Nicolas
Brun
b,
Peter
Hesemann
b and
Davide
Esposito
*a
aMax-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany. E-mail: davide.esposito@mpikg.mpg.de
bInstitut Charles Gerhardt, UMR 5253 CNRS – Université de Montpellier – ENSCM, Place Eugène Bataillon, 34095 Montpellier cédex 05, France
First published on 24th April 2017
Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products.
The production of chemicals and materials from biomass traces back before the beginning of the industrial era. Among the first examples of materials that could be directly obtained from nature are natural rubbers and cellulose. Since the industrial revolution, scientists from different disciplines have contributed to the development of efficient strategies to deconstruct biomass in order to enable economy of scale. In this regard, the extraction of cellulose from trees for the production of paper has been one of the benchmark processes for the valorization of lignocellulosic biomass.6 Beside cellulose extraction however, a number of strategies have been developed in the last decades that allow for the deconstruction of biomass and the production of an array of different chemicals.7 We have previously classified such processes as degradative (DD) and non-degradative (NDD) deconstruction processes, referring to the possibility of decomposing biomass into small organic compounds (e.g. furans, levulinic acid, small aromatics etc.) or into its non-degraded biopolymer constituents (e.g. cellulose, hemicellulose and lignin) respectively.8 Particularly interesting is the case of degradative processes, which target C1 to C6 compounds. In this context, since biomass is highly oxygenated, processing strategies are generally based on hydrolysis, dehydration, hydrodeoxygenation, hydrogenolysis or a combination thereof, in order to remove or modify functional groups, whereas oxidations steps are usually employed to restore specific chemical functionalities.9–12 The products of DD and NDD processes can be regarded as the primary biomass derived building blocks. Many publications have highlighted the “platform” nature of such compounds, surveying the direct transformations they could undergo in order to generate a number of different commodities.13 However, if a market already exists for such primary biomass derived building blocks is the subject of debate. If the chemical is a compound that can also be obtained on the basis of conventional fossil precursors, then the economic viability of the process plays a significant role. On the other side, if the building block is novel and features chemical functionalities and connectivity that are different than the ones found in conventional platform chemicals, it becomes a candidate for novel applications, with the potential to open up a new chemical space.14 A good example in this direction is the case of lactic acid that has resulted in the development of polylactide as biodegradable plastic, which is not in competition with conventional oil based materials.15 On a more general level however, the challenge remains to identify potential applications for such biomass derived primary building blocks: this represents a crucial criterion to justify the biorefinery scheme that is required for their production.
Clearly, some of the primary building blocks of biomass degradation can find an almost direct application. Besides paper, for instance, cellulose has been extensively used for the preparation of hydrogels16 or employed as support for nanoparticles.17 Other building blocks like cyrene,18 2-methyl tetrahydrofuran (2-MTHF) or γ-valerolactone have found direct applications due to their interesting solvent properties and have been even employed for biomass processing19 and fractionation.20 However, for many applications such building blocks cannot be utilized “as synthesized”. In order to become part of value added products, e.g. bio-active compounds or new materials, biomass derived primary building blocks need to be functionalized or covalently linked with additional compounds in order to generate secondary building blocks featuring additional functionalities and properties. Such molecules represent an expansion of the chemical space that can be accessed on the basis of biomass derived molecules (Scheme 1).
This perspective will highlight some recent methods and opportunities for the synthesis of secondary biomass derived building blocks and their subsequent transformation into value added products. In particular, we will discuss those processes that are based on the functionalization and covalent modification of biomass derived molecules. The overall idea is to provide the reader with an overview of the currently explored sustainable chemical space. Examples that have the potential to reach commercial application will be included. In fact, identifying value added products that can be prepared on the basis of secondary biomass derived building blocks will be of crucial importance for the success of biorefinery and for its technology transfer to industry. For simplicity, lignocellulose derived compounds will be primarily discussed here. However, similar considerations can be applied to compounds derived from a different renewable feedstock and selected examples will also be recalled. The modification/functionalization of cellulose, which represents a more established field, was not included in the present discussion and we redirect the reader to specialized literature.21,22 Examples involving hydrolysis, dehydration, hydrodeoxygenation, hydrogenolysis or oxidations of biomass derived molecules will not be discussed here, as they fall into the repertoire of transformation for the preparation of “primary building blocks”.
Scheme 2 (Upper) Synthesis of pyrrolidones via reductive amination of LA; (lower) formation of quinolines form LA and 2-alkynylanilines. |
Nitrogen containing heterocycles are not the only target of LA derivatization. For instance, Lin et al. reported a new method for the thionation of LA using Lawesson's reagent. In this way, different thiophenones as well as 5-methylthiophene-2-thiol could be obtained in good yields even using crude LA prepared by cellulose hydrolysis.31 While the direct application of such secondary biomass derived building blocks for the preparation of bioactive compounds was not shown, thiophenes are commonly used in drugs and agrochemicals.32
Besides its role in the synthesis of heterocycles, additional aspects of levulinic acid's reactivity render this compound interesting for biomedical applications. Thanks to its keto and acid groups, levulinic acid readily undergoes imine formation or acylation reactions. Both kinds of linkages are susceptible to cleavage under physiological conditions, pointing to possible exploitation of LA for the preparation of cleavable linker systems. For example, LA was recently used in the synthesis of a linker for a new class of anti-tumoral conjugate vaccines based on α-galactosylceramide (α-GalCer) derived prodrugs.33 Furthermore, LA has been used as a bifunctional spacer for the synthesis of a series of substituted hydrazones whose copper(II) complexes were identified as potent antitubercular agents.34
Scheme 3 Retrosynthesis of (R)-(−)-phoracantholide I and (S)-(+)-phoracantholide I from (R)-(+)-γ-valerolactone. Adapted from ref. 38. |
It is worth mentioning that, beyond the preparation of bio-active molecules, the functionalization of GVL can open up opportunities also in the field of bio-based materials. For example, the methylenation of GVL at its α position affords an interesting methacrylate analogue that has been employed for the preparation of sustainable latexes.40 The latter material features very interesting thermal properties compare to traditional acrylate polymers.41
Arylation reactions represent an additional possibility for the derivatization of furfural and HMF. As recently shown, these reactions can afford a large variety of valuable mono-, di- or triarylated intermediates. Superelectrophilic activation using either triflic acid or acidic H-USY zeolites enables arylation reactions and affords a series of substituted furans (Scheme 4). Whereas reaction of HMF with benzene exclusively afforded the phenylmethyl furfural and kept the aldehyde group of furfural intact, similar reactions with more activated arenes such as toluene, xylenes, mesitylene and anisol afforded higher substituted Friedel Crafts products (Scheme 4).45 The formed arylated furans may be used to access bioactive compounds such as antibiotics.46
Scheme 4 Arylation of HMF. Adapted from ref. 45. |
2,5-Furan-dimethanol (FDM), an intermediate accessible from HMF,47,48 is an interesting starting material for the formation of pharmaceutically active molecules. As recently shown by Barta et al., FDM can readily be obtained via reduction procedures involving a noble-metal-free copper–zinc nanoalloy,47 and can further be converted to 2-furfuryl-dialkylamines via an iron-catalyzed direct alkylation reaction (Scheme 5).49 2-Furfuryl-dialkylamines represent a class of pharmaceutically relevant intermediates. For example, some 2-furfuryl-dialkylamines show antimuscarinic properties. This work shows the easy access of bioactive compounds from renewable platform chemicals using sustainable catalytic processes.
Scheme 5 Synthesis of 2-furfuryl-dialkylamines from HMF. Adapted from ref. 49. |
A very interesting synthetic strategy for the preparation of biologically active compounds using exclusively biomass derived platform molecules has recently been reported by Koh et al.50 The authors described the syntheses of aspergilide A, B and C, three potent cytotoxic compounds, in which the main synthons for the backbone of the natural products are derived from HMF and levulinic acid (Scheme 6). The multistep synthetic strategy includes among others the use of Noyori's asymmetric transfer hydrogenation, Achmatowicz rearrangement as well as an enzymatic kinetic resolution. This example strongly highlights the potential of biomass derived platform molecules for the synthesis of high value and complex biologically active products.
Scheme 6 Retrosynthetic approach to aspergilide A. Adapted from ref. 50. |
Another useful feature of HMF is the ability to undergo ring expansion upon formation of an imine with a primary amine. In this way, highly functionalized pyridinium salts can be obtained smoothly under metal free conditions using organocatalyzed transformations (Scheme 7).51 This synthetic strategy is of particular interest as pyridinium species are often bioactive compounds, and are present in a high number of natural products. For example, a member of this class of pyridinium salts obtained by reaction of HMF and L-alanine has been identified as a taste enhancer.52 Kirchhecker et al.53 recently reported a strategy for the preparation of a library of structural analogues of such taste enhancer by reacting furfural with different amino acids. Interestingly, the obtained pyridinium salts could be employed as the starting material for the preparation of pyridinium based ionic liquids via a novel hydrothermal decarboxylation method. This example showcases the importance of complementing different sustainable chemical spaces with each other: in particular, combining furfural (from lignocellulose) with amino acids (from proteins) expands the range of accessible functionalities and leads to value added products on a fully renewable basis.
Scheme 7 Formation of substituted pyridinium salts by ring expansion of HMF. Adapted from ref. 51. |
Scheme 8 General scheme for the preparation of substituted benzenes using the Diels–Alder/dehydration approach with carbohydrates derived furans. |
Targeting xylene as intermediate for the synthesis of TPA implies the reduction of HMF to dimethylfuran followed by a re-oxidation. Therefore, from a sustainability stand point, the use of hydrogen should be taken into consideration. The development of direct routes based on HMF or related oxidized derivatives would be an interesting alternative. Davis et al. have recently explored this approach,63,64 evaluating the reaction of high pressure ethylene gas with different oxidized derivatives of HMF in autoclaves. Considering the fact that the presence of carboxyl (–CO2H) groups on the furan ring results in a very electron-poor and deactivated diene, ether and ester derivatives of 5-(hydroxymethyl)furoic acid were also tested. Zr-Beta was found to be one of the most active catalyst, affording methyl 4-(methoxymethyl)benzene carboxylate with 81% selectivity at 26% diene conversion over 6 h. The possibility of generating TPA on the basis of biomass derived furans is particularly interesting considering the fact that also ethylene glycol, the comonomer required for the synthesis of PET, can be produced nowadays on the basis of renewables. Such bio-based PET precursors are perfect drop-in replacements for the production of an established commodity, as recently discussed by Zhang et al.65 As mentioned above, however, PET has been subjected to criticisms due to the potential danger associated with human exposure to terephthalic acid.66 In this regard, the dicarboxylic acid derivative of furan (in particular 2,5-furandicarboxylic acid; FDCA) has already proved as promising candidates for the generation of a bio-sourced analogue of PET, the so called PEF67 (Polyethylene Furanoate), a material that features very interesting gas permeation properties,68 and has received considerable attention in the private sector (see for instance the YXY technology developed by Avantium69). Besides terephthalic acids, additional substituted benzene molecules have been targeted using the cycloaddition route. For instance, the group of Lobo has proposed the synthesis of benzoic acids combining furans and acrylates.70 Benzoic acid represents a platform chemical that can be utilized for the production of Nylon-6, polycarbonates, epoxy resins and phenolic resins on the basis of existing technologies. Moreover, acrylates, which feature an optimal reactivity for Diels–Alder reaction with furans, can be nowadays prepared from biomass,71 pointing to the possibility of obtaining benzoic acid derivatives on a fully renewable basis. One of the limitation associated with the Diels–Alder/aromatization approach based on furans is the relatively high tendency of the adducts to undergo a retro Diels–Alder, especially at the high temperatures required for the aromatization step. For this reason, a novel strategy was recently proposed by Thiyagarajan et al. that introduced an intermediate Pd/C catalysed hydrogenation step for the reduction of the cycloaddition product, to effectively block retro Diels–Alder activity.72 Thus, conventional zeolites were applied for the aromatization step, as showcased during the synthesis of different substituted phthalic anhydrides.
The simplicity of Diels–Alder reactions represents a very great opportunity to expand the chemical space accessible on the basis of renewable furans. Particularly relevant to the field of green chemistry will be those processes that rely also on renewable dienophiles, as recently exemplified by Hoye et al. in an investigation of Diels–Alder process between itaconic acid and furans.73 Here, the substrate variability can be quite broad, leading to the synthesis of compounds with increasing values also as synthetic intermediates in organic chemistry.
Beyond a complex and heterogeneous connectivity (Scheme 9), lignin features an interesting pattern of functionalities, which is a key target for chemical modifications.74 Raw lignin mostly displays methoxy and hydroxyl groups – both aliphatic and phenolic – and may feature a few aldehyde functionalities within their side chains. At this stage, it is important to keep in mind that most of the lignins employed are produced and extracted from chemical pulping processes yielding so-called technical lignins.74 Depending on the extraction process, additional minor functionalities can be introduced such as aliphatic thiols and sulfonate groups, as found in kraft and lignosulfonate lignins respectively. Moreover, molecular weight, thermal stability and solubility of lignins are also greatly affected by the extraction/fragmentation method.77 For this reason, the full characterization of the targeted lignin is crucial for further chemical modifications. Amongst the different functional groups, phenolic and aliphatic hydroxyl groups are quite abundant and highly reactive. In principle, the functionalization of lignin via hydroxyl groups allows developing generic strategies that can be applied independently of the botanical source or the pulping process. Reactions with hydroxyl groups of lignins include esterification78,79 (Scheme 10a), etherification80 (Scheme 10b), ring-opening reactions81 (e.g. with epoxides or lactide) (Scheme 10c) and phenolation.82 In particular, esterification has been widely employed to incorporate anchorage points for the subsequent grafting of polymer chains. For instance, recent studies proposed the atom transfer radical polymerization (ATRP) of methacrylate monomers from lignin-based macroinitiators (“Grafting from” method; Scheme 10a) for the preparation of gene delivery vectors,83 CO2 responsive nanoparticles78 or even self-healing hydrogels.84 Esterification was also used to graft alkyne functionalities. Click reaction between alkyne-modified lignin and azide-terminated polymer was then proposed (“Grafting to” method) for the preparation of composites with self-healing properties.79 Besides esterification, etherification represents a further interesting approach. Meier et al.80 reported on the allylation of organosolv technical lignin with diallyl carbonate (Scheme 10b). The authors demonstrated the selective etherification of phenols along with the carboxyallylation of aliphatic hydroxyl groups. The accessibility and reactivity of the as-grafted allyl groups was further assessed, opening the way to additional functionalization through metathesis reactions. Moreover, the selective decarboxylation of aliphatic allyl carbonate groups was demonstrated, offering a versatile strategy for further modification or polymerization. In another study, stimuli-responsive lignin was synthesized through benzylation with styrene oxide and subsequent reaction of the exposed benzene groups with aryldiazonium cations (Scheme 10c).81
Scheme 10 Chemical modification of lignin via hydroxyl groups. (a) Esterification with α-bromoisobutyryl bromide to generate lignin-based macroinitiators for the subsequent ATRP of methacrylate monomers. Adapted from ref. 78. (b) Allylation with diallyl carbonate and subsequent decarboxylation of allylated aliphatic hydroxyl groups. Adapted from ref. 80. (c) Benzylation with styrene oxide and subsequent reaction with aryldiazonium cation to form azobenzene compounds. Adapted from ref. 81. |
Covalent modifications of aromatic rings via aromatic substitutions are other possible solutions to functionalize lignin. Recently, diazotization was performed without prior benzylation directly onto oxidized lignin residues – after alkaline hydrogen peroxide pretreatment.85,86 Interestingly, after pyrolysis, nitrogen-doped carbons were obtained and employed as electrode materials for lithium ion batteries.86 Diazotization is not the sole aromatic substitution possible to functionalize lignin (Scheme 9). In the same vein, nitration was proposed by Fellinger et al. to prepare lignin-derived nitrogen-doped carbon materials.87 Such materials showed promising performances as non-noble metal electrocatalysts towards the oxygen reduction reaction. Aromatic sulfonation of lignin with sulfuric acid was also reported by Budarin et al.88 The as-synthesized sulfonated lignin particles were tested as heterogeneous acid catalysts in the esterification of levulinic acid. Hydroxyalkylation with formaldehyde has been also widely employed, in particular for the grafting of polyethylenimine through the Mannich reaction.89
A major issue when aiming at grafting new functionalities to lignin lies in the poor accessibility of the targeted sites due to high molecular weight and considerable steric hindrance. To overcome this limitation, some groups suggested the functionalization of partially deconstructed lignin. Taking the idea one step further, other groups proposed one-pot approaches where depolymerization and chemical modification are concomitant. The overall philosophy herein is to assist deconstruction of lignocellulosic material via covalent modifications, thus generating functional secondary building blocks. For instance, Zhu et al.90 reported on the phosphorylation of kraft lignin for the preparation of new lubricant additives. As shown in Scheme 11, the authors exploited hydrogen chloride, which is generated in situ during the synthesis of (imidazol-1-yl)phosphonic dichloride, to hydrolyze ether bonds (typically β-O-4 bonds; Scheme 9). At the same time, the (imidazol-1-yl)phosphonic dichloride acts as a phosphorylating agent for the obtained lignin oligomers. As long as the reaction between (imidazol-1-yl)phosphonic dichloride and lignin residues occurs, hydrogen chloride is generated and the cleavage of ether bonds progresses. Besides the incorporation of new functionalities and the decrease in molecular weight, the solubility of such functional lignin in polar solvents could be significantly improved.90
Scheme 11 Phosphorylation of kraft lignin. (a) In situ synthesis of (imidazol-1-yl)phosphonic dichloride from phosphoryl chloride and imidazole and generation of hydrogen chloride as a side product. (b) Hydrolysis of ether bonds (typically β-O-4 bonds) of kraft lignin induced by hydrogen chloride. (c) Phosphorylation of kraft lignin residues. Adapted from ref. 90. |
In a similar vein, Brook et al.91,92 suggested the conversion of lignin into aryl silyl ethers through concomitant reductive degradation and silylation with various hydrosilanes (Scheme 12). The authors determined the relative reactivity of each functional group present in lignin by sequentially adding molar equivalents of pentamethyldisiloxane.91 Drawing their inspiration from the Piers–Rubinsztajn reaction, which can be used to access silicone elastomer networks by cross linking hydrosilicones and alkoxysilanes, e.g. TEOS, the authors also prepared reinforced silicone elastomers by replacing TEOS with silylated lignin obtained in situ.92 Complete desilylation was also demonstrated using tetra-n-butylammonium fluoride.91 Thus, this approach can be seen as a versatile tool for selective tandem cleavage-functionalization of lignin.
Scheme 12 Silylation and reductive degradation of lignin with hydrosilanes in the presence of tris(pentafluorophenyl)borane, B(C6F5)3. (a) First, hydroxyl and methoxy groups react with hydrosilanes to yield aliphatic and aromatic silyl ethers. Gaseous by-products, i.e. methane and hydrogen, are formed. (b) Then, providing the reaction medium with an excess of hydrosilanes, aliphatic silyl ethers are fully reduced while aromatic silyl ethers, far less reactive, are preserved. Adapted from ref. 91. |
More recently, Luterbacher et al.93 reported on the use of formaldehyde to suppress irreversible condensations by interunit C–C coupling, which typically occur during biomass delignification, and promote lignin monomer production via hydrogenolysis (Scheme 13). Unlike previous examples that focused on the use of functional lignin and lignin residues for specific applications, this work exploited the chemical modification of lignin as a way to facilitate its deconstruction. In particular, formaldehyde was shown to form stable six-membered 1,3-dioxane rings with the diol systems present on the lignin side chains as well as to introduce hydroxymethyl groups on the aromatic backbone, thereby blocking most of the sites available to C–C formation. The monomer yield was significantly increased with respect to conventional strategies (Scheme 13) and the process is regarded as sustainable considering that formaldehyde is relatively inexpensive and could be produced from biomass. Furthermore, the authors showed that residual unreacted formaldehyde could be recovered quantitatively from the reaction mixture.93
Scheme 13 Lignin monomer production during bimass depolymerization. (a) Conventional lignin extraction in acidic conditions. Lignin ether bonds are cleaved while stable carbon–carbon bonds are formed. (b) Lignin extraction in the presence of formaldehyde, which hinders the formation of carbon–carbon bonds through electrophilic aromatic substitution (hydroxyalkylation) and reaction with 1,3-diol units of β-O-4 linkages to yield 1,3-dioxane units. Reproduced with permission from ref. 93. All rights reserved. Copyright 2016, American Association for the Advancement of Science. |
Considering the recent proliferation of methods for the chemical deconstruction of lignin,6,94 functionalization strategies should not be restricted to polymeric lignins but should also deal with the valorization of mono aromatic compounds that can be produced from it. Up to now, a limited number of studies reported on the selective production and functionalization of low-molecular-weight aromatic compounds obtained from lignin either through chemical95,96 or enzymatic97 processes. Schmidt et al. described recently the preparation of a non-ionic surfactant by functionalizing lignin oligomers obtained by catalytic hydrogenolysis with poly(ethylene oxide).96 The resulting product was efficiently used as stabilizer for the emulsion polymerization of styrene, showcasing the possibility of valorizing lignin into an interesting commodity chemical. The group of Westwood, developed a method for the deconstruction of birch wood lignin based on a chemoselective oxidation of β-O-4 linkages promoted by DDQ/tBuONO/O2, followed by reaction with zinc. The protocol is characterized by a good selectivity for the production of a particular sinapyl based building block. The potential of such compound was thus assessed by several chemical transformations aimed at the preparation of polymerizable monomers and beta amino acid precursors among others.95 Ohta et al.97 proposed the enzymatic cascade synthesis of phenylpropanone platform monomers followed by their chemical conversion into various derivatives. Even though the authors questioned the cost-effectiveness of their approach, they proposed to combine the synthesis of phenylpropanone platform monomers with the conversion of the remaining lignin fraction into functional materials. Such integrative approach that promotes the full and interrelated valorization of lignin into a portfolio of value added products is presumably the direction to follow in the next years.
Recent studies have highlighted the great potential of tannins to synthesize aromatic polymer networks. For instance, Caillol et al.99 reported on the epoxidation of green tea tannins – a complex mixture of flavonoids and gallic acid – with epichlorohydrin to yield glycidyl ether pre-polymers. Such compounds were used for the formulation of bio-based aromatic epoxy resins with high crosslinking density. More recently, Avérous et al.100 designed thermoreversible polymer networks from furan-bearing condensed tannins and bismaleimide linkers (Scheme 15). The transition from gel to liquid was observed upon heating at 120 °C. The reversibility of the cross-linking was tuned through Diels–Alder and retro Diels–Alder reactions (Scheme 15). The authors anticipated a broad range of applications for this class of compounds, going from reversible adhesives to self-healing materials.
Scheme 15 Thermo-reversible polymer networks prepared from furan-bearing condensed tannins and bismaleimide linkers. Tannin was functionalized through ring-opening reactions with furfuryl glycidyl ether. Reproduced with permission from ref. 100. All rights reserved. Copyright 2017, American Chemical Society. |
Like lignins, tannins display suitable structures, i.e. natural aromatic character and high carbon content, for the preparation of partially graphitized carbons. Celzard et al.101 developed the synthesis of aminated aromatic hydrogels through the treatment of condensed tannin with ammonia and subsequent hydrothermal carbonization. After drying and pyrolysis, porous nitrogen-doped carbons were obtained and tested as electrode materials for supercapacitors. In a similar fashion, Titirici et al.102 proposed to use phloroglucinol, the monomer unit of phlorotannins (Scheme 14c), together with D-glucosamine and/or N-acetyl-D-glucosamine for the synthesis of nitrogen-doped carbon aerogels. Such materials were tested as metal-free oxygen reduction electrocatalysts.
Besides aromatic polymer networks and heteroatom-doped carbons, tannins were also employed for the design of hybrid structures. Caruso et al.103,104 described a strategy that takes advantage of coordination interactions between tannic acid (Scheme 14d) and metal ions to engineer coatings103 and functional gels.104 When group (IV) metal ions were used, in particular titanium(IV) bis(ammonium lactato)dihydroxide, metallogels were easily obtained.104 Such metallogels showed peculiar properties amongst which high adhesive strength, self-healing ability and injectability. The authors also demonstrated the possibility to incorporate various functional materials into the metallogel, such as magnetic nanoparticles, graphene oxide and carbon nanotubes, thereby offering a versatile platform for the design of composite materials.
Even though tannin offers interesting opportunities, its production remains limited as compared with lignin. While more than 50 million tons of lignin are extracted annually worldwide by the paper industry,74 annual production of tannin reaches only 0.2 million tons.98 Furthermore, the annual production of lignin might significantly increase in the near future, as lignin is a major by-product from the production of forestry ethanol.95 As a consequence, tannin should be used as precursor for the industrial production of those specialty chemicals or functional macromolecules and materials that are required in relatively small quantities.
Moving away from the realm of plants, alternative and complementary chemical spaces can be explored by diversifying the renewable feedstock. In this regard, biological waste produced by established commercial sectors will offer exceptional opportunities.105 In particular, the production of nitrogen-containing furan derivatives106,107 (e.g. 3-acetamido-5-acetylfuran), nitrogen-containing polyols108 and heterocyclic compounds109 (e.g. pyrrole) were reported during fractionation of crustacean shells.110,111 Nitrogen-doped porous carbons were also obtained either from chitin/chitosan monomers, as mentioned earlier,102 or directly from lobster shells.112 In a similar way, chitin based films113 and fibers114 are becoming available through novel processing strategies involving ionic liquids. Shell biorefinery, as defined by Yan et al.,110 is still at an early stage of development but might open up new horizons and allow synthesizing new platform chemicals and functional materials that would be more difficult to obtain from woody biorefinery.
Relying on alternative renewable feedstock is however not the only possibility to explore new regions within the sustainable chemical space. While we have been referring primarily to chemical strategies for the deconstruction of lignocellulosic biomass and alternative feedstocks, it is important to recall the very important contributions coming from the area of microbial and biotechnological production of platform chemicals.115,116 In this regard, the example of itaconic acid IA represents a very interesting case study. IA is produced using biotechnological schemes, namely fungal fermentation processes of xylose or glucose.117,118 In particular, IA is produced at large scale via fermentation with Aspergillus terreus. Due to its pattern of chemical functionalities, which counts two carboxylic acid sites and an α,β-unsaturated double bond, IA offers large possibilities for derivatization and the synthesis of high value added compounds. IA has large potential in polymer chemistry, i.e. for polycondensation reactions, but it can also undergo radical polymerization involving the CC bond. In organic fine chemistry, IA has large potential in the area of heterocycle synthesis.119 IA appears as a highly versatile and flexible starting material to access diverse five- and six-membered heterocycles (succinimides, pyrrolidones), but also heterocycles containing more than one heteroatom such as pyrazolidones. On the other side, itaconic anhydride is an interesting intermediate and allows to access 1,2,4 triazoles via a reaction with hydrazonamides. These compounds are potentially useful for their antimicrobial activities.120 More recently, Sperry et al. reported the synthesis of a series of biomass derived N-heterocycles including indoles, dihydroindolizinones and carbazoles. All these compounds are obtained from dimethyl itaconate and pyrrole.121 Interestingly, pyrrole can also be prepared on the basis of renewable precursors, showcasing the synthetic potential that exists within the sustainable chemical space.
IA and its derivatives allow also the access to oxygen and sulfur containing heterocycles. As an example, aldol condensation of diethyl itaconate with various ketones can be used to afford lactones. As already reported in the mid-1970s, this methodology can be applied to the synthesis of natural products such as (±)-nephrosterininc acid and (±)-protolichesterinic acid, two important members of the family of paraconic acids.122 These compounds are known for their biological activities in particular for their antibacterial, antifungal, antitumor and growth-regulating effects.123 In summary, IA and its derivatives appear as highly versatile building blocks to access broad libraries of architecturally diverse heterocycles following semisynthetic approaches. While IA is obtained by biotechnological means, chemical strategies can be used to access a variety of N, O and S substituted heterocycles.
This journal is © The Royal Society of Chemistry 2017 |