Issue 10, 2018

Geometric super-resolution on push-broom hyperspectral imaging for plasma optical emission spectroscopy

Abstract

Push-broom hyperspectral imaging (Pb-HSI) is a powerful technique for obtaining the spectral information along with the spatial information simultaneously for various applications, from remote sensing to chemical imaging. Spatial resolution improvement is beneficial in many instances; however, typical solutions suffer from the limitation of geometric extent, lowered light throughput, or reduced field-of-view (FOV). Sub-pixel shifting (SPS) acquires higher-resolution images, compared to typical imaging approaches, from the deconvolution of low-resolution images acquired with a higher sampling rate. Furthermore, SPS is particularly suited for Pb-HSI due to its scanning nature. In this study, an SPS approach is developed and implemented on a Pb-HSI system for plasma optical emission spectroscopy. The preliminary results showed that a periodic deconvolution error was generated in the final SPS Pb-HSI images. The periodic error was traced back to random noise present in the raw/convoluted SPS data and its frequency displays an inverse relationship with the number of sub-pixel samples acquired. Computer modelled data allows studying the effect of varying the relative standard deviation (RSD) in the raw/convoluted SPS data on the final reconstructed SPS images and optimization of noise filtering. The optimized SPS Pb-HSI technique was used to acquire the line-of-sight integrated optical emission maps from an atmospheric pressure micro-capillary dielectric barrier discharge (μDBD). The selected plasma species of interest (He, I, N2, N2+, and O) yield some insight into the underlying mechanisms. The SPS Pb-HSI technique developed here will allow implementing geometric super-resolution in many applications, for example, it will be used for extracting radially resolved information from Abel's inversion protocols, where improved fitting is expected due to the increase in resolution/data points.

Graphical abstract: Geometric super-resolution on push-broom hyperspectral imaging for plasma optical emission spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
12 Quint 2018
Accepted
15 Sext 2018
First published
15 Sext 2018

J. Anal. At. Spectrom., 2018,33, 1745-1752

Author version available

Geometric super-resolution on push-broom hyperspectral imaging for plasma optical emission spectroscopy

S. Shi, X. Gong, Y. Mu, K. Finch and G. Gamez, J. Anal. At. Spectrom., 2018, 33, 1745 DOI: 10.1039/C8JA00235E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements