) as one of the most hazardous air pollutants as its presence has been correlated with a rise in respiratory problems^{2,3} and mortality.⁴ It is also a precursor of particulate matter (PM), which also poses a threat to human health.⁵ Furthermore, SO₂ is one of the main components of acid deposition which affects aquatic environments and causes loss of minerals and nutrients from the soil, hindering the growth of forests and crop plants.⁶ Therefore, in "Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico. E-mail: lima@iim. unam.mx; argel@unam.mx; Fax: +52(55) 5622-4595 order to improve the quality of air, especially in urban areas, emissions of SO₂ should be reduced. The most used devices for SO₂ removal from industrial combustion units are scrubbers,⁷ where an alkaline reagent (typically lime or limestone) is used to produce a solid compound (calcium sulphite). Nevertheless, this technology has some drawbacks such as low capture of SO₂, corrosion of pipelines and substantial cost of use and recovery. The removal of this gas has also been explored in porous materials such as zeolites,^{8,9} which have basic oxygen atoms on the surface that make them good candidates for SO₂ capture. However, the regeneration process requires heating above 450 °C (ref. 10) or a chemical treatment with hydrogen peroxide,¹¹ which may lead to a modification of the structure and a loss of porosity of the zeolites, rendering them non-reusable. The capture of an acidic gas such as SO₂ has proved to be a difficult task because of the formation of strong irreversible interactions (chemisorption) or a highly expensive regeneration process of the material used. Therefore, it is fundamental to find more efficient and effective SO₂ removal technologies. As an alternative, a new class of crystalline and porous materials known as porous coordination polymers (PCPs) or metalorganic frameworks (MOFs) has been explored. MOFs are formed by organic linkers (typically carboxylic acids or azoligands)¹² and metal ions or metal-oxide clusters,¹³ giving rise to one-, two- or three-dimensional arrays, depending on the type of the linker and the metal centre used. The properties of these materials, such as adsorption capacity or selectivity towards specific molecules, can be finely customised by changing the metal centre or by adding a chemical functionality to the linker. Some studies have demonstrated the capture of sulphuroxide gases by different MOFs; however, only a few of them have shown to be stable upon SO₂ exposure. This is because of the strong interaction between the metal centre and SO₂, which can break metal-ligand bonds causing structural degradation or collapse, as shown for MOF-177,¹⁴ which, although holding the record for SO₂ capture (25.7 mmol g⁻¹ at 298 K and 1 bar), b Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n. CU. Covoacán. Ciudad de México. Mexico ^{&#}x27;Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK ^dSurface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HAO 4PE, ^eUniversidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico ^fCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, Mexico [†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ta13524c $[\]ddagger$ These authors contributed equally to this work. showed changes in crystallinity and loss of BET surface area after SO_2 adsorption. To avoid this, the interactions between SO_2 and the MOF material should be through a donor–acceptor bond with open metal sites or via non-covalent bonding between SO_2 and ligands. For instance, several studies have been performed exploring the hydrogen bond formation as the main interaction between SO_2 and MOFs, using, for example, linkers with urea groups¹⁵ or through μ -OH groups. $^{14,16-19}$ There are remarkable examples showing that the existence of open metal sites favours the affinity towards polar molecules such as SO₂.²⁰ Nonetheless, humid conditions have exhibited an unfavourable impact on the capture of SO₂, due to (i) the competition of H₂O and SO₂ molecules for the preferential adsorption sites (*i.e.*, open metal sites)²¹ and (ii) the chemical reaction of H₂O and SO₂ to form highly reactive sulphurous acid (H₂SO₃), capable of degrading MOF materials.¹⁴ DFT calculations have provided valuable information to understand how open metal sites interact with guest molecules, finding that the primary interaction is between one oxygen atom from the SO₂ molecule and the metal centre; for example, Mg- and Zn-MOF-74.²² The introduction of highly electronegative atoms such as fluorine in the structure of MOFs has also shown interesting results for the capture of SO_2 . For example, using an inorganic anion (SIF_6^{2-} , SIFSIX) pillared metal–organic framework, Xing and co-workers²³ identified that the main interactions of SO_2 with the framework is through guest–host electrostatic interactions such as $S^{\delta^+}\cdots F^{\delta^-}$ and $OS-O\cdots H-C$ (ligand). These interactions firmly bind SO_2 in the pores of the materials. Moreover, guest–guest interactions $(OS_1-O\cdots S_2-O)$ allowed a more ordered packing of SO_2 within the pore, forming a SO_2 cluster. Also, considering the interaction $S^{\delta^+}\cdots F^{\delta^-}$ – as a good site for SO_2 adsorption, Eddaoudi *et al.*²⁴ studied the SO_2 capture in two isostructural fluorinated MOFs, namely, KAUST-7 and KAUST-8. Interestingly, both materials have excellent stability towards moisture and can be easily regenerated. Recently, we have reported a partially fluorinated version of MIL-101(Cr) entitled MIL-101(Cr)-4F(1%)²⁵ that showed interesting adsorption properties for different analytes (H2O, CO2, O₂, H₂ and H₂S). Particularly, we demonstrated that fluorine incorporation promoted a higher acidity of some of the Cr(III) metal centres (open metal sites), due to the capability of fluorine to attract electrons.25 Thus, in this contribution we present the remarkable capture of SO2 on this partially fluorinated material, the chemical stability of MIL-101(Cr)-4F(1%) towards SO₂ (under both dry and humid conditions), and the relevance of the open metal sites of MIL-101(Cr)-4F(1%) for high SO₂ capture demonstrated by in situ DRIFTS CO adsorption experiments. Remarkable MOF examples capable of adsorbing SO2 at very low pressures (since the concentration of atmospheric SO₂ is very low) have been reported. 17,23 Although, SO2 capture in these conditions for MIL-101(Cr)-4F(1%) is not outstanding, our material could be an exceptional alternative for SO₂ long-term storage. Powder X-ray diffraction (PXRD) confirmed the phase purity of MIL-101(Cr)-4F(1%) and thermogravimetric analysis (TGA) confirmed the previously reported decomposition temperature²⁵ (see Experimental details, Fig. S1 and S5, ESI†). Acetone-exchanged samples of MIL-101(Cr)-4F(1%) were fully activated (see the Experimental section, ESI†) and an N_2 isotherm at 77 K demonstrated a BET surface area of 2176 m² g⁻¹ with a pore volume of 1.19 cm³ g⁻¹ (see Fig. S6, ESI†). Then, SO₂ adsorption-desorption isotherms using a Dynamic Gravimetric Gas/Vapour Sorption Analyser, DVS vacuum (Surface Measurement Systems Ltd), were carried out from 0 to 1 bar at 298 K on an activated sample (see the ESI†) of MIL-101(Cr)-4F(1%). Fig. 1 shows the resulting isotherm that was observed, which shows a rapid SO₂ uptake from 0.0 to 0.1 bar with a total uptake of approximately 4.6 mmol g^{-1} (see the inset of Fig. 1). From 0.1 to 0.2 bar the SO₂ adsorption isotherm demonstrated an almost linear uptake with a total amount of \approx 7.5 mmol g⁻¹. Finally, from 0.2 to 1.0 bar (end of the experiment) an exceptional SO₂ total uptake of 18.4 mmol g⁻¹ was achieved. This value is higher than the SO₂ capture for representative MOFs (e.g., SIFSIX-1-Cu²³ = 11.0 mmol SO₂ g⁻¹, and, very recently, MFM-170 (ref. 26) = 17.5 mmol g^{-1} , at 298 K and up to 1 bar). It also signifies the second highest SO₂ uptake for a MOF material. Interestingly, MOF-177 (ref. 14) demonstrated the highest SO₂ uptake for a MOF, reported to date, with a total capture of 25.7 mmol g⁻¹ with an estimated BET surface area of 4100 m² g⁻¹, whereas the BET surface area for MIL-101(Cr)-4F(1%) (2176 m² g⁻¹) is approximately 47% lower than MOF-177. However, when MOF-177 was tested for a second SO₂ readsorption experiment (first cycle), this material showed partial degradation of the framework structure (corroborated by PXRD) and reduction of the BET surface area (2270 $\text{m}^2\text{ g}^{-1}$). Therefore, because of the low chemical stability of MOF-177, no further SO₂ sorption investigations for MOF-177 were considered by the authors.14 Thus, we decided to investigate the structural stability of MIL-101(Cr)-4F(1%) after the SO_2 adsorption-desorption experiment. PXRD analysis confirmed the retention of its crystallinity (see Fig. S2, ESI†), after the first SO_2 sorption experiment. In addition, a N_2 adsorption at 77 K evidenced that the Fig. 1 Experimental SO $_2$ adsorption–desorption isotherm collected for a fully activated MIL-101(Cr)-4F(1%) sample (filled blue circles = adsorption; open blue circles = desorption) at 298 K and up to 1 bar. Inset: SO $_2$ adsorption from 0.0 to 0.1 bar. porosity was not altered (BET area $\approx 2168 \text{ m}^2 \text{ g}^{-1}$, see Fig. S7, ESI†). Continuing with the analysis of the SO₂ sorption isotherm, the desorption branch showed a hysteresis from 0.8 bar to 0.0 bar which indicates a relatively strong SO₂ interaction with the MOF material. In order to quantify such a host-guest interaction, the isosteric heat of adsorption (ΔH) was evaluated for SO₂ at low coverage for fully activated MIL-101(Cr)-4F(1%) (estimated by fitting three adsorption isotherms at 298, 303 and 308 K to a Clausius-Clapeyron equation, see Fig. S11, ESI†). Thus, the resultant $\Delta H = -54.3$ kJ mol⁻¹ was demonstrated to be relatively high which is consistent with the hysteresis shown in Fig. 1 (suggesting a relatively strong interaction between SO₂ and the MOF material). This ΔH value is characteristic for SO₂ and open metal sites systems (e.g., KAUST-8, 24 $\Delta H =$ $-73.9 \text{ kJ mol}^{-1}$). Cycling SO₂ experiments at 298 K and 1 bar were further carried out in order to assess the stability of the SO₂ adsorption performances and the regeneration capacity of MIL-101(Cr)-4F(1%). We recently reported the SO₂ cyclability of MFM-300(Sc), where only vacuum (1.7 × 10^{-6} Torr) was applied for 30 minutes at 298 K. Since the ΔH for SO₂ in MFM-300(Sc) (-36.2 kJ mol⁻¹) resulted in a lower value than that for MIL-101(Cr)-4F(1%) (-54.3 kJ mol⁻¹), we decided to carry out cycling SO₂ experiments on MIL-101(Cr)-4F(1%) by applying vacuum $(1.7 \times 10^{-6} \text{ Torr})$ for 45 minutes and 298 K. Thus, we demonstrated that the SO₂ capture capacity remains constant during 50 adsorption-desorption cycles (18.44 \pm 0.12 mmol g⁻¹, see Fig. 2). This shows that SO₂ is fully released during the subsequent desorption cycles. PXRD analyses of the material after 50 adsorption/desorption cycles confirmed the retention of the crystal structure (see Fig. S3, ESI†), while a N2 adsorption at 77 K evidenced that the porosity is not altered (BET area $\approx 2174 \text{ m}^2$ g^{-1}) (see Fig. S8, ESI†). Additionally, in situ PXRD (under a N_2 atmosphere) demonstrated that this SO2 re-cycled material retained its crystallinity up to 250 °C (see Fig. S4, ESI†). MIL-101(Cr)-4F(1%) shows a fast reactivation process (treatment for 45 min under vacuum) at room temperature (298 K) which Fig. 2 Adsorption-desorption cycles for SO₂ in MIL-101(Cr)-4F(1%) at 1 bar and 298 K. The re-activation of this sample was conducted by only applying vacuum (1.7 \times 10⁻⁶ Torr) for 45 minutes at 298 K. contrasts with the harsh conditions currently considered for most of the current MOFs envisaged for SO₂ capture.²⁸ MFM-170, with a BET surface area of 2408 m 2 g $^{-1}$, exhibited the highest SO_2 uptake (17.5 mmol g^{-1} , at 1 bar and 298 K), reported in the literature, for a chemically stable MOF material (50 adsorption-desorption cycles for SO₂ at 298 K under dynamic vacuum).26 Therefore, MIL-101(Cr)-4F(1%) represents the highest SO₂ capture (18.4 mmol g⁻¹) in a chemically stable MOF material with an extraordinary energy-efficient cyclability. Taking into account the excellent water stability of MIL-101(Cr)-4F(1%)²⁵ and the chemical stability towards SO₂, no loss of the adsorption capacity of SO2 after 50 adsorption-desorption cycles and PXRD confirmation of the crystalline structure, the structure stability of MIL-101(Cr)-4F(1%) towards humid SO₂ was investigated. Then, an activated sample (see the ESI†) of MIL-101(Cr)-4F(1%) was exposed during 24 h to humid SO₂ (60% relative humidity, RH), generated in a home-designed setup (see Fig. S13, ESI†). Later, this sample was re-activated (as previously described in the ESI†) and it was re-exposed to humid SO₂ for another 24 h (second exposure to humid SO₂). After completing a third exposure to humid SO₂ (60% RH), PXRD experiments demonstrated the retention of the crystallinity of the sample (see Fig. 3) and a N2 adsorption at 77 K showed that the porosity was not altered (BET area $\approx 2172 \text{ m}^2$ g^{-1} , see Fig. S9, ESI†). These cycling experiments with humid SO₂ demonstrated the high chemical stability of MIL-101(Cr)-4F(1%). Up to this point we have demonstrated that the SO₂ capture by MIL-101(Cr)-4F(1%) is the highest, to the best of our knowledge, for a structurally stable MOF material, with high SO₂ cyclability and extraordinary chemical stability towards humid SO2. When comparing MIL-101(Cr)-4F(1%) to MFM-170,26 the latter shows higher BET surface area (2176 vs. 2408 m² g^{-1}) and pore volume (0.88 vs. 1.19 cm³ g^{-1}). Although, the pore dimensions of MFM-170 belong to the mesoporous regime (three different cavities: A (15.9 Å), B (16.3 \times 22.2 Å) and C (12.8 \times 14.2 Å)), similar to those of MIL-101(Cr)-4F(1%) with two different pore openings (29 Å and 34 Å), the total uptake is higher for MIL-101(Cr)-4F(1%). Thus, the difference in the SO₂ capture for these two materials cannot be simply explained by Fig. 3 PXRD of (a) simulated MIL-101(Cr)-4F(1%), (b) first, (c) second, and (d) third exposure to humid SO₂. their porosity differences. In addition, both mesoporous MOF materials show access to open metal sites. However, the ΔH for SO_2 (at low SO_2 loadings) was demonstrated to be considerably different for MIL-101(Cr)-4F(1%) $(-54.3 \text{ kJ mol}^{-1})$ and MFM-170 $(-35.4 \text{ kJ mol}^{-1})$. Since this parameter is calculated at low SO₂ loadings, it indicates the interaction of the SO₂ molecules with the preferential functional groups within a MOF material, which are in the case of MIL-101(Cr)-4F(1%) and MFM-170 the open metal sites (Cr(III) and Cu(II), respectively). Thus, we hypothesise that due to a higher ΔH for SO₂ for MIL-101(Cr)-4F(1%), the SO₂ uptake is accordingly higher, presumably due to a more efficient packing of the SO₂ molecules. In order to corroborate our hypothesis, Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy experiments were performed. Indeed, Yang and Schröder elegantly demonstrated (by in situ synchrotron singlecrystal X-ray diffraction) the binding domains for adsorbed SO₂ within MFM-170 (open metal sites).26 In our hands, we investigated such binding domains by in situ DRIFT spectroscopy upon the adsorption of CO. Although CO is chemically different from SO₂, both molecules exhibit a dipole moment (D, 0.12 for CO and 1.62 for SO₂) and we decided to use this molecule as a probe, affording an extraordinary alternative to investigate the preferential adsorption sites within MIL-101(Cr)-4F(1%). CO is indeed an IR probe that can be used to characterise the acidity of surfaces. Therefore, CO was selected as a good candidate since SO2, also a dipolar molecule, is anticipated to be adsorbed at acid sites similar to CO. Fig. 4 shows the spectra of CO adsorption (298 K) at different times (min) on an activated sample (see the ESI†) of MIL-101(Cr)-4F(1%). After only 1 min, the CO adsorption showed two bands centred at $\tilde{\nu}$ 2191 and 2161 cm⁻¹. In line with the earlier-observed cation-dependent vibrational band,²⁹ the main band at $\tilde{\nu}$ 2191 cm⁻¹ is attributed to CO interacting with the Lewis Cr³⁺ sites, confirming that the Cr³⁺ are indeed open metal sites Fig. 4 DRIFT spectroscopy spectra of CO adsorbed at different times over activated MIL-101(Cr)-4F(1%) at 298 K, in the region between $\tilde{\nu}$ 2300 and 1900 cm $^{-1}$. At 0 min, the DRIFT spectroscopy spectrum of MIL-101(Cr)-4F(1%) is shown; from 1 min to 30 min the DRIFT spectroscopy difference spectra are shown. as previously demonstrated by 129Xe NMR.25 Interestingly, the band at 2161 cm⁻¹ is assigned to CO interacting with Brönsted acid sites (hydrogen atom from the HO group) (see Fig. S14, ESI†). In both cases the positions shift (approximately 6 cm⁻¹ for \tilde{v} 2191 cm⁻¹ and 4 cm⁻¹ for \tilde{v} 2161 cm⁻¹) as time increases (coverage-dependent) and undoubtedly, these are distinct from the previously reported gas-phase band observed at $\tilde{\nu}$ 2143 cm⁻¹.²⁹ In fact, the coverage-dependent shift (\sim 6 cm⁻¹) for the main band (2191 cm⁻¹) is attributed to additional CO-CO lateral interactions since CO is a small polarisable molecule (i.e., exhibits a dipole moment). This high value (main band at $\tilde{\nu}$ 2191 cm⁻¹) of the CO stretching frequency and the very small shift (6 cm⁻¹) of this band as CO coverage evolves suggests a poor or negligible participation of the d- π^* orbital in the interaction between Cr3+ and CO.30 Consequently, the adsorption of CO on these sites (Cr³⁺) of the material can be considered as relatively weak. Additionally, after 5 min a band is observed at 2039 cm $^{-1}$, which is a significantly lower wave number than the one observed for CO adsorbed within other MOF materials. In fact, this band is also at a lower wave number than that expected for CO interacting with Cr^{3+} or Brönsted acid sites as previously identified. This band is indeed close to the one previously observed for CO bonded to metal chromium (Cr^{0}) in carbonyl complexes. However, this can be discarded as the reduction from Cr^{3+} to Cr^{0} did not take place in MIL-101(Cr)-4F(1%). Interestingly, it is possible to decrease the strength of the triple polar-covalent bond between C and O atoms of the CO molecule ($C \equiv O$), if it is exposed to two different interactions. Thus, we hypothesise that when the CO molecule is adsorbed within MIL-101(Cr)-4F(1%), after a particular CO concentration is reached (i.e., after 5 min, see Fig. 4 band at \tilde{v} 2039 cm⁻¹), a specific adsorbed geometry is afforded which allows the CO molecule to simultaneously interact with coordinative unsaturated Cr3+ metal centres (Lewis acid sites) and OH functional groups (Brönsted acid sites) (see Fig. S15, ESI†). Both interactions (depicted as: O-H···O≡C-Cr) can generate a weakening of the triple bond of the CO molecule and therefore, a higher stabilisation of this molecule within the MOF material. This experimental evidence can be observed in Fig. 4 where from 5 min to 30 min (end of the experiment), the intensity of the main band at $\tilde{\nu}$ 2191 cm⁻¹ is considerably broadened and shifted (\sim 6 cm⁻¹) while the intensity of the dually interacting band (O-H···O \equiv C-Cr) at $\tilde{\nu}$ 2039 cm⁻¹, is increased. Furthermore, changes observed in the v_{OH} region (see Fig. S12, ESI†) provided a clear evidence of hydrogen bond formation (O-H··· O \equiv C). After only 2 min of CO adsorption, the main bands at $\tilde{\nu}$ 3665 and 3585 cm⁻¹ were considerably broadened and shifted slightly to lower wavenumbers and a new band at $\tilde{\nu}$ 3612 cm⁻¹ was observed (see Fig. S12, ESI†). These adsorption sites in which CO is simultaneously bounded to OH and Cr3+, significantly decrease the strength of the triple polar-covalent bond of CO, and therefore, these can be considered as strong adsorption sites for CO. All the previously analysed vibrational bands (DRIFT spectroscopy spectra) correspond to the chemical composition of activated MIL-101(Cr)-4F(1%): [Cr₃O(BDC)_{2.91}(BDC-4)_{0.09}(H₂O)· OH]; BDC = 1,4-benzenedicarboxylate; BDC-4F = 2,3,5,6tetrafluoro-1,4-benzenedicarboxylate (see ESI,† material synthesis). In detail, the trinuclear cluster Cr₃O of Cr(III) is coordinated to two H₂O molecules and one hydroxy group (HO) (this anion compensates the charge of the framework structure). Upon activation, these water molecules are displaced generating open metal sites and the HO remains coordinated to one metal centre (see Fig. S14, ESI†).34 Thus, as previously described (vide supra), this HO functional group (Brönsted acid site) is the one responsible (in combination with unsaturated Cr³⁺, a Lewis acid site) for the simultaneous CO interaction with both adsorption sites as evidenced by the band at $\tilde{\nu}$ 2039 cm⁻¹ and the changes observed in the v_{OH} region. Thus, with this experimental evidence, we corroborated our efficiently packing SO₂ hypothesis: the SO₂ adsorption process takes place in three stages: (i) adsorption at acid sites (Lewis) with a relatively high ΔH for SO₂; (ii) adsorption at both acid (Lewis and Brönsted) sites, since the SO₂ molecule also exhibits a dipole moment (resembling the CO molecule) and (iii) adsorption within the cavities of the MOF material. To summarise, MIL-101(Cr)-4F(1%) exhibits the highest SO₂ uptake for a structurally stable MOF material, extraordinary chemical stability towards dry and humid SO2 and an excellent cycling performance with facile regeneration at room temperature. Furthermore, in situ DRIFT spectroscopy upon the adsorption of CO identified the preferential adsorption sites of MIL-101(Cr)-4F(1%). ### Conflicts of interest Communication There are no conflicts to declare. ## Acknowledgements The authors thank Dr A. Tejeda-Cruz (powder X-ray; IIM-UNAM), CONACyT (1789), and the PAPIIT UNAM (IN101517, IN202820), México for financial support. E. M.-A. acknowledges a Ph.D. CONACyT grant (770954). The authors thank U. Winnberg (ITAM) for scientific discussions and G. Ibarra-Winnberg for conceptualising the design of this contribution. #### Notes and references - 1 Z. Klimont, S. J. Smith and J. Cofala, Environ. Res. Lett., 2013, 8, 014003. - 2 M. Matooane and R. Diab, Arch. Environ. Health, 2003, 58, 763-770. - 3 P. Amoatey, H. Omidvarborna, M. S. Baawain and A. Al-Mamun, Process Saf. Environ. Prot., 2019, 215-228. - 4 J. Schwartz and D. W. Dockery, Am. Rev. Respir. Dis., 1992, 145, 600-604. - 5 R. Reiss, E. L. Anderson, C. E. Cross, G. Hidy, D. Hoel, R. McClellan and S. Moolgavkar, Inhalation Toxicol., 2007, - 6 F. C. Menz and H. M. Seip, Environ. Sci. Policy, 2004, 7, 253-265. - 7 R. K. Srivastava, W. Jozewicz and C. Singer, Environ. Prog., 2001, 20, 219-228. - 8 B. E. Alver, M. Sakizci and E. Yörükoğullari, Adsorpt. Sci. Technol., 2011, 29, 413-422. - 9 B. Erdoğan Alver, J. Hazard. Mater., 2013, 262, 627-633. - 10 N. D. Hutson, B. A. Reisner, R. T. Yang and B. H. Toby, Chem. Mater., 2000, 12, 3020-3031. - 11 A. J. Hernández-Maldonado, R. T. Yang, D. Chinn and C. L. Munson, Langmuir, 2003, 19, 2193-2200. - 12 W. Lu, Z. Wei, Z. Y. Gu, T. F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle, M. Bosch and H. C. Zhou, Chem. Soc. Rev., 2014, 43, 5561-5593. - 13 R. F. Mendes and F. A. Almeida Paz, Inorg. Chem. Front., 2015, 2, 495-509. - 14 P. Brandt, A. Nuhnen, M. Lange, J. Möllmer, O. Weingart and C. Janiak, ACS Appl. Mater. Interfaces, 2019, 11(19), 17350- - 15 S. Glomb, D. Woschko, G. Makhloufi and C. Janiak, ACS Appl. Mater. Interfaces, 2017, 9, 37419-37434. - 16 S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang and M. Schröder, Nat. Chem., 2012, 4,887-894. - 17 M. Savage, Y. Cheng, T. L. Easun, J. E. Eyley, S. P. Argent, M. R. Warren, W. Lewis, C. Murray, C. C. Tang, M. D. Frogley, G. Cinque, J. Sun, S. Rudić, R. T. Murden, M. J. Benham, A. N. Fitch, A. J. Blake, A. J. Ramirez-Cuesta, S. Yang and M. Schröder, Adv. Mater., 2016, 28, 8705-8711. - 18 J. H. Carter, X. Han, F. Y. Moreau, I. Da Silva, A. Nevin, H. G. W. Godfrey, C. C. Tang, S. Yang and M. Schröder, J. Am. Chem. Soc., 2018, 140, 15564-15567. - 19 L. Li, I. Da Silva, D. I. Kolokolov, X. Han, J. Li, G. Smith, Y. Cheng, L. L. Daemen, C. G. Morris, H. G. W. Godfrey, N. M. Jacques, X. Zhang, P. Manuel, M. D. Frogley, C. A. Murray, A. J. Ramirez-Cuesta, G. Cinque, C. C. Tang, A. G. Stepanov, S. Yang and M. Schröder, Chem. Sci., 2019, 10, 1472-1482. - 20 D. Britt, D. Tranchemontagne and O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 11623-11627. - 21 T. Grant Glover, G. W. Peterson, B. J. Schindler, D. Britt and O. M. Yaghi, Chem. Eng. Sci., 2011, 66, 163-170. - 22 K. Tan, S. Zuluaga, H. Wang, P. Canepa, K. Soliman, J. Cure, J. Li, T. Thonhauser and Y. J. Chabal, Chem. Mater., 2017, 29, 4227-4235. - 23 X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen and H. Xing, Adv. Mater., 2017, 29, 1606929. - 24 M. R. Tchalala, P. M. Bhatt, K. N. Chappanda, S. R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. De Weireld, G. Maurin, K. N. Salama and M. Eddaoudi, Nat. Commun., 2019, 10, 1328. - 25 M. L. Díaz-Ramírez, E. Sánchez-González, J. R. Álvarez, G. A. González-Martínez, S. Horike, K. Kadota, K. Sumida, E. González-Zamora, M.-A. Springuel-Huet, A. Gutiérrez-Alejandre, V. Jancik, S. Furukawa, S. Kitagawa, I. A. Ibarra and E. Lima, J. Mater. Chem. A, 2019, 7, 15101-15112. - 26 G. L. Smith, J. E. Eyley, X. Han, X. Zhang, J. Li, N. M. Jacques, H. G. W. Godfrey, S. P. Argent, L. J. M. McPherson, S. J. Teat, Y. Cheng, M. D. Frogley, G. Cinque, S. J. Day, C. C. Tang, T. L. Easun, S. Rudić, A. J. Ramirez-Cuesta, S. Yang and M. Schröder, *Nat. Mater.*, 2019, 18, 1358–1365. - 27 J. A. Zárate, E. Sánchez-González, D. R. Williams, E. González-Zamora, V. Martis, A. Martínez, J. Balmaseda, G. Maurin and I. A. Ibarra, *J. Mater. Chem. A*, 2019, 7, 15580–15584. - 28 (a) L. M. Rodriguez-Albelo, E. Lopez-Maya, S. Hamad, A. R. Ruiz-Salvador, S. Calero and J. A. R. Navarro, *Nat. Commun.*, 2017, 8, 1; (b) K. Tan, P. Canepa, Q. Gong, J. Liu, D. H. Johnson, A. Dyevoich, P. K. Thallapally, T. Thonhauser, J. Li and Y. J. Chabal, *Chem. Mater.*, 2013, 25, 4653-4662; (c) X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen and H. Xing, *Adv. Mater.*, 2017, 29, 1606929. - 29 K. Tan, S. Zuluaga, E. Fuentes, E. C. Mattson, J.-F. Veyan, H. Wang, J. Li, T. Thonhauser and Y. J. Chabal, *Nat. Commun.*, 2016, 7, 13871. - 30 (*a*) D. Scarano, A. Zecchina and A. Reller, *Surf. Sci.*, 1988, **198**, 11–25; (*b*) A. Vimont, H. Leclerc, F. Maugé, M. Daturi, - J.-C. Lavalley, S. Surblé, C. Serre and G. Férey, *J. Phys. Chem. C*, 2007, **111**, 383–388. - 31 (a) S. M. J. Rogge, A. Bavykina, J. Hajek, H. Garcia, A. I. Olivos-Suarez, A. Sepúlveda-Escribano, A. Vimont, G. Clet, P. Bazin, F. Kapteijn, M. Daturi, E. V. Ramos-Fernandez, F. X. L. i Xamena, V. Van Speybroeck and J. Gascon, *Chem. Soc. Rev.*, 2017, 46, 3134–3184; (b) A. Vimont, J.-M. Goupil, J.-C. Lavalley, M. Daturi, S. Surblé, C. Serre, F. Millange, G. Férey and N. Audebrand, *J. Am. Chem. Soc.*, 2006, 128(10), 3218–3227; (c) X. Li, T. W. Goh, L. Li, C. Xiao, Z. Guo, X. C. Zeng and W. Huang, *ACS Catal.*, 2016, 6(6), 3461–3468. - 32 Z. D. Reed and M. A. Duncan, *J. Am. Soc. Mass Spectrom.*, 2010, 21, 739–749. - 33 C. Otero Areán, G. Turnes Palomino, E. Escalona Platero and M. Peñarroya Mentruit, J. Chem. Soc., Dalton Trans., 1997, 873–879. - 34 G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé and I. Margiolaki, *Science*, 2005, 309, 2040